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Abstract. This paper focuses on two subclasses of hyperbolic
generalized fully augmented links: fully augmented links and nested
links. The link complements of fully augmented links have many
nice geometric properties that many generalized fully augmented
links do not have. Nested links are a class of generalized fully
augmented links that share many qualities with fully augmented
links, including cell decomposition properties, cusp properties, and
sharpness of a volume bound.

1. Introduction & Background

A knot is a closed curve in three dimensions. A link is a collection of
multiple knots that can be interconnected. The class of links focused
on in this paper are hyperbolic links, which are links whose complement
can be described as a complete hyperbolic manifold. The subclass of
links explored in this paper are hyperbolic generalized fully augmented
links. In order to obtain an augmented link, take a knot or link diagram
K and place a trivial component around every twist region. This trivial
component is known as a crossing circle (when referring to the knot
strand) or crossing disc (when referring to the surface bound by the
strand). Remove all full twists from the twist region, leaving behind
either no twists or a partial twist. The resulting link is a hyperbolic
generalized fully augmented link L.

Figure 1. Left: a knot with two twist regions. Center:
trivial components added to twist regions. Right: all full
twist removed to create an augmented link.
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Hyperbolic generalized fully augmented links can have arbitrarily
many strands in each twist region. The number of strand in the twist
regions affects the geometry of the link complement. For example, a
crossing disc with two strands passing through it is a thrice punctured
sphere (one puncture for each strand and one for the crossing circle
that bounds the disc) and thus creates a triangular face in the link
complement. This is important because in hyperbolic space all triangles
whose vertices are ideal are totally geodesic and they are all isometric to
one another, which is helpful in the creation of the manifold. However,
when you add a third crossing strand the crossing disc becomes a four
times punctured sphere and thus creates a rectangular face in the link
complement. This is inconvenient because rectangles are not always
totally geodesic and are not isometric to all other rectangles. Thus,
when all of the twist regions have only two strands the hyperbolic
complement is easier to define than when the twist regions have more
strands.

In this paper, two subclasses of augmented links are explored: fully
augmented links and nested links. In a fully augmented link, each
twist region has only two strands and thus the crossing disc is twice
punctured. In a nested links, the twist regions can have more strands,
but the crossing discs can be made coplanar so that each disc is still
only twice punctured by a combination of strands and other discs. This
is useful because then the crossing discs only form triangular faces in
the link complement, which have nice hyperbolic properties.

Figure 2. the augmentation of a nested tangle.

In this paper, the similarities between fully augmented and nesting
links will be analyzed. The main point of comparison is Purcell’s An
introduction to fully augmented links, where she outlines some of the
basic characteristics of fully augmented links. Most of these character-
istics are true for nested links as well. Main points of comparison in this
paper are cell decomposition, circle packing, cusp shapes and funda-
mental regions, and volume bounds. Many of the following propositions
have analogous propositions in [?], which are noted where appropriate.
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2. Cell Decomposition

Hyperbolic links are characterized by their link complement. The
link complement is a complete hyperbolic manifold that makes up the
space surrounding the link. This manifold can be described as a col-
lection of polyhedra glued together with specific gluing instructions.
In order to determine the polyhedra of the knot complement, we cut
along a cell decomposition of S3.

The 0-cells of the complement are the knot strands of the augmented
link. The 1-cells are the intersections between the crossing discs and
the plane of projection. The 2-cells are the crossing discs and the plane
of the original link components. The cell decomposition utilized in this
paper is a generalization of the cell decomposition of fully augmented
links as outlined by Purcell in Proposition 2.2 of [?]:

Figure 3. Cell decomposition of a hyperbolic fully aug-
mented link, with the steps of decomposition labeled.

• Step 1. Cut the complement along the projection plane. This
creates two isometric regions, P+ and P− which are symmetric
about the projection plane. Half of each crossing disc is in each
region.
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• Step 2. For each P+ and P−, butterfly and flatten the half
crossing discs.

• Step 3. Shrink the link components into ideal vertices.

Figure 4. Cell decomposition of a hyperbolic nested
link, with the steps of decomposition labeled.

The cell decomposition can be transformed into a circle packing. In
a circle packing, all of the faces that come from the plane of projection
are transformed into circles that have the same tangencies as the cell
decomposition.

Using the circle packing of a cell decomposition, the nerve Γ is the
graph obtained by placing a vertex at the center of each circle and
adding edges between vertices when the faces they correspond to are
tangent. The dual Γ∗ to the nerve can be obtained by doing the same
thing with the shaded faces. The dual can also be obtained by placing
a vertex in every face of Γ and adding edges between vertices when the
faces share edges.
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Figure 5. Clockwise from upper left: 1. The cell de-
composition from Figure 4, 2. The circle packing of the
cell decomposition, 3. The dual to the nerve in blue, 4.
The nerve in green.

3. Properties of Cell Decomposition

It can be shown that nested links have the same cell decomposition
qualities of fully augmented links from Proposition 2.2 in [?].

Proposition 1. Let L be a hyperbolic nested link. There is a de-
composition of the complement into two isometric polyhedra and these
polyhedra have the following properties:

• Faces of the polyhedra can be checkerboard colored. Shaded faces
are triangles that come from the twice punctured crossing discs.
Unshaded faces come from the projection plane.

• Ideal vertices are all 4-valent.
• The dihedral angle at each edge is π/2.

Proof. The edges of the knot decomposition come from the intersections
of the crossing discs with the projection plane. Just like with fully
augmented links, all of the edges of nested links bounds one shaded
face and one unshaded face. This allows for checkerboard coloring.
Since the crossing discs of nested links are composed entirely of 2-
punctured discs, each 2-punctured disc has exactly three edges and is
thus a triangle.
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The ideal vertices in the decomposition come from the link compo-
nents of L. In a nested link, the vertices from the link component
embedded in the projection plane have four edges as described by Pur-
cell in [?]: two for each of the crossing discs the component touches.
The outermost crossing discs have four edges as well: two for each of
the two triangles formed from the 2-punctured disc. The inner crossing
discs also have four edges: two from the triangle formed on that face
of the 2-punctured disc and two from the triangle of the crossing disc
immediately above. Thus, all ideal vertices are 4-valent.

The dihedral angle is π/2 at each edge because each shaded face is a
triangle. If you observe the circle packing of the link complement, each
shaded triangle is bound by three mutually tangent circles. If you send
the ideal vertex between two of the circles to infinity, the circle packing
is displayed as two parallel lines both tangent to the third circle. Since
the circle is tangent to two parallel lines, it must be tangent along a
diameter d and d must be perpendicular to all three circles. The dome
on which the triangular face lies ends up presented as that diameter d
of the circle because it must pass through the points where the circles
intersect. Thus, the shaded faces must intersect the unshaded faces
at an angle of π/2. Since the polyhedra are checkerboard colored, the
dihedral angle at each edge is π/2 �

Figure 6. Left: section of a circle packing, where the
bound of the hemisphere face the triangle lies on is in
blue. Right: the same circle packing with one ideal ver-
tex sent to infinity.

Since the decomposition of a nested links satisfies the above proposi-
tion and results in polyhedra with totally geodesic faces and the shaded
faces are triangles, nested links also have the same properties as Lemma
2.3 of [?], shown below in Lemma 2.

Lemma 2. Let L be a hyperbolic nested link. Then the polyhedral
decomposition of the link complement corresponds to a circle packing
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on S2 whose nerve is a triangulation of S2. The nerve also has the
following properties:

• Each edge of the nerve has distinct endpoints.
• No two vertices are joined by more than one edge.

Proof. The proof is identical to Purcell’s proof of Lemma 2.3 in [?]. �

Purcell provides a converse to the above lemma for fully augmented
links. When you start with a triangulation on S2 and paint a group of
edges red such that each vertex only has one colored edge it correlates
to a hyperbolic fully augmented link whose nerve is the triangulation.
It is shown that performing the same painting on the dual graph of the
triangulation is also associated with the hyperbolic fully augmented
links. There is an analogous converse to the above lemma for nested
links, which involves painting the dual graph.

Definition 3. An edge-symmetric graph is a connected graph such
that for one edge a, each edge b1 is related to one edge b2 by symmetry
about a. An edge-symmetric spanning forest is a spanning forest
such that each tree is an edge-symmetric graph.

Figure 7. The formation of a nested link from the dual
graph of a triangulation.

Lemma 4. Let Γ be a triangulation of S2 and Γ∗ is the dual graph
to Γ. Every edge-symmetric spanning forest of Γ∗ is associated with a
hyperbolic nested link.

Proof. This is proven by Harnois and Trapp in [?]. �

4. Cusps

In [An intro], Purcell characterizes the cusps of fully augmented links.
Cusps of nested links have similar characteristics to fully augmented
links, with a slight difference in the way the meridian of the cusp is
presented in the cell decomposition. The propositions in this section
are analogous to Lemma 3.1 and Proposition 3.2 in [?].

Definition 5. A cusp is the neighborhood of an ideal vertex. It is the
toroidal region of the link complement around a link component.
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Figure 8. Left: a fully augmented tangle, the crossing
circle is blue, the crossing disc is shaded, and the cusp
is green. Right: a nested tangle, the crossing circles are
blue, the crossing discs are shaded, and the cusps are in
green and purple

Proposition 6. Any cusp of a nested link is tiled by rectangles, each
determined by a circle packing corresponding to a vertex of the ideal
polyhedra.

Proof. According to Proposition 1, every vertex is 4-valent and all di-
hedral angles are π

2
. Thus, the cusp of every vertex must form a rec-

tangle. �

Figure 9. Left: the link from Figure 4. Right: the
locations of the cusps in the cell decomposition.

Proposition 7. The circle packing when any ideal vertex is sent to
infinity consists of two parallel white lines each tangent to a pair of
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white circles such that the two lines and two circles bound the rest of
the circle packing.

Proof. Looking at the circle packing of a nested link, when you send a
vertex to infinity the faces tangent at that vertex become the rectangu-
lar cusp. The two unshaded circles tangent at that point become two
faces parallel to one another and perpendicular to the plane – these
create the white lines in the circle packing. Since the shaded faces tan-
gent at that point are triangles, they become two faces parallel to one
another and perpendicular to the plane. Also, they are bounded below
by only one semicircular line where they intersect the unshaded faces
because two of their edges bound the parallel faces so there is only one
additional edge to each triangle. Thus, the circle packing is presented
as two parallel white lines (the unshaded faces) both tangent to a pair
of white circles (the planes of the lower bounds on the shaded faces),
with the rest of the packing between them. �

Figure 10. Left: the cusp with the vertex correspond-
ing to crossing circle A is sent to infinity. Right: the
cusps when each of the vertices corresponding to to cross-
ing circle B are sent to infinity.

Proposition 8. Let C1 be a cusp corresponding to an outermost cross-
ing circle in a hyperbolic nested link and let C2 be a smaller nested
crossing circle. Then C1 and C2 satisfy the following:

(1) A fundamental region for C1 is formed from two rectangles: one
from an ideal vertex in P+ and one from the corresponding ideal
vertex in P−.

(2) A fundamental region for C2 is formed from four rectangles:
two from ideal vertices in P+ and two from the corresponding
ideal vertices in P−.
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(3) Longitudes of C1 and C2 are parallel to the curve given by a
shaded face intersected with the cusp boundary, and it intersect
white faces twice.

(4) If C1 has no partial twists, a meridian is parallel to the curve
given by a white face intersected with the cusp boundary.

(5) If C2 has no partial twists, then a meridian is parallel to the
curve given by a white face intersected with the cusp boundary,
and it intersects shaded faces twice.

Figure 11. The fundamental regions from the cusps
in Figure 9. Left: the fundamental region for crossing
circle A, an example of a C1 cusp from Proposition 8.
Right: the fundamental region for the crossing circle B,
an example of a C2 cusp from Proposition 8.

Proof. For nested links, the cusps C1 and C2 are intersected by the
crossing disc. For cusp C1, the disc intersects the cusp along a single
longitude. For cusp C2, the cusp is completely split in half and in-
tersected along two longitudes. Since the cusps are intersected by the
crossing discs, the longitudes reside on the shaded faces of the crossing
discs in the cell decomposition. For C1 and C2 the longitude is split
in two, half in P+ and half in P−. Thus, in order to realize the entire
longitude two cusps are needed: one from P+ and one from the cor-
responding vertex in P−. The full longitude intersects the unshaded
planar components twice, once for each time it passes through the plane
of projection.

The cusps are also intersected along two meridians by the plane
of projection. Thus, the meridian lies on the unshaded planar faces.
For cusp C1, the meridian lies on a single unshaded face and thus is
completely present in just one rectangular cusp. However, for cusp C2

the meridian is split in two, half on one side of the crossing discs and
10
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half on the other side. For C2 the entire meridian is presented on two
different cusps.

For C1 the full longitude requires two cusps and the meridian needs
only one cusp, so the fundamental region is formed from two rectangles.
For C2, the full longitude and the flu meridian each require two cusps,
so the fundamental region is formed from two rectangles. �

5. Volumes

In [?], Purcell presents a volume bound on augmented links. She says
that for any knot or link K in S3 which has a diagram D and a maximal
twist region selection such that the corresponding augmentation yields
a link L in S3 whose complement is hyperbolic, the volume satisfies:

vol(S3 − L) ≥ 2v8(tw(D) − 1),

where v8 is the volume of a regular hyperbolic octahedron and tw(D)
is the number of generalized twist regions of the maximal twist region
selection of D. Thus, tw(D) is equivalent to the number of crossing
discs in L. In context of the fully augmented and nested links, this
means the number of crossing discs determines the volume bound.

Purcell has shown that octahedral fully augmented links are sharp
on this bound. However, she noted that for links with more than two
strands per twist region the volume tends to be far from sharp on this
bound. Nested links can have more than two strands per twist region
and there is a class of nested links that are sharp on this bound.

In order to show that a class of nested links is sharp on this bound,
first we will show that the nerve can determine not only that the link
is formed from octahedra glued together but also that it determines
the specific number of octahedra needed. Then we will show that the
nerve also determines the number of crossing discs in the link. Finally,
we will combine this information to show that the volume is equal to
2v8(c− 1) where c is the number of crossing discs in the link.

Proposition 9. Let L be a nested link with polyhedral decomposition
into two polyhedra isometric to P . Then P is obtained by gluing regular
ideal octahedra if the nerve is obtained by central subdivision of the
complete graph on four vertices.

Proof. In [?], Purcell shows that when all shaded faces are triangles in
the cell decomposition the link complement of a fully augmented link is
obtained by gluing regular octahedra if and only if the nerve is obtained
by a central subdivision of the complete graph on four vertices. This is
proven by showing that when ideal octahedra are glued together along
unshaded faces, the nerve must be a centrally subdivided K4 graph.
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Then by showing that every time the nerve is centrally subdivided it is
equivalent to adding an ideal octahedron to the face of a polyhedron.

Purcell then associates these nerves to fully augmented links by cre-
ating a spanning forest on the dual to the nerve Γ∗ where each tree
is an edge. Each of the trees corresponds to one of the crossing discs.
The nerve can also be associated with nested links. An edge sym-
metric spanning forest on Γ∗ correlates to a nested link whose cell
decomposition has triangular shaded faces. Since the link’s nerve is a
centrally subdivided K4 its complement must be built by gluing regular
octahedra, it will just have different gluing instructions than the fully
augmented link. �

Figure 12. Left: a complete graph on four vertices K4.
Center left: a K4 graph with one central subdivision.
Center right: the dual graph added in blue. Right: the
dual graph the K4 with one central subdivision.

Proposition 10. Given a graph Γ∗ that is the dual graph of a triangu-
lation on S2, any edge symmetric spanning forest on Γ∗ will correspond
to a nested link with the number of crossing circles being equal to half
the number of vertices in Γ∗.

Proof. Since any triangulation on S2 has an even number of triangles,
Γ∗ has an even number of vertices. An edge symmetric spanning forest
on Γ∗ can yield two results: if each tree is a single edge then the forest
corresponds to a fully augmented link and if at least one of the trees is
larger than a single edge then the forest corresponds to a nested link.

Case 1. Fully Augmented Links:
According to Purcell in [?], any spanning forest on Γ∗ such that every
tree is a single edge will produce a hyperbolic fully augmented link.
In the forest, each tree corresponds to one crossing disc and each edge
connects two vertices. Thus, the number of crossing discs is equal to
half the number of vertices.

Case 2. Nested Links:
According to Harnois and Trapp in [?], every edge symmetric span-
ning forrest on Γ∗ corresponds to a hyperbolic nested link. In any edge
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Figure 13. Left: a section of a painted Γ∗ graph with
8 vertices, the edge symmetric tree is in purple. Right:
The 4 crossing discs corresponding to the tree in purple
and the locations of planar strands that will puncture
the discs in black.

symmetric tree, the two vertices that are isometric by symmetry cor-
respond to the same crossing disc and are the only two vertices that
correspond to that crossing disc. Thus, there are half as many crossing
circles as there are vertices in Γ∗. �

Theorem 11. Let Γ be a a graph obtained by central subdivision of
the complete graph on four vertices and Γ∗ is the dual graph to Γ. Let
L be a fully augmented or nested link generated from Γ∗ by an edge
symmetric spanning forest. The volume of L satisfies:

vol(S3 − L) = 2v8(c− 1),

where v8 is the volume of a hyperbolic ideal octahedron and c is the
number of crossing discs in L.

Proof. According to Purcell in [?], the complete graph on four vertices
corresponds to one octahedron in P+ and each subdivision equates to
adding one additional octahedron. The Γ∗ of the complete graph on
four vertices is also the complete graph on four vertices. As stated
above, the number of crossing discs in L is equal to half the number
of vertices in Γ∗. Thus, the complete graph on four vertices has two
crossing discs.

Every subdivision of Γ adds one vertex and three edges to Γ, which
turns what was once one triangle into three triangles, a gain of two
triangles. This results in adding two vertices and three edges to Γ∗.
Thus, the number of octahedra n in P+ and the number of vertices v
in Γ∗ satisfies n = v−2

2
. Since c = v

2
, it follows that n = c − 1. Since

the polyhedral decomposition creates two polyhedra isometric to P ,
the total volume is dictated by n = 2(c − 1). Thus, the volume of L
satisfies vol(S3 − L) = 2v8(c− 1). �
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6. Open Questions

This paper only touches on finitely few characteristics of fully aug-
mented and nested links. It only highlights one very small difference
(the presentation of the meridian in the fundamental region) and a few
similarities. Further research could determine how many more charac-
teristics are either the same or different between these classes of links.

Another continuation of this work would be to find other classes of
generalized fully augmented links that share some of these properties
with fully augmented and nested links, such as links that have triangu-
lar shaded faces in the cell decomposition or links that can be formed
by gluing together ideal octahedra.
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