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Abstract

In this paper, we investigate two types of surgeries, the parallel surgery
and the series surgery, on finite-volume hyperbolic 3-manifolds. In [2] Harnois
and Trapp show that these surgeries preserve hyperbolicity and volume when
performed on fully augmented links. Using methods similar to Adams in [1], we
prove that the parallel and series surgeries preserve hyperbolicity and volume
when performed on any finite-volume hyperbolic 3-manifold.

1 Introduction

A knot is a continuous embedding of the circle S1 in the the sphere S3, while a
link is a continuous embedding of multiple circles in S3. Each embedded circle in a
link is called a component of the link. Since knots can be regarded as links of one
component, in this paper we will let the word “link” refer to a knot or link, unless
stated otherwise. Knot theory, the study of knots and links, formalizes our intuition
about the tangled stuff we encounter in everyday life.

The central objective of knot theory is to distinguish links. Two links K and
K ′ are said to be equivalent if there is an orientation preserving homeomorphism
h : S3 → S3 such that h(K) = K ′. Intuitively, this is to say we can simply bend
and stretch K to obtain K ′. This equivalence relation partitions the set of links into
equivalence classes. Distinguishing two links thus means showing that they belong
to different (or the same) equivalence class.

The main tools for distinguishing links are link invariants. If L is the set of links,
then a link invariant is simply a function f : L → A such that links in the same
equivalence class belong to the same level set of f . Said differently, a link invariant
is some property of links which equivalent links share in common.

Central to this paper is a link invariant known as hyperbolic volume. Often
the complement of a link admits the structure of a hyperbolic 3-manifold, and
such a link is called a hyperbolic link. An important property of hyperbolic
3-manifolds is that hyperbolic volume is a topological invariant. Thus any two
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equivalent hyperbolic links will have the same hyperbolic volume, and this means
that hyperbolic volume is a link invariant.

In [2] Harnois and Trapp investigate two types of surgeries on hyperbolic links.
They show that if a link belongs to a special class of links known as fully augmented
links, then these surgeries preserve hyperbolicity and volume. The purpose of this
paper is to generalize this result and show that we can perform the surgery on any
finite-volume hyperbolic 3-manifold and obtain another finite-volume hyperbolic 3-
manifold with the same volume as the original.

2 Preliminaries

While this paper is knot theory-inspired, the major concepts and tools utilized come
from hyperbolic geometry. This section introduces some of the ideas from hyperbolic
geometry which will be needed.

2.1 Hyperbolic 3-manifolds

Euclidean geometry is founded on a set of simple, intuitively appealing axioms,
along with the famous the parallel postulate:

Given a line and a point not on the line, there is exactly one line though the point
parallel to the given line.

Hyperbolic geometry is what we get when we replace the parallel postulate with:

Given a line and a point not on the line, there is more than one line though the
point parallel to the given line.

Among the consequences of this fact is that, while in Euclidean geometry the sum
of the angles of a triangle is π, in hyperbolic geometry the sum of the angles of a
triangle is less than π.

Hyperbolic space can be difficult to visualize, and thus we use models to under-
stand it. These models take hyperbolic points, lines, and planes and associate with
them corresponding Euclidean structures. The upper half-space models are espe-
cially useful. The upper half-plane model associates points in H2 with points in
the half-space {(x, y) ∈ R2 : y > 0} and associates hyperbolic lines with rays and arcs
of circles intersecting the x-axis at right angles. The upper half-space model for
3-space associates points of H3 with points of the half-space {(x, y, z) ∈ R3 : z > 0},
hyperbolic lines with rays and arcs of circles intersecting the x, y-plane at right
angles, and hyperbolic planes with hemispheres and half-planes intersecting the xy-
plane at right angles.

Note that these models skew distances, in the sense that the arc length along
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an arc of a circle associated with hyperbolic line segment is not in general the
hyperbolic length. Hyperbolic length, area, and volume must be computed in a
different way. However the upper half-space models are conformal. This means that
the the Euclidean angle between the tangents of two intersecting arcs, at the point
of intersection, is the hyperbolic angle between the two corresponding hyperbolic
lines.

Definition 2.1. A hyperbolic manifold is a complete Riemannian manifold with
constant sectional curvature -1.

Intuitively a hyperbolic manifold is just a space which locally looks like hyper-
bolic space. Geometry and topology interact closely in the study of hyperbolic
3-manifolds, a fact best manifested by Mostow’s Rigidity theorem.

Theorem 1 (Mostow Rigidity, special case). Given two homotopic, hyperbolic 3-
manifolds M and N , there is a unique isometry between them.

In particular, one of consequences of this theorem is that two finite-volume hyper-
bolic 3-manifolds which are homotopic will always have the same hyperbolic volume.

2.2 Covering spaces

Definition 2.2 (Covering space). Let p : E → B be a continuous surjective map.
We say that an open set U ⊂ B is evenly covered by p if p−1(U) is a disjoint union
of open sets Vi ⊂ E, such that the restriction of p to any one Vi is a homeomorphism.
If every point of B is evenly covered by p, then p is called the covering map, and
E is called the covering space of B.

Two covering spaces p : E → B and p′ : E′ → B are said to be equivalent if
there is a homeomorphism h : E → E′ such that p = p′◦h. The homeomorphism h is
called an equivalence of covering spaces. The set of all equivalences of covering
spaces for E forms a group, known as the group of covering transformations.
The group of covering transformations is related in a special way to the fundamental
group of the base space. Rather than stating this relationship in full generality, we
state the relationship for when E = H3.

Proposition 2.1. There is a bijective map φ : π(B, x0)→ Γ, where π(B, x0) denote
the fundamental group of B, and Γ is the group of covering transformations for B
covered by H3.

For the purposes of this paper, we are mainly interested in the case where E =
H3. In this case, H3 is always the universal cover for the spaces which it covers.
A space E is a universal cover for a space B if, given any covering map p′ : E′ → B,
there is a covering map q : E → E′ such that p ◦ q is a covering map for B.

Example 2.1 (Punctured-torus). //TODO

Example 2.2 (Whitehead link). //TODO
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2.3 Gluing Polyhedra

Reversing the process of finding a fundamental region for a manifold, if we start out
with a finite-family P of disjoint hyperbolic polyhedra in H3, we can identify the
faces of the polyhedra to obtain a manifold M . Ratcliffe in [4] describes precisely
when the resulting manifold is hyperbolic.

Definition 2.3 (G-sided pairing). Let G be a group of isometries of H3. Let P be
a finite family of polyhedra, and let S be the set of their sides. A G-side pairing
for P is a set Φ ⊂ G, Φ = {gS : S ∈ S}, indexed by S and satisfying for each S ∈ S

1. for some S′ ∈ S, gS(S′) = S;

2. the isometries gS and gS′ are related by gS′ = g−1
S ;

3. if S is a side P in P and S′ is a side of P ′ in P, then P ∩ gS(P ′) = S.

Since (1) and (2) imply each side S′ is uniquely determined by S, there is an
equivalence relation generated on the set Π = ∪P∈PP , and the equivalence classes
are called cycles of Φ. Ratcliffe defines the solid angle subtended by a polyhedron
P ∈ P at a point in x ∈ P to be the number

ω(P, x) = 4π
Vol(P ∩B(x, r))

Vol(B(x, r))
, (1)

where radius r is chosen to be less than the distance from x to the nearest side of
P which does not contain it. If [x] = {x1, ..., xm} is a finite cycle of Φ, and Pi is the
polyhedra containing xi, for i = 0, ..., 1, then the solid angle sum of [x] is defined
to be the number

ω[x] =
m∑
1

ω(xi, Pi). (2)

Definition 2.4 (Proper G-side pairing). A G-side pairing Φ for a finite family of
polyhedra P is said to be proper if every cycle of Φ is finite and has a solid angle
sum 4π.

Ratcliffe proves the following theorem, of which we state a special case.

Proposition 2.2 (4,Theorem 10.1.2, special case). Let G be a group of isometries
of H3, and let M be a space obtained by gluing together a finite family P of disjoint
convex polyhedra in H3 by a proper G-side pairing Φ. Then M is a 3-manifold with
an (H3, G)-structure such that the natural injection of P ◦ into M is an (H3, G)-map
for each P in P.

In fact, Proposition 2.2 may be extended to hold true for a family of polyhedra
which are not necessarily convex.

4



Proposition 2.3. Proposition 2.2 still holds true if we remove the convexity re-
quirement on the polyhedra in P.

Proof. Let G be a group of isometries, and suppose M is the space obtained by
gluing together a finite-family P of disjoint, not necessarily convex polyhedra in H3

by a proper G-side pairing Φ. Choose a polyhedron P ∈ P, and partition P into
two polyhedra P ′ ∪ P ′′. Translate P ′ and P ′′ with isometries of G so that P ′, P ′′,
and all the polyhedra in P\{P} are disjoint (but we still denote their translates by
P ′ and P ′′). Let P̃ denote the resulting family of polyhedra, and let S̃ be the set of
their sides. For each S̃ ∈ S̃, let hS̃ be the translation in G which takes a side of S
to S̃ when P ′ and P ′′ are translated. Let kS̃ = hS̃gSh

−1
S̃′ , where S̃′ is the side in S̃

which S′ maps to when P ′ and P ′′ are translated. Let Φ̃ = {kS̃ : S̃ ∈ S̃}.

Lemma 2.1. The set of isometries Φ̃ is a proper G-side pairing for P̃

Proof. First we check that Φ̃ is a G-side pairing. Condition (1) is immediate. (2)
follows by considering the inverse of kS̃ = hS̃gSh

−1
S̃′ . To prove that (3), let S̃ be a

side of P̃ ∈ P̃ and S̃′ be the side of P̃ ′ ∈ P̃, such that S̃ = kS̃S̃
′. Let S = h−1

S̃
S̃

and S′ = h−1
S̃′ S̃

′, and let P = h−1
S̃
P̃ and P ′ = h−1

S̃′ P̃
′. Then gSS

′ = S, and so

P ∩ gS(P ′) = S. Then hS̃(h−1
S̃
P̃ ) ∩ hS̃(gS′(h−1

S̃′ P̃
′)) = hS̃′(S′)⇒ P̃ ∩ kS̃(P̃ ′) = S̃, as

required.
Moreover Φ̃ is proper. By construction of our family of polyhedra P̃, the face

identifications from Φ̃ may be obtained by first translating P ′ and P ′′ back to obtain
the old family of polyhedra P and identifying the rest of the sides by the isometries
in Φ, a proper G-side pairing. Let [x̃] be a cycle of Φ̃, and let [x] be the set of points
to which the points of [x̃] map to when we translate P ′ and P ′′ back to the old
family of polyhedra. Observe that [x] is a cycle of Φ. Suppose ỹ′ ∈ P ′ and ỹ′′ ∈ P ′′
are two points in [x̃] which are identified when P ′ and P ′′ are translated back, and
let y be the point in [x] to which ỹ and ỹ′ are mapped. Let P be the polyhedron in
P containing y, and observe that ω(P, y) = ω(P ′, ỹ′) + ω(P ′′, ỹ′′). From this we can
see that ω[x] = ω[x̃]. But the solid angle sum with respect of Φ at any point is 4π
since Φ is proper. Therefore Φ̃ is also proper.

Since some of the face identifications from Φ̃ may be realized by translating P ′

and P ′′ back to obtain the original family P, and the rest of the face identifications
may be obtained from the isometries in Φ, it is clear that both Φ̃ and Φ give us the
same manifold M .

Suppose instead of just partitioning one of the polyhedra in P, we partition
every polydron P ∈ P, into say nP components, where nP is a positive integer
depending on P . Translating these components via isometries in G, we can obtain
a new collection of disjoint polyhedra P ′. Using our result above, it is a matter of
induction to show there exists a proper G-side pairing Φ′ for P ′ which gives us the
manifold M .
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It is a well known-fact that any polyhedron may be partitioned into finitely many
convex polyhedra. In fact, there are algorithms which find in the minimal convex
partition of polyhedra. See for example [] Thus there is some finite family of disjoint
convex polyhedra Pcon and a proper G-side pairing Φcon for Pcon which gives us the
manifold M . Proposition 2.2 then tells us that M is hyperbolic.

2.4 Surgeries on tangles with consecutive crossing disks

Doing a parallel surgery or series surgery are the processes in which we modify a
link by replacing a parallel or series tangle with a different tangle, as indicated in
Figures 1 and 2. In [2] Harnois and Trapp show that if we start out with a fully
augmented link which contains the parallel (resp. series) tangle, then a parallel
(resp. series) surgery preserves hyperbolicity and hyperbolic volume. The question
which we investigate in this paper is whether this result can be extended to parallel
and series surgeries on any hyperbolic 3-manifold.

Figure 1: Parallel surgery

Figure 2: Series surgery

An important fact is that the parallel and series surgeries can be obtained simply
by cutting open the manifold along crossing disks and regluing the resulting faces in
a different way. In Figure 3 this process is illustrated. The crossing disks are the
twice-punctured disks colored green. It is easy to see how an analogous construction
works for the series surgery.

Note that a twice-punctured disk is a thrice-punctured sphere. Adams work with
surgeries on manifolds with embedded thrice-punctured spheres is a good place to
start for approaching our question. A key fact which Adams proves is that
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Proposition 2.4. Any thrice-punctured sphere, incompressibly embedded in a hy-
perbolic 3-manifold, is isotopic to a totally geodesic thrice-punctured sphere.

This means that an appropriately embedded thrice-punctured sphere will lift to a
plane in the covering space H3.

A
A'

B
B'

A

A' B'

B

A

A' B'

B

Identify A' with B'
and A with B

Figure 3: Parallel surgery obtained by surgery on crossing disks

Let M be a finite volume hyperbolic 3-manifold containing in it either a parallel
or series tangle complement. Thus M has embedded in it two incompressible, thrice-
punctured spheres S0 and S1 which have a common puncture. Let M ′ = M −
(N(S0)∪N(S1)), where N(S0) and N(S1) are regular neighborhoods of S0 and S1.
Thus the boundary of M ′ consists of two thrice-punctured spheres S0

0 , S
1
0 ⊂ ∂N(S0)

and two thrice-punctured spheres S0
1 , S

1
1 ⊂ ∂N(S1). Let µ0 : S0

0 → S1
0 and µ1 : S0

1 →
S1

1 be the pair of identifying isometries which give us back M . Let λ0 : S0
0 → S0

1

and λ1 : S1
0 → S1

1 be a new pair of identifying isometries, which give us a manifold
N . The main result is that

Theorem 2. If M is a finite-volume hyperbolic 3-manifold, then so is N , and
Vol(M) = Vol(N).

Note that the parallel and series surgeries are obtained precisely in this way,
by cutting along embedded thrice-punctured spheres in the tangles. So this result
would imply that the hyperbolicity and volume-preserving properties of the parallel
and series surgeries extend to finite-volume hyperbolic manifolds in general.

Our strategy for proving this theorem is to induce the surgery in the manifold
M just by changing the gluing instructions for the sides of a fundamental region.
This is the same type of argument which Adams gives in [1]. However, additional
constraints are present since, unlike in Adams situation, we must do surgery to two
thrice-punctured spheres, rather than just one, in the same manifold. Specifically,
like Adams, we construct a fundamental domain Ω′ such that S0 and S1 lift to the
boundary of Ω′. Regluing sides of Ω′ then corresponds to cutting open S0 and S1 and
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regluing the faces. The bulk of our argument goes into justifying our construction
of Ω′.

3 Constructing a nice fundamental region

Adams shows in [1] that an embedded thrice-punctured sphere in hyperbolic 3-
manifold may be isotoped to be totally geodesic. Thus we may assume S0 and S1

lift to planes in H3. Let N be the cusp neighborhood shared in common by S0 and
S1, and let B(N) be a horoball which N lifts to in H3. Since N will always intersect
S0 and S1, there is a pair of planes P0 and P1 which always intersect B(N), where
p(P0) = S0 and p(P1) = S1. Note that P0 and P1 are parallel since S0 and S1 are
disjoint. Moreover, as we shrink N , the points of B(N) will approach an ideal point,
and hence the planes P0 and P1 will share an ideal point in common.

Let b be any point in the tangle in M and consider the fundamental group π1(M)
based at b. Each subgroup corresponding to the cusps in the boundary of Si shall
be denoted π1(Si), i = 0, 1. The fundamental group of each Si is denoted in the
same way, and it is easy to see that both groups are isomorphic. Recall that there
is a monomorphism φ : π1(M) → Isom+(H3). Let Γ denote the group of covering
transformations φπ1(M), with its subgroups Γi = φπ1(Si), i = 0, 1. Note that the
group Γi preserves plane Pi.

Let x0 be a point in P0, and let x1 = Rx0 where R is the reflection taking
P0 to P1. Let Ω0 = {x ∈ H3 : d(x, x0) ≤ d(x, T0x0) for all T0 ∈ Γ0}, and let
Ω1 = R(Ω0), where R is the reflection which takes P0 to P1. Let Ωplanes = {x ∈
H3 : d(x, P0 ∪ P1) ≤ d(x, T (P0 ∪ P1)) for all T ∈ Γ}. Define

Ω = Ω0 ∩ Ω1 ∩ Ωplanes. (3)

A fundamental region for the action of Γ on H3 is said to be locally finite if every
point of H3 has a neighborhood which intersects only finitely many Γ-images of Ω.
We claim

Theorem 3. The set Ω is a fundamental region for Γ, which is locally finite and
the union of two convex polyhedra. Moreover Ω ∩ P0 and Ω ∩ P1 are ideal squares
and fundamental polygons for Γ0 acting on P0 and Γ1 acting on P1 respectively, and
the boundary of Ω intersects P0 and P1 at right angles.

Proof. For T ∈ Γ and i = 0, 1, define Ωi(T ) = {x : d(x, xi) ≤ d(x, Txi)}, and
note that Ωi = ∩Ti∈ΓiΩi(Ti). Define Di,j(T ) = {x : d(x, Pi) ≤ d(x, TPj)}, and for
i, j ∈ {0, 1} let Di,j = ∩T∈ΓDi,j(T ). Next define

C0 = Ω0 ∩ Ω1 ∩D0,0 ∩D0,1 (4)

and
C1 = Ω0 ∩ Ω1 ∩D1,0 ∩D1,1. (5)
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The fact that Ω is the union of two convex sets is useful, and we will prove it
immediately. We will later show that these two convex sets are polyhedra. We have

Lemma 3.1. The sets C0 and C1 are convex, and Ω = C0 ∪ C1.

Proof. In the first place, observe that

Ω = (Ω0 ∩ Ω1) ∩ [(D0,0 ∩D0,1) ∪ (D1,0 ∩D1,1)] = C0 ∪ C1. (6)

Next note that each Ωi(T ) is simply a half-space, since its boundary is given by
the equation of a plane d(x, xi) = d(x, Txi). The boundary of each Di,j(T ) is also
simply a plane. It is the plane of reflection for the reflection taking Pi to TPj . Thus
Di,j(T ) is also a half-space. Thus each Ωi and Ωi,j is an intersection of half-spaces
and hence a convex set. Then for the same reason C0 and C1 are convex sets.

To set up for the proof that Ω is a fundamental region, we need to describe
the geometry of Ω more explicitly. Let F0 := Ω0 ∩ P0 = {x ∈ P0 : d(x, x0) ≤
d(x, T0x0) for all T0 ∈ Γ0}. The set F0 is an example of a Dirichlet domain for the
action of Γ0 on P0. Ratcliffe shows that this is a fundamental domain for the action
of Γ0 on P0 [4, theorem 6.6.13]. This same type of fundamental domain is studied
by Adams in [1]. It is a ideal hyperbolic square.

Note that Ω0 is bounded by planes which intersect P0 orthogonally. This follows
from the fact that each point x ∈ ∂Ω0 satisfies equation of a plane d(x, x0) =
d(x, T0x0) for some T0 ∈ Ω0. We get orthogonality because both x0 and T0x0 are
contained in P0 for every T0 ∈ Γ0. In particular, ∂Ω0 consists of the four planes
which contain the edges of the ideal square F0 and intersect P0 orthogonally.

These facts about Ω0 carry over to Ω1, since Ω1 is simply the reflection of Ω0.
Specifically, the set F1 := Ω1 ∩ P1 is an ideal square, and the set Ω1 is the re-
gion bounded by the four planes which contain the edges of F1 and intersect P1

orthogonally. Moreover F1 is a fundamental polygon for Γ1 acting on P1. Indeed,
the reflection R taking P0 to P1 projects to an isometry p ◦ R taking S0 to S1,
where p : H3 → M is the covering map. In particular, π1(S1) = (p ◦ R)∗π1(S0),
and so Γ1 = RΓ0R. Since Ω0 ∩ P0 is a fundamental domain for Γ0, it follows that
Ω1 ∩ P1 = R(Ω0 ∩ P0) is a fundamental domain for Γ1.

The sets Ω0 and Ω1 have two common boundary planes. To see this, let xc be
the common ideal point of P0 and P1. Let Q be one of the two planes in ∂Ω0 which
has xc as an ideal point. Since R fixes xc and Q is orthogonal to P0, it follows that
Q is the unique plane containing line Q∩P0 which is preserved by R. Since R takes
edges of F0 to edges of F1, it follows that Q∩P1 is an edge of P1, and since xc is an
ideal point of P1, Q is also orthogonal to P1. Thus Q is also in ∂Ω1.

Let Hc and H ′c the two half-spaces exterior to Ω0 and Ω1, bounded respectively
by each of the two planes in ∂Ω0 ∩ ∂Ω1. Let Hi and H ′i denote half-spaces exterior
to Ωi, bounded by the pair of planes in ∂Ωi − ∂Ω(i+1) mod 2, i = 0, 1. Note that
H2 = RH1 and H ′2 = RH ′1. Some possible geometric realizations of these sets
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in the upper half-space model are illustrated in Figures 4,5, and 6. Note that by
choosing the common ideal point xc of P0 and P1 to be 0 and choosing the vertices
opposite xc in F0 and F1 to be −1 and 1 respectively, we can ensure that P0 and
P1 are hemispheres of equal Euclidean radius. Choosing the points in this way, by
reflective symmetry of the squares F0 and F1, it is clear that H1, H

′
1, H2, and H ′2 are

half-balls of equal Euclidean radius, and Hc and H ′c are half-balls of equal Euclidean
radius.

Figure 4: Boundary of Ω0 ∩ Ω1 with shared ideal point at ∞

Figure 5: Boundary of Ω0 ∩ Ω1 with shared ideal point at 0

Let PR be the plane of reflection of R, and let K0 and K1 be the half-spaces
containing P0 and P1 respectively. We make the key observation that Ω1\Ω0 ⊂ K0

and Ω0\Ω1 ⊂ K1. Indeed, we see that Ωi = Hc
c ∩ H ′cc ∩ Hc

i ∩ H ′ci , i = 0, 1. Thus
Ω1\Ω0 = (Hc

1∩H ′c1 )\(Hc
0∩H ′c0 ) = (H0∪H ′0)\(H1∪H ′1). Choose y ∈ (H0∪H ′0)∩K2,

and let bi and b′i denote the ideal points at the centers of half-balls Hi and H ′i,
i = 0, 1. It is easy to see that the Euclidean distance of y from b1 and b′1 is less than
the Euclidean distance from either b0 or b′0. Since H0, H

′
0, H1, H

′
1 are all of equal

radius, it follows that y ∈ H1 ∪H ′1. This shows that (H0 ∪H ′0)\(H1 ∪H ′1) contains
no points of K1. Thus Ω1\Ω0 ⊂ K0, and Ω0\Ω1 = R(Ω1\Ω0) ⊂ R(K0) = K1.

Observe that Ω0 ∩ P0 ⊂ Ω1 ∩ P0 and Ω0 ∩ P0 ⊂ Ω1 ∩ P0. Also note that
P0, P1 ⊂ Ωplanes. From these two facts it follows that F0 = P0 ∩Ω and F1 = P1 ∩Ω.
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This proves part of this theorem since F0 is a fundamental domain for Γ0 acting on
P0 and F1 is a fundamental domain for Γ1 acting on P1.

Lemma 3.2. The set Ω is a fundamental region for Γ acting on H3.

Proof. A fundamental set for a group Γ acting H3, is subset of H3 which contains
exactly one point of every orbit Γu. By [4,theorem 6.6.11] of Ratcliffe, to prove that
Ω is a fundamental region, it is sufficient to find a fundamental set F such that
Ω◦ ⊂ F ⊂ Ω.

Figure 6: Boundary of Ω0 ∩ Ω1 with shared ideal point at 0

We would like to construct our fundamental set F as follows: For each orbit Γu,
choose a y ∈ Γu ∩ Ω0 ∩ Ω1 such that d(y, P0 ∪ P1) ≤ d(y, T (P0 ∩ P1)) for all T ∈ Γ.
Let F denote the set of all chosen points. Clearly this is a valid construction of a
fundamental set if (i) Γu∩Ω0 ∩Ω1 is non-empty, and (ii) the points of Γu do attain
a minimum distance from P0 and from P1.

To verify (i), suppose for a contradiction that, for some u ∈ H3, Γu∩Ω0∩Ω1 = ∅.
Note that Ω0 and Ω1 are Dirichlet domains for the action of Γ0 on P0 and the action
of Γ1 on P1 respectively. Then by [4, theorem 6.6.11] Ω0 and Ω1 are fundamental
domains for the action of Γ0 on P0 and the action of Γ1 on P1 respectively. Thus
Γu ∩ Ω0 and Γu ∩ Ω1 are non-empty. Let u0 be a point in Γu ∩ Ω0, let p(i) = i
mod 2, and for i > 0 choose ui ∈ Γui−1 ∩Ωp(i). In this way, we generate a sequence
of points {ui} in Γu.

In the upper half-space model, choose the ideal point xc common to P0 and P1

to be ∞, and choose the vertices opposite xc in ideal squares F0 and F1 to be −1
and 1 respectively. See Figure 4.
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As before, let K0 and K1 denote the half-spaces on each side of the plane of
reflection of R. As we observed before, Ωp(i−1)\Ωp(i) ⊂ Kp(i). Since by our as-
sumptions ui−1 ∈ Ωp(i−1)\Ωp(i) it follows ui−1 ∈ Kp(i). Then dE(proj(ui−1), Pp(i)) <
dE(proj(ui), Pp(i)), where dE denotes the Euclidean distance, and proj(x) denotes
the projection of x onto the ideal plane. Let Πj(x) denote the Euclidean half-
plane determined by the point x and the ideal line at the base of Pj , j = 0, 1.
Now d(ui−1, Pp(i)) = d(ui, Pp(i)), because Γp(i) preserves Pp(i) and distance. Thus
Πp(i)(ui−1) and Πp(i)(ui) make the same angle with Pp(i), because this angle uniquely
determines the distance of each point from Pp(i). See [5, Proposition 4.1.1]. Since
dE(proj(ui−1), Pp(i)) < dE(proj(ui), Pp(i)), it is just a matter of similar triangles to
show that dE(proj(ui−1), ui−1) < dE(proj(ui), ui). Thus the distance of ui from the
ideal plane is monotonically increasing. Note that this implies there are infinitely
many distinct points in the sequence, since there are no repeats. On the other hand,
since each ui belongs to either Ω1 − Ω2 or to Ω2 − Ω1, the sequence is restricted to
the four hemispheres H1∪H ′1∪H2∪H ′2 which are of finite radius by our choices for
xc and the vertices of F0 and F1. Thus the sequence {ui} is restricted to a compact
set, the region inside the four hemispheres and above the horizontal Euclidean plane
which contains u0. Thus the sequence has an accumulation point in H3. But Γ is a
discrete group, and so no orbit of Γ can have an accumulation point, a contradiction.

(ii) Suppose that for every v ∈ Γu there is a point, v′ ∈ Γu such that d(v, P0 ∪
P1) > d(v′, P0 ∪ P1). Then there is a sequence {vk} of points in Γu such that
d(vk, P0 ∩P1) is monotonically decreasing. By choosing a subsequence and possibly
reindexing we can assume that d(vk, P0) is monotonically decreasing. Let Di,j for
i, j = 0, 1 be defined as before. Evidently D0,0 contains no points of Γu. A useful
fact, which shall be used again later in this proof, is that Ωi ∩Di,i is a fundamental
domain for the action of Γ on H3, i = 0, 1. Indeed, it is precisely the fundamental
domain constructed by Adams in [1], about the point xi. But this implies D0,0

contains a point of Γu, since Ω0 ∩D0,0 contains a point of Γu, a contradiction.
Therefore F is a fundamental set for the action of Γ on H3. Suppose x ∈ F . Then

x ∈ Ω0 ∩Ω1. It is clear that x has been chosen so that x ∈ Ωplanes, because a point
point in Γu∩Ω0 ∩Ω1 which minimizes the distance from P0 ∪P1 also minimizes the
distance of all points in Γu. Indeed, if a point p ∈ Γx minimizes the distance from
Pi, then Tip ∈ Ω0∩Ω1 for some covering transformation Ti ∈ Γi, which preserves the
distance from Pi. Thus F ⊂ Ω. Now suppose y ∈ Ω◦. Then certainly y ∈ Ω0 ∩ Ω1.
Moreover if y is in the orbit Γu, since d(y, P0 ∪ P1) < d(y, P0 ∩ P1), y will be the
point (uniquely) chosen in Γu∩Ω0∩Ω1 in the construction of F . Thus y ∈ F . Thus
Ω◦ ⊂ F ⊂ Ω.

Next we show that

Lemma 3.3. Ω is a locally finite.

Proof. Observe that Ci ⊂ Ωi∩Di,i for i = 0, 1, and so Ω ⊂ (Ω0∩D0,0)∪ (Ω1∩D1,1).
Suppose for a contradiction that there is a ball B ⊂ H3 which intersects infinitely
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many Γ-images of Ω. Let TiΩ be an infinite sequence of these Γ-images. Then for
every Ti, B intersects either Ti(Ω0 ∩ D0,0) or Ti(Ω1 ∩ D1,1). Thus B intersects Γ-
images of either Ω0 ∩D0,0 or Ω1 ∩D1,1 infinitely many times. But the fundamental
domain constructed by Adams in [1] is locally finite, a contradiction.

Note that the result here is stronger than we need, since we have shown that
every ball intersects finitely many Γ-images of Ω, wheres local finiteness only requires
some ball to intersect finitely many Γ-images. The next two lemmas complete the
argument. Our proofs are based on the proof of Theorem 6.7.1 in [4].

Lemma 3.4. The sets C0 are C1 are convex polyhedra.

Proof. Let S0 and S1 denote the sets of sides of C0 and C1. Recall a convex poly-
hedron is a convex set whose set sides is locally finite. Choose a point x ∈ C0. If
x ∈ C◦0 of x ∈ Cc

0, then of course some ball centered at x intersects no sides of C0,
and so we can assume that x ∈ ∂C0. Since Ω is locally finite, there is a ball B
centered at x which intersects only finitely many Γ-images of Ω, say T1Ω, ..., TmΩ.
Decreasing the radius of B as needed, we may assume that every TiΩ contains x.
Since Ω = C0 ∪ C1, it follows that for each Ti either C0 ∩ TiC0 or C0 ∩ TiC1 is a
nonempty convex subset of ∂C0. Then by [4, theorem 6.2.6(1)], for each Ti there is
a side Si of C0 which contains either C0 ∩ TiC0 or C0 ∩ TiC1.

If y ∈ B ∩ ∂C0, then for some Ti either y ∈ C0 ∩ TiC0 or y ∈ C0 ∩ TiC1. Indeed,
since y ∈ ∂C0, y must be contained in C0 and some Γ-image TC0 or TC1. And T is
one of the transformations Ti because B only intersects sets T1Ω, ..., TmΩ. Thus

B ∩ ∂C0 ⊂ ∪mi=1(C0 ∩ TiC0) ∪ (C0 ∩ TiC1) (7)

Thus
B ∩ C0 ⊂ S1 ∪ · · · ∪ Sm. (8)

If S is a side of D, which B intersects, then B intersects S◦ since S = S̄◦. Then
one of the Si intersects S◦. By [4, Theorem 6.2.6(3)], this is only possible if S = Si.
Therefore B intersects finitely many sides of C0, so S0 is locally finite. We conclude
that C0 is a convex polyhedron. A similar argument shows that C1 is a convex
polyhedron.

This concludes the argument that Ω is a fundamental region which is the union
of two convex polyhedra.

We will now use the fundamental region Ω constructed above to obtain another
fundamental region for M which is more amenable to our needs. Cut open Ω along
the planes P0 and P1 to obtain three components Ω0, Ω1, and Ω2. Note that Ω0, Ω1,
and Ω2 are again polyhedra. Choose T0, T1, T2 ∈ Γ such that Ω′0 = T0Ω0, Ω′1 = T1Ω1,
and Ω′2 = T2Ω2 are disjoint. Define Ω′ = Ω′0 ∪ Ω′1 ∪ Ω′2, and observe that Ω′ must
also be a fundamental region for the action of Γ on H3.
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Moreover, we see that Ω′ intersects p−1(S0) and p−1(S1) only in its boundary,
at two copies of F0 and two copies of F1. Denote the two copies of Fi in ∂Ω′ by F 0

i

and F 1
i , i = 0, 1. Let fi : F 0

i → F 1
i , i = 0, 1, be the identifying isometries which give

us back Ω. Let gj : F j
0 → F j

1 , j = 0, 1, be another pair identifying isometries. Note
that g0 and g1 induce the parallel surgery in the manifold M .

Let P denote the family of disjoint polyhedra which compose Ω, and let S be
the set of their sides. Let Φ = {TS : S ∈ S} be the proper Γ-side pairing which
gives us the manifold M . Similarly, let P̃ be the family of polyhedra which compose
Ω′ and let S̃ be the set of their sides. For every side S̃ of Ω̃k other than Fi,j for
i, j = 0, 1, there is a corresponding side S = T−1

k S̃ ⊂ ∂Ω. Write hS̃ = Tk; thus hS̃ is

the isometry which takes a side S of Ω to its corresponding side S̃ in Ω̃. In addition,
define

RS̃ =


hS̃TSh

−1
S̃′ S ∈ S

gj S̃ = F j
0

g−1
j S̃ = F j

1

(9)

where S̃′ is the side in S̃ corresponding to S′. Let Φ̃ = {RS̃ : S̃ ∈ S̃}. Observe that

the isometries in Φ̃ have been chosen to be precisely those which induce the parallel
(resp. series) surgery. Since face reidentifications does not change the volume, we
know from Proposition 2.2 that once it is demonstrated that Φ̃ is a proper G-side
pairing for P̃ we are done.

Proof of Theorem 2. First we show that Φ̃ is a G-side pairing for P̃. Considering
Definition 2.3 we see immediately that (1) is satisfied. (2) follows by in view of the
form of the inverse of RS̃ . To prove (3), if S̃ = F j

i for some i, j ∈ {0, 1}, note that

(3) is satisfied because all the F j
i are isometric squares, and we have defined each

gi to be an isometry between them. If S̃ is not equal to any F j
i , let P̃ ∈ P̃ be the

polyhedron containing S̃, and let S̃′ be the side of P̃ ′ ∈ P̃, such that S̃ = RS̃S̃
′. Let

S = h−1
S̃
S̃ and S′ = h−1

S̃′ S̃
′, and let P = h−1

S̃
P̃ and P ′ = h−1

S̃′ P̃
′. Then TSS

′ = S, and

so P ∩TS(P ′) = S. Then hS̃(h−1
S̃
P̃ )∩hS̃(TS′(h−1

S̃′ P̃
′)) = hS̃′(S′)⇒ P̃ ∩RS̃(P̃ ′) = S̃.

Thus Φ̃ is a G-side pairing.
Next we show that Φ̃ is proper. Each side identification, other than the iden-

tifications for the F j
i , is given by first translating the polyhedra which make up Ω′

back to Ω, and then identifying the sides by the isometries in Φ. Thus since Ω has
a proper G-side pairing, every point in Ω\ ∪F j

i has a solid angle of 4π. If a point x̃

is at the interior of one of the F j
i , then the cycle consists of two points {x̃, x̃′}, and

the other point x̃′ is in the interior of another F j
i . Thus since all the Fi,j are flat, we

get a solid angle of 2π from each of the two points. These give us a solid angle sum
of 4π. Finally if x̃ is in the edge of one of the F j

i , note that x̃ cannot be a vertex of

F j
i since the vertices are ideal points. By our construction, there is a dihedral angle

of π/2 at each of the edges of F j
i . At each edge, this F j

i will be adjacent to one
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of its Γ-images, lying in the same plane as itself. Thus when the square faces are
identified, each edge will meet three other edges, all with a dihedral angle of π/2.
Then the solid angle of x̃ at each edge is π, and so the solid angle sum is 4π, as
required.

4 Open Questions

A natural class generalization of the result proven in this paper would proving
volume-preserving properties for tangle surgeries on tangles containing n crossing
disks.

• If for example we imposed the condition that all the crossing disks in a tangle
shared exactly one common cusp, then a geometric situation, quite similar
to the one in this paper, would be imposed on manifold. In particular the
crossing disks would lift to parallel planes, all of which share a single ideal
point. It seems likely that the methods used in this paper could be extended
to this situation as well.

• If we imposed a slightly less strong condition on shared cusps, say the disks
share cusps pairwise, then the geometric situation would be more complex.
Any two planes would share an ideal point, but there would be many more
conditions which would need to be satisfied to get a nice fundamental domain,
using methods similar to those in this paper.

• If we allow some or all of our n crossing disks to have no cusp in common, fewer
geometric conditions can be determined. It seems likely that this investigation
would require different methods than those used in this paper.
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ed. Sudbury, MA: Jones and Bartlett Pub.,2008.

16


