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Abstract

This research revealed that Lorentzian, 3-Dimensional model spaces, whose curvature tensor’s
associated Ricci operator is diagnolizable, will have constant vector curvature (we say M has cvc(ε) for
some ε ∈R) under some cicumstances. In these circumstances, we know the value of ε, and ε is unique.
In the circumstances where the model space does not have cvc(ε), we know which vectors in the model
space prevent it from having cvc(ε). These vectors form a subspace tangent to the light cone.
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1 INTRODUCTION & BACKGROUND

Every n-dimensional vector space has a means of measuring the distance of and the curvature along paths.
Differential Geometry is a branch of mathematics that generalizes what we would think of as the metric to
something called the inner product and what we would think of as a curvature function to an algebraic
curvature tensor and then studies the properties of both of these functions, amongst other things. Every
n-dimensional vector space can be talked about with respect to a basis, an inner product and an algebraic
curvature tensor. Intuitively, this is so that we know what sort of paths we can make in a given space. We
call such a space a model space.

Constant vector curvature is a relatively newly discovered property on model spaces. In three dimensions,
studying this property is made easier due to the fact that every curvature tensor, a function that takes
in four vectors and ouputs a real number, can be uniquely represented by a more simple function, the
Ricci Tensor. The Ricci tensor only requires two inputs. There is no such unique representation in higher
dimensions.

Furthermore, the associated Ricci Operator can take one of four Jordan-Normal forms. This research
considers only curvature tensors whose Ricci operator is diagonalized (one of the Jordan Normal forms).

Definition 1.1. A model space M = (V ,< ·, · >,R) is comprised of a vector space V = span{e1, ...,en}; an
inner product < ·, · > which is a symmetric, bi-linear form; and an algebraic curvature tensor R. Working
with a diagonalized Ricci operator reduces the number of non-zero curvature entries.

Definition 1.2. Let V be a real, finite-dimensional vector space. Let R : V ×V ×V ×V →R be a multilinear
function. R is an algebraic curvature tensor (or ACT) if it satisfies

1. R(x, y, z, w) =−R(y, x, z, w)

2. R(x, y, z, w) = R(z, w, x, y)

3. R(x, y, z, w)+R(z, x, y, w)+R(y, z, x, w) = 0

for all x, y, z, w ∈V .

Definition 1.3. Let M = (V ,< ·, · >,R) be a model space and < ·, · > non-degenerate. A 3-dimensional
model space is Lorentzian if we can find an orthonormal basis {e1,e2,e3} for V s.t.

< ·, · >=

e1 e2 e3 e1 −1 0 0
e2 0 1 0
e3 0 0 1

We would then call e1 a time-like vector and e2 and e3 space-like. Furthermore, all basis vectors ei

s.t.< ei ,ei >= 0 are reffered to as light-like, though none of the basis vectors are light-like in Lorentzian
space.

Definition 1.4. Let V be a real, finite-dimensional vector space and v, w ∈V . Suppose π= span{v, w} is
non-degenerate. Then the sectional curvature κ(π) is defined

κ(π) = R(v, w, w, v)

< v, v >< w, w >−< v, w >2
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Definition 1.5. A model space M = (V ,<, · >,R) has constant sectional curvature ε, denoted csc(ε), if
κ(span v, w}) = ε for all v, w ∈ M and span{v, w} is non-degenerate.

Definition 1.6. A model space M = (V ,<, · >,R) has constant vector curvature ε, denoted cvc(ε), if for
every v ∈V exists a w ∈V s.t. κ(span{v, w}) = ε and span{v, w} is non-degenerate.

Definition 1.7. Let M = (V ,< ·, · >,R) be an n-dimensional model space with {e1, ...,en} an orthonormal
basis for V . Let ρ be a symmetric bi-linear form with respect to < ·, · > (i.e. ρ(x, y) =<Φx, y > whereΦ is
referred to as the Ricci Operator). The the Ricci Tensor ρ is defined

ρ(x, y) =
n∑

i=1
< ei ,ei > R(x,ei ,ei , y)

An n ×n matrix in Jordan-Normal Form is a matrix representation of a linear transformation on some
basis. Generally, the matrix has eigenvalues on the diagonal, 1s or 0s on the diagonal above the main
diagonal and 0s everywhere else. The number of 1s depends on the number of unique eigenvalues. For an
explicit definition see [5].

For example, any 3×3 matrix will take one of the following J-N Forms:

3 real eigenvalues λ1 0 0
0 λ2 0
0 0 λ3


2 real eigenvalues λ1 0 0

0 λ2 1
0 0 λ2


1 real eigenvalue λ 1 0

0 λ 1
0 0 λ


1 complex eigenvalue a b 0

−b a 0
0 0 λ2


λ1 = a +bi , λ2 ∈R

Theorem 1.1. For a 3-dimensional model space, a diagonalized Ricci Operator implies that R1221, R1331,
and R2332 are the only possible non-zero curvature entries [needs citation].

Remark. For a Lorentzian model space M = (V ,< ·, · >,R), consider v, w ∈V s.t. v = xe1 + ye2 + ze3 and
w = a1 +be2 + ce3. Then

κ(span{v, w}) = α(xb −ay)2 +β(xc −az)2 +γ(yc − zb)2

−(xb −ay)2 − (xc −az)2 + (yc −bz)2

Lemma 1.2. If {e1,e2,e3} is a basis for V with R(e1,e2,e2,e1) =α and R(e1,e3,e3,e1) =β where e1 is time-
like and e2,e3 are space-like, then ∃ another basis for V , { f1, f2, f3}, defined as e1 = f1, e2 = f3, e3 = f2, then
R(e1,e2,e2,e1) =β and R(e1,e3,e3,e1) =α.

Proof. This is pretty straight forward to see. Note, f1 is still space-like and f2, f3 time-like.

Thompson showed in [1] that all 3-dimensional model spaces in the Reimannian setting have cvc(ε) for
some ε ∈R. In [2], Peng showed that when the Ricci operator is diagonalized,
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α>β≥ γ≥ 0 =⇒ M has cvc(−α)
β>α≥ γ≥ 0 =⇒ M has cvc(−β)

This research started by considering the proofs in [2] and found a generalization for those results. The
result is we now know when M has cvc(ε) for some ε ∈R and when it doesn’t. Furthermore, this is the first
instance of a 3-dimensional model space that does not have cvc(ε) for some ε ∈R.

2 RESULTS

2.1 WHAT CAN ε BE?

Theorem 2.1. Let M = (V ,< ·, · >,R) be a 3-dimensional Lorentzian model space and {e1,e2,e3} an orthonor-
mal basis for V with respect to < ·, · >. Let R1221 =α,R1331 =β,R2332 = γ and, without less of generality, say
α>β. Then If M has cvc(ε) for some ε ∈R and

1. If −α<−β≤ γ, then ε=−α.

2. If γ≤−α,−β, then ε=−β.

3. If −α< γ<−β, then ε ∈ {−α,γ,−β}.

4. If α=β, then ε=−α=−β.

Proof. Suppose −α<−β≤ γ.
From Peng’s paper (theom 2.2):
Either ε≥−α and ε≤−β or ε≤−α and ε≥−β, but α>β so ε ∈ {−α,−β}.
Also, ε≥ max{−α,γ} or ε≤ mi n{−α,γ}. But γ>−α, so ε ∈ (−∞,−α]∪ [γ,∞).
Finally, ε ≥ max{−β,γ} or ε ≤ mi n{−β,γ}. But γ > −β, so ε ∈ (−∞,−β]∪ [γ,∞). So {−α,−β}∩
(−∞,−α]∪ [γ,∞)∩ (−∞,−β]∪ [γ,∞) =−α. So ε=−α.

Suppose γ≤−α,−β.
The intervals are the same as above, but given this relationship between γ,−α,−β, we get:
{−α,−β}∩ (−∞,−α]∪ [γ,∞)∩ (−∞,−β]∪ [γ,∞) =−β. So ε=−β.

Suppose −α< γ<−β.
Then {−α,−β}∩ (−∞,−α]∪ [γ,∞)∩ (−∞,−β]∪ [γ,∞) = {−α,γ,−β}. So ε ∈ {−α,γ,−β}.

Suppose α=β.
Then it is clear to see that since ε ∈ [−α,−β] and α=β, ε=−α=−β.

2.2 WHEN DOES M HAVE cvc(ε)?

Theorem 2.2. Let M = (V ,< ·, · >,R) be a 3-dimensional Lorentzian model space and {e1,e2,e3} an orthonor-
mal basis for V with respect to < ·, · >. Let R1221 =α,R1331 =β,R2332 = γ and, without less of generality, say
α>β.

1. If γ>−α,−β then M has cvc(−α).
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2. If γ<−α,−β then M has cvc(−β).

3. If −α≤ γ<−β or −α< γ≤−β then M does not have cvc(ε) for any ε ∈R.

4. If −α=−β 6= γ then M has cvc(−α=−β).

5. If −α=−β= γ then M has csc(γ=−α=−β).

Proof. (1 of 5)
See Peng’s proof for Theorem 2.3 in [2]. It turns out that her proof for this theorem also proves (1) of
this theorem. However, what Peng did not explicitly consider in [2] was whether span{v, w} will
ever be degenerate for some v ∈V . But κ(span{v, w}) is undefined when the denominator is zero:

−x2 − y2 γ+α

α−β
+2x y

√
γ+α

α−β
− γ+β

α−β
= 0

This happens when either (a) x, y = 0 and γ=−β OR (b) x = 0 and γ=−α=−β. By the hypotheses
of the theorem, neither (a) or (b) can happen. Thus the proof holds.

Proof. (2 of 5)
Case 1: Suppose v = xe1 + ze3 where only one of x, z or neither are zero, and let w ∈V be any vector
s.t. span{v, w} = span{e1,e3}. Then

κ(span{e1,e3}) = R1331

< e1,e1 >< e3,e3 >−< e1,e3 >2

= β

(−1)(1)− (0)

=−β
Case 2: Suppose ṽ ∈ V s.t. ṽ = x̃e1 + ỹe2 + z̃e3 and ỹ 6= 0. Scale ṽ by 1

ỹ and call it v = xe1 + e2 + ze3.
(Note: for any w ∈V , span{ṽ , w} = span{v, w}.)

Consider w =
√

γ+β
β−αe1 +e3.

Then

κ(span{v, w}) = R(v, w, w, v)

< v, v >< w.w >−< v, w >2

=
β(x2 + z2 γ+β

β−α −2xz
√

β+γ
β−α + α+γ

β−α )

(−1)((x2 + z2 γ+β
β−α −2xz

√
β+γ
β−α + α+γ

β−α )

=−β.

Furthermore, span{v, w} will never be degenerate for any v ∈V . Note that κ(span{v, w}) is unde-
fined when the denominator is zero:

−x2 + z2 γ+β

β−α
+2x y

√
γ+β

β−α
− γ+α

β−α
= 0

This happens when either (a) x, z = 0 and γ=−α or (b) x = 0 and γ=−α=−β. By the hypotheses
of the theorem, neither (a) or (b) are true.
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Proof. (3 of 5)

First, show: for −α<γ<−β, M does not have c vc(γ).

Consider the vectors v = e1 + ye2 ± (
√

1− α+γ
β+γ + y

√
α+γ
β+γ )e3.

By way of contradiction, suppose ∃w = ae1 +be2 + ce3 s.t. κ(span{v, w}) = γ.
Then

κ(span{v, w}) = α(b −ay)2 +β(c −az)2 +γ(yc −bz)2

−(b −ay)2 − (c −az)2 + (yc −bz)2 = γ

=⇒ α+γ

−(β+γ)
= (c −az)2

(b −ay)2 =⇒ ±
√

α+γ

−(β+γ)
= c −az

b −ay
.

Case 1: a = 0

Then α+γ
−(β+γ) b2 = c2 =⇒ c =±

√
α+γ

−(β+γ) b. Consider the denominator of κ(span{v, w}):

−(b −ay)2 − (c −az)2 + (yc −bz)2 =−b2 − c2 + (yc −bz)2

=−b2 + α+γ

β+γ
b2 + [y(±

√
α+γ

−(β+γ)
)− zb]2

= b2(
α+γ

β+γ
−1+ [±y

√
1+ α+γ

−(β+γ)
− (

√
α+γ

−(β+γ)
± y

√
α+γ

−(β+γ)
)]2)

= b2(
α+γ

β+γ
−1+1− α+γ

β+γ
) = 0.

Thus κ(span{v, w}) is undefined for all w ∈V with a = 0.
Case 2: a 6= 0
Without loss of generality, say a = 1.

Then α+γ
−(β+γ) (b − y)2 = (c − z)2 =⇒ c =±

√
α+γ

−(β+γ) (b − y)+ z.

Consider the denominator of κ(span{v, w}):

−(b − y)2 − (c − z)2 + (yc −bz)2 =−(b − y)2 + α+γ

β+γ
(b − y)2 + [y(±

√
α+γ

−(β+γ)
(b − y)+ z)− zb]2

= (b − y)2(
α+γ

β+γ
−1+ [±y

√
1+ α+γ

−(β+γ)
− (

√
α+γ

−(β+γ)
± y

√
α+γ

−(β+γ)
)]2)

= (b − y)2(
α+γ

β+γ
−1+1− α+γ

β+γ
) = 0.

Thus κ(span{v, w}) is undefined for all w ∈V so M cannot have cvc(γ).

Next, show: for −α<γ<−β, M does not have c vc(−α).

Consider vectors v = e1 ±
√

α−β
−(β+γ) e3. Let z =±

√
α−β

−(β+γ)
By way of contradiction, suppose ∃ w = ae1 +be2 + ce3 s.t. κ(span{v, w}) =−α.
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Then

α(b −ay)2 +β(c −az)2 +γ(yc −bz)2

−(b −ay)2 − (c −az)2 + (yc −bz)2 =−α

=⇒ α[(b −ay)2 − (b −ay)2 − (C −az)2 + (yc − zb)2]+β(c −az)2 +γ(yc − zb)2 = 0

=⇒ (β−α(c −az)2 + (α+γ)(yc −bz)2 = 0 =⇒ β−α

−(α+γ)
= (yc −bz)2

(c −az)2 .

Case 1: a = 0

Then α−β
α+γ = z2b2

c2 =⇒ c2 = z2b2 α+γ
α−β . Consider the denominator of κ(span{v, w}):

−b2 − c2 + z2b2 =−b2 + z2b2α+γ

β−γ
+ z2b2

= b2[z2(
α+γ

β−α
+1)−1]

= b2[−α−β

β+γ
(
α+γ

β−α
+1)−1] = b2(

α+γ

β+= γ
− α−β

β+γ
−1)

= b2(
α+γ−α+β−β−γ

β+γ
) = 0.

Case 2: a 6= 0

Without loss of generality, say a = 1. Then α−β
α+γ = z2b2

(c−z)2 =⇒ (c − z)2 = z2b2 α+γ
α−β , as in Case 1.

Thus, considering the denominator of κ(span{v, w}) results in the same calculation as above, so
κ(span{v, w}) is undefined for all w . So M cannot have cvc(−α).

Next, show: for −α<γ<−β, M does not have c vc(−β).

Consider vectors v = e1 ±
√

α−β
α+γ e2. Let y =±

√
α−β
α+γ

By way of contradiction, suppose ∃ w = ae1 +be2 + ce3 s.t. κ(span{v, w}) =−β.
Then

α(b −ay)2 +β(c −az)2 +γ(yc −bz)2

−(b −ay)2 − (c −az)2 + (yc −bz)2 =−β

=⇒ α(b −ay)2 +β[(c −az)2 − (b −ay)2 − (c −az)2 + (yc − zb)2]+γ(yc − zb)2 = 0

=⇒ (α−β)(b −ay)2 + (β+γ)(yc −bz)2 = 0 =⇒ β−α

β+γ
= (yc −bz)2

(b −ay)2 .

Case 1: a = 0

Then α−β
β+γ = y2c2

b2 =⇒ b2 = y2c2 β+γ
β−α .Consider the denominator of κ(span{v, w}):

−b2 − c2 + y2c2 = y2c2 − c2 + β+γ

α−β

= c2[y2(
β+γ

α−β
+1)−1]

= c2[
α−β

γ+α
(
β+γ

α−β
+1)−1]

= c2[
β+γ

γ+α
+ α−β

γ+α
−1] = c2[

α+γ

α+γ
−1] = 0.
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Case 2: a 6= 0

Without loss of generality, say a = 1. Then α−β
β+γ = y2c2

(b−y)2 =⇒ (b − y)2 = y2c2 β+γ
β−α as in Case 1.

Thus, considering the denominator of κ(span{v, w}) results in the same calculation as above, so
κ(span{v, w}) is undefined for all w . So M cannot have cvc(−β).

Next, show: Forα>β, when γ=−α, M does not have c vc(ε) for any ε ∈R.
By Theorem 2.1, if M has cvcε), then ε=−α= γ.Consider v = e1 + ye2 +e3.
By way of contradiction, suppose ∃ w = ae1 +be2 + ce3 s.t. κ(span{v, w}) =−α= γ. Then

κ(span{v, w}) = α(b −ay)2 +β(c −a)2 −α(yc −b)2

−(b −ay)2 − (c −a)2 + (yc −b)2 =−α

=⇒ α[(b −ay)2 − (yc −b)2 − (b −ay)2 − (c −a)2 + (yc −b)2]+β(c −a)2 = 0

=⇒ (β−α)(c −a)2 = 0

=⇒ c=a because β 6=α by assumption.

Considering the denominator of κ(span{v, w}): −(b −ay)2 − (c −a)2 + (yc −b)2 =−(b − c y)2− (c −
c)2 + (yc −b)2 = 0. So κ(span{v, w}) is undefined for all w ∈V .

Finally, show: Forα>β, when γ=−β, M does not have c vc(ε) for any ε ∈R.
By Theorem 2.1, if M has cvcε), then ε=−β= γ.Consider v = e1 +e2 + ze3.
By way of contradiction, suppose ∃ w = ae1 +be2 + ce3 s.t. κ(span{v, w}) =−β= γ. Then

κ(span{v, w}) = α(b −a)2 +β(c −az)2 −α(c −bz)2

−(b −a)2 − (c −az)2 + (c −bz)2 =−β

=⇒ α(b −a)2 +β[(c −az)2 − (c −bz)2 − (b −a)2 − (c −az)2
( c −bz)2] = 0

=⇒ (α−β)(b −a)2 = 0

=⇒ b=a because β 6=α by assumption.

Considering the denominator of κ(span{v, w}): −(b −a)2 − (c −az)2 + (c −bz)2 =−(a −a)2− (c −
az)2 + (c −az)2 = 0. So κ(span{v, w}) is undefined for all w ∈V .

Proof. (4 of 5)
Case 1: v = e1 + ye2 + ze3 and only one of y, z or neither equal zero. Consider w = ye2 + ze3. Then

κ(span{v, w}) = αy2 +αz2 +γ(y z − y z)2

−y2 − z2 + (y z − y z)2

= α(y2 + z2)

−1(y2 + z2)

=−α

By assumption, the denominator will never equal zero.
Case 2: v = e1.
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Choose w = e2 (w = e3 would also work).
Then

κ(span{v, w}) = R1221

(−1)(1)− (0)
=−α

Proof. (5 of 5)
Let v ∈V s.t. v = xe1 + ye2 + ze3 ; x, y, z ∈R.
Let w ∈V s.t. w = ae1 +be2 + ce3 ; a,b,c ∈R.
Then

K (span{v, w} = R(v, w, w, v)

< v, v >< w, w >−< v, w >2

Numerator:

R(xe1 + ye2 + ze3, ae1 +be2 + ce3, ae1 +be2 + ce3, xe1 + ye2 + ze3)

= xbayR1212 +x2b2R1221 +xcazR1313 +x2c2R1331 +a2 y2R2112 + y abxR2121 + ycbzR2323 + y2c2R2332 + z2a2R3113

+ zacxR3131 + z2b2R3223 + zbc yR3232

= xbay(γ)+x2b2(−γ)+xcaz(γ)+x2c2(−γ)+a2 y2(−γ)+ y abx(γ)+ ycbz(−γ)+ y2c2(γ)+ z2a2(−γ)+ zacx(γ)+ z2b2(γ)

+ zbc y(−γ)

= γ(2xbay −x2b2 +xcaz −x2c2 −a2 y2 −2ycbz + y2c2 − z2a2 + z2b2)

Denominator:

< xe1 + ye2 + ze,xe1 + ye2 + ze> < ae1 +be2 + ce3, ae1 +be2 + ce3 >−< xe1 + ye2 + ze,ae1 +be2 + ce3 >2

= (−x2 + y2 + z2)(−a2 +b2 + c2)− (−xa +by + cz)2

= 2xbay −x2b2 +xcaz −x2c2 −a2 y2 −2ycbz + y2c2 − z2a2 + z2b2

So

K (spanv, w) = γ(2xbay −x2b2 +xcaz −x2c2 −a2 y2 −2ycbz + y2c2 − z2a2 + z2b2)

2xbay −x2b2 +xcaz −x2c2 −a2 y2 −2ycbz + y2c2 − z2a2 + z2b2 = γ

Because v, w were chosen arbitrarily, M has csc(γ).

2.3 WHAT DOES THE SET OF VECTORS, THAT PREVENTS M HAVING cvc(ε) FOR SOME

ε ∈R, LOOK LIKE?

Proposition 2.3. The vectors that prevent M from having cvc(−α), cvc(γ) or cvc(−β) when −α≤ γ<−β
or −α< γ≤−β are all space-like or null.

Sketch of Proof :
First consider −α< γ<−β.
We know by Theorem 2.1 that M can have cvc(γ), cvc(−α) or cvc(−β). By taking two arbitrary
vectors v, w ∈V and supposing (span{v, w}) = γ, we then see what vectors w will force (span{v, w})
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to be undefined (i.e. the denominator will equal zero).
It was determined that only vectors of the form

v1 = e1 + ye2 ± (

√
1− α+γ

β+γ
+ y

√
α+γ

−(β+γ)
)e3

force the denominator to equal zero for any y ∈R.
A similar process can be done by evaluating when (span{v, w}) =−α will be undefined. In this case
it was determined that vectors of the form

v2 = e1 ± (

√
α−β

−(β+γ)
)e3

fore the denominator to equal zero for any y ∈R.
Similarly, when (span{v, w}) =−β, vectors of the form

v3 = e1 ± (

√
α−β

+γ )e2

fore the denominator to equal zero for any y ∈R.

Next, consider −α= γ 6= −β.
Then the vectors that prevent M from having cvc(−α= γ) (as determined by Theorem 2.1) are of
the form v4 = e1 + ye2 +e3 for any y ∈R

Finally, consider −α<−β= γ.
Then the vectors that prevent M from having cvc(−βγ) (as determined by Theorem 2.1) are of the
form v5 = e1 +e2 + ze3 for any z ∈R

Is is clear to see that vectors of the form v4 and v5 are always space-like. For example, < v4, v4 >=
−1+ y2 +1 = y2 ≥ 0.

Although the other vectors involve more complicated calculations, we also find that they are
space-like or null. For example,

< v1, v1 >=−1+ y2 + (

√
1− α+γ

β+γ
+ y

√
α+γ

−(β+γ)
)2

=−1+ y2 − y2 α+γ

(β+γ)
+1− α+γ

β+γ
±2y

√
1− α+γ

β+γ

√
α+γ

−(β+γ)

= y2(1− α+γ

β+γ
)±2y

√
1− α+γ

β+γ

√
α+γ

−(β+γ)
− α+γ

β+γ

= (1− α+γ

β+γ
)[y2 ±

√
α+γ

α−β
+ α+γ

α−β
]

= (1− α+γ

β+γ
)(y ±

√
α+γ

α−β
)2 ≥ 0
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It is clear that (y ±
√

α+γ
α−β )2 ≥ 0. Considering −α< γ< β, we know that −α+γ

β+γ > 0 so (1− α+γ
β+γ ) > 0.

And v1 is null when y =±
√

α+γ
α−β .

Also of interest is what vectors prevent a model space M from having (ε) for any ε ∈ R. This
research did not consider this question

3 VISUALIZING constant vector curvature

As both Thompson and Peng have done, I have generated a visualization of the constant vector curvature
condition. To visualize constnat vector curvature, we assign sectional curvature values to each vector in
the model space and project an associated color for that value onto the unit pseudo-spheres in Lorentzian
3-space (for Reimannian 3-space we project the colors onto the unit sphere).

Furthermore, I have generated an animation that presents the pseudo-spheres with the light-cone (the
null space) and the set of bad vectors. The animation shows the set of bad vectors tangent to and rotating
around the light-cone as the value of γ moves between −α and −β. The plane disappears otherwise.

Start by considering the equation for the space-like pseudo-sphere: x2 + y2 − z2 = 1 and the equation for
the time-like pseudo-sphere: x2 + y2 − z2 =−1

Note z is the time-like direction here. For every point (x, y, z) on one of the pseudo-spheres, we know
the perp space for the vector to be span{v, w} where v = −ye1 + xe2 and w = y ze1 + xze22x ye3 (this is
because the inner product of each point with both v and w is zero). We then consider

κ(span{v, w})

= R(−ye1 +xe2, y ze1 +xze22x ye3, y ze1 +xze22x ye3,−ye1 +xe2)

<−ye1 +xe2,−ye1 +xe2 >< y ze1 +xze22x ye3, y ze1 +xze22x ye3 >−<−ye1 +xe2, y ze1 +xze22x ye3 >2

= 4x2 y2(z2γ+ y2β+x2α)

4x2 y2(z2 − y2 −x2)

= z2γ+ y2β+x2α

z2 − y2 −x2

= γ(x2 + y2 −1)+ y2β+x2α

(−1)

= x2(−α−γ)+ y2(−β−γ)+γ

To create the animation using Maple Software pick values for α and β and leave “A" as is. Below, α= 5 and
β=−3 were input. Then execute the following commands to generate the animation:
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4 CONCLUSION

We now know that not all three-dimensional model spaces have cvc(ε) for some ε ∈R. In the Riemannian
setting, we alwyas know what ε is. In the Lorentzian setting, it is known exactly what cvc value a model
space should have, and if the space turns out not to have this cvc value, then we know the set of vectors
that prevent it from having cvc . This set of bad vectors is tangent to the null space. Furthermore, we have
a way to visualize constant vector curvautre as well as the way the set of “bad vectors" interacts with the
null space.

5 OPEN QUESTIONS

• Does the fact that the vectors preventing model spaces from having cvc are space-like or null
warrant the definition of “time-like cvc" and “null cvc?"

• We know the vectors that prevent the model spaces from having cvc the only values it could have,
but what are the bad vectors for any ε that prevent a model space from having cvc(ε)?

• How would we approach determining cvc when the Ricci Operator takes one of the other three
Jordan-Normal forms?
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