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Abstract

This paper examines the 1-homothety curvature homogeneity and
1-weak curvature homogeneity condition for certain families of mani-
folds. In the case where R = Rφ for φ of rank greater than or equal
to three and the kernel of ∇R contains the kernel or R we show that
a manifold is 1-homothery curvature homogeneous and 1-weak curva-
ture homogeneous simultaneously only if the manifold in question is
1-curvature homogeneous.

1 Introduction

Let V be a vector space over a field K.
Definition 1.1a An algebraic curvature tensor (or ACT for short) is a
4-multilinear tensor R : V × V × V × V → R that satisfies:

(1) R(X, Y, Z,W ) = −R(Y,X,Z,W )
(2) R(X, Y, Z,W ) = −R(Z,W,X, Y )

(3) R(X, Y, Z,W ) +R(X,Z,W, Y ) +R(X,W, Y, Z) = 0

The third of these identities is called the Bianchi identity.
Definition 1.1b An algebraic covariant derivative curvature tensor
(or ACDCT for short) is a 5-multilinear tensor ∇R : V ×V ×V ×V ×V → R
that satisfies (1)-(3) in the first four slots and the second Bianchi identity:

(4) ∇R(X, Y, Z, U ;V ) +∇R(X, Y, U, V ;Z) +∇R(X, Y, V, Z;U) = 0
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Definition 1.2 A 1-model space is a quadruple (V, 〈·, ·〉, R,∇R) the ele-
ments of which are a vector space, an inner product on the vector space, an
ACT on the vector space, and a ACDCT on the vector space respectively.
A 1-weak model space is the triple that results from the omission of the
inner product, a 0-model space, or simply a model space for short, is the
triple that results from the omission of the ACDCT, and a 0-weak model
space is the pair of the vector space and the ACT.

A semi-Riemannian manifold (M, g) has a natural connection, the levi-
civita connection, which is the unique torsion free metric connection[1]. The
covariant derivative of X with respect to Y shall be denoted ∇YX. This
gives rise to a 1-model space at every point defined by (Tp(M), gp, Rp,∇Rp)
where Rp is the Riemann curvature tensor defined by the formula:

R(X, Y, U, V ) = g(∇X∇YU −∇Y∇XU −∇[X,Y ]U, V )

and its covariant derivative, whose formula is:

∇R(X, Y, U, V ;Z) = Z(R(X, Y, U, V )−R(∇ZX, Y, U, V )
−R(X,∇ZY, U, V )−R(X, Y,∇ZU, V )−R(X, Y, U,∇ZV )

Definition 1.3a A manifold (M, g) is said to be k-curvature homoge-
neous if for any p, q ∈ M there is a linear isometry ` : TpM → TqM such
that

∇iRp(X, Y, Z, U ;V1, ..., Vk) = ∇iRp(`X, `Y, `Z, `U ; `V1, ..., `Vk)

for i = 0, 1, ..., k.
Definition 1.3b A manifold is said to be k-weak curvature homoge-
neous if we relax the curvature homogeneity condition, allowing l to be any
linear map that satisfies the property of curvature preservation above up to
level-k.
Definition 1.3c A manifold is said to be k-homothety curvature homo-
geneous if for any p, q ∈ M there is a linear homothety ` : TpM → TqM
such that

l∇iRp(X, Y, Z;V1, ..., Vk)W = ∇iRq(lX, lY, lZ, ; lV1, ..., lVk)lW (i = 1, ..., k).

Here we note that this is the ith covariant derivative curvature operator and
not the tensor itself.
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A result of Dunn and McDonald (also reached independently by Gilkey
et. al.) that will be of great use to us in this investigation is that 1-
homothety curvature homogeneity is equivalent to the condition that there
exists a smooth positive function ψ(p) on M such that the 1-model spaces
(TpM, gp, ψ(p)Rp, (ψ(p))3/2∇Rp) are all isomorphic.

There are canonical constructions of ACTs and CDACTs. Given a sym-
metric bilinear form φ on a vector space V there is an algebraic curvature
tensor Rφ on V given by the formula

Rφ(X, Y, U, V ) = φ(X, V )φ(U, Y )− φ(X,U)φ(Y, V )

given a symmetric bilinear form φ and a totally symmetric trilinear form
ψ there is an algebraic covariant derivative curvature tensor defined by the
formula:

∇Rφψ(X, Y, U, V ;Z) = φ(X, V )ψ(Y, U, Z) + φ(U, Y )ψ(X, Y, Z)

−φ(X,U)ψ(Y, V, Z)− φ(Y, V )ψ(X,U,Z)

Remark: At the zero level, homothety curvature homogeneity implies
weak curvature homogeneity. Weak curvature homogeneity is the condition
that for p, q ∈M there is a map isometry ` : TpM → TqM such that

Rp(X, Y, Z, U) = Rq(`X, `Y, `Z, `U)

. By the construction mentioned earlier, a manifold is 0-homothety curva-
ture homogeneous if all of the model spaced (TpM, gp, ψ(p)R) are all isomor-
phic. Let ` : TpM → TqM be one of the isomorphisms which is guarun-
teed to exist guarunteed to exist. One has that `∗ψ(q)Rq(X, Y, U, V ) =

ψ(q)Rq(`X, `Y, `U, `V ) = ψ(p)Rp(X, Y, U, V ). If one sets h = (ψ(q)
ψ(p)

)1/4`, then
h is an isomorphism of the weak zero models.

Definition 1.4 We define the kernel of an ACT R (denoted ker(R))
as the set of X such that the trilinear form given by inner multiplication
ιXR(·, ·, ·) = R(X, ·, ·, ·) is identically 0. Similarly, we shall define the kernel
of an ACDCT ∇R as the set of X such that the 4-linear forms given by
inner multiplication ιX∇R(·, ·, ·; ·) = ∇R(X, ·, ·, ·; ·) and ∇R(·, ·, ·, ·;X) are
both identically 0.
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We shall set out to prove the results concerning the constructions above
in the following order:

Theorem 2.1 Let Mbe a manifold whose curvature is of the form R = Rφ

where φ is of rank greater than or equal to three, M if M satisfies the con-
dition that ker(R) ⊆ ker(∇R) then:

• φ, R, and ∇R give rise to well defined tensors at every point on the
vector space TpM/ker(Rp). Furthermore, on TpM/ker(Rp), φ gives rise
to a nondegenerate inner product.

• Contractions of ∇R by φ are invariant under 1-weak model space iso-
morphism.

From this result, we prove:

Theorem 2.2 Let M be 1-homothety curvature homogeneous. Suppose
φ induces a positive definite bilinear form on TpM/ker(R) for every p ∈ M .
Then M is 1-weak curvature homogeous if and only if M is 1-curvature ho-
mogeneous.

2 Results

Proof of theorem 2.1: For the first assertion, one simply has to consider
the tenors characterized by the equations π∗∇R = ∇R, π∗R̄ = R, and,
because φ is of rank greater than or equal to three, Rφ and φ share the same
kernel, so the third equation π∗φ̄ = φ can be added without changing the
system of equations. Suppose now that φ had a nontrivial kernel containing
a nonzero vector v. Because φ is symmetric, by graham-schmidt pseudo-
orthonormalization, it is readily apparent that by negating the component of
v where the signature entry is negative in φ, call this vector v. We conclude
that if φ(v, v) is zero, then v is zero.

Furthermore, if there is a 1-weak curvature isomorphism of a model
space, the form φ and the space ker(R) must be preserved. Likewise the form
∇R and therefore ∇R must also be preserved. Therefore any full contraction
of R by φ is preserved as well since contractions are independent of basis.
Proof of theorem 2.2: Consider the contaction:

||∇R||2φ = (φ)i1i2(φ)j1j2(φ)k1k2(φ)`1`2(φ)m1m2∇Ri1j1k1`1m1∇Ri2j2k2`2m2 .
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There exists a basis in which the form φ is diagonal as φ is symmetric. In
this diagonal basis one has R with coefficients of the form (using Dunn and
McDonald’s construction):

Rijji = λijji∆ = φiiφjj.

This set of equations gives rise to the relations:

• φii = φjj
λ1ii1
λ1jj1

for i, j > 1

• φ11 = φ33
λ1221
λ2332

.

Since ever coefficient is a constant multiple of φ11, we conclude that we must
have all coefficients in this basis of the form φii = ki∆

1/2.
The contraction ||∇R||2φ becomes:

||∇R||2φ = Σ(φ)ii(φ)jj(φ)pp(φ)``(φ)mm∇R2

ijp`m.

If 1-homothety curvature homogeneity is satisfied, this is equal to:

Σ
1

kikjkpk`km
∆−5/2 ·∆3 = K ·∆1/2

for nonzero K. By the positive definiteness of φ, we know that this is zero
only when the 1-curvature coefficients are zero. Since this construction is a
1-weak curvature invariant, it must be constant. Therefore 1-weak curvature
homogeneity renders ∆ constant. However, this means that there exists a
basis {e1, ..., en} at every point which satisfies the conditions:

• 〈ei, ej〉 = gij(p)

• R(ei, ej, ek, el) = (Rp)ijkl

• ∇R(ei, ej, ek, el; em) = (∇Rp)ijkl;m

This, as a matter of fact, means that M is 1-curvature homogeneous.
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Example
Let F : R5 → R6 be defined by F (x, x1, x2, y1, y2) = (x, x1, x2, y1, y2, x

2
1/2+

x22/2 + f(x)) Give R6 the metric defined by: g(∂x, ∂x) = g(∂x1 , ∂y1) =
g(∂x2 , ∂y2) = g(∂6, ∂6) = 1. This gives rise to the metric g on M whose
matrix is: 

1+(f’(x))2 x1f
′(x) x2f

′(x) 0 0
x1f

′(x) x2
1 x1x2 1 0

x2f
′(x) x2x1 x2

2 0 1
0 1 0 0 0
0 0 1 0 0


Consider the frame given by:

X = ∂x√
1+(f ′(x))2

− f ′(x)√
1+(f ′(x))2

(x1∂y1 + x2∂y2)

X1 = ∂x1 −
x21∂y1

2
− x1x2∂y1

X2 = ∂x2 −
x21∂y2

2

Yi = ∂yi .

In this frame the metric entries are constant with the values g(X,X) =
g(Xi, Yi) = 1. Furthermore, other than a scaling in the x direction, every-
thing is changed by a combination of ∂yi’s which does not affect the value of
the curvature tensor, whose new coefficients are:

• R1221 = f ′′(x)
(1+(f ′(x))2)2

• R1331 = f ′′(x)
(1+(f ′(x))2)2

• R2332 = 1
1+(f ′(x))2

Scaling Xi by λ =
√

f ′′

1+(f ′)2
and Yi by 1/λ, one establishes homothery cur-

vature homogeneity at the zero level, with all coefficients set to R̃ijji =
(f ′′(x))2

(1+(f ′(x))2)3
. In the original basis, the coefficients of the curvature and its

covariant derivative are (up to symmetry):

• R1221 = R1331 = f ′′(x)
1+(f ′(x))2

• R2332 = 1
1+(f ′(x))2
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and

• ∇R1221;1 = ∇R1331;1 = 4(f ′′)2f ′−(1+(f ′)2)f ′′′

(1+(f ′)2)2

• ∇R2332;1 = 2f ′f ′′

(1+(f ′)2)2

• ∇R2132;3 = ∇R3123;2 = f ′f ′′

(1+(f ′)2)2
.

The value of the invariant described above would, in this case be:

||∇R||2φ =
8

(f ′′)3(1 + (f ′)2)3/2
[20(f ′)2(f ′′)4 + (f ′)4(f ′′′)2 + (f ′′′)2

−8(f ′)3(f ′′)2f ′′′−8f ′(f ′′)2f ′′′+2(f ′)2(f ′′′)2]. This shows that even in specific
cases, it is difficult to find manifolds that satisfy 1-weak curvature homo-
geneity if they are not readily 0-curvature homogeneous.
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