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Abstract

Since the introduction of the study of curvature homogeneous manifolds, various other
theories of curvature-homogeneity have been studied. In this paper we introduce a new type
of curvature homogeneity; one that generalizes the previous theories of curvature homogeneity.
We also construct two examples of this phenomenon, which do not fall under the previous
categories of curvature homogeneity.

1 Introduction

Given a psuedo-Riemannian manifold (M, g) where g is the metric tensor and r is the Levi-Civita
connection, the Riemann curvature operator R 2 (T ⇤M)3 ⌦ TM is defined as

R(X,Y )Z = r
X

r
Y

Z �r
Y

r
X

Z �r[X,Y ]Z.

Using R and the metric tensor, we define the Riemann curvature tensor R 2 ⌦4(T ⇤M) as

R(X,Y, Z,W ) = g(R(X,Y )Z,W ).

Definition 1.1. We say (M, g) is k-curvature homogeneous if for every two points p, q 2 M there
exists an isometry of tangent spaces, � : T

p

M ! T
q

M which pulls back the first k covariant
derivatives of the Riemann curvature tensor. That is,

�⇤g
q

= g
p

and �⇤riR
q

= riR
p

for all p, q 2 M

It is clear that if M is locally homogeneous, then (M, g) is k-curvature homogeneous for all
k 2 N, since the Levi-Civita connection is uniquely determined by the metric. With regard to
the converse, in 1960, Singer showed that for each n 2 N there is a corresponding k

n

2 N, called
the Singer number such that if (M, g) is a n-dimensional Riemannian manifold, then k

n

-curvature
homogeneity implies local homogeneity [1]. The analog for the pseudo-Riemannian case was later
proved by Podesta and Spiro [2].
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Later, similar notions to curvature homogeneity were explored, such as homothety curvature
homogeneity [3,4,5] and weak curvature homogeneity [6]. The concept of a model space greatly
simplifies the introduction of these notions.

Definition 1.2. Given a finite dimensional real vector space, V , we say R 2 ⌦4V ⇤ is an algebraic

curvature tensor (an ACT) if R satisfies the symmetries:

R(x, y, z, w) = �R(y, x, z, w) = R(z, w, x, y)

and

R(x, y, z, w) +R(x,w, y, z) +R(x, z, w, y) = 0.

Notice that these are the symmetries satisfied by the restriction of Riemann curvature tensor to
the tangent space of a single point. We similarly define an ith algebraic covariant derivative curva-
ture tensor R

i

2 ⌦4+iV ⇤ as a tensor satisfying the same symmetries as the ith covariant derivative
of the Riemann curvature tensor at a point.

Definition 1.3. A model space is a tuple consisting of a finite dimensional real vector space V ,
a bilinear symmetric form h·i on V , an algebraic curvature tensor R0 and possibly some algebraic
covariant derivative curvature tensors R

I

, for some indexing set I ⇢ N.

Definition 1.4. Given two model spaces of the same type, M1 = (V, g,R
i1 , . . . , Ri

n

) and M2 =
(W,h, T j1, . . . , Tj

n

) where g and h are inner products and R
i

k

and T
j

k

are algebraic covariant
derivative curvature tensors, we say that M1 is model space isomorphic to M2 if there exists a
vector space isomorphism � : V ! W such that �⇤T

j

k

= R
i

k

and �⇤h = g. If this is the case, we
say � is a model space isomorphism.

We can rephrase the condition of curvature homogeneity on a manifold as follows. M is k-
curvature homogeneous if and only if there is a model space M = (V, h, i, R0, R1, . . . , Rk

) such that
for every p 2 M there is a model space isomorphism �

p

: T
p

M ! V .

Given a manifold, if we take our model space to be (T
q

M, g
q

, R
q

, . . . ,rkR
q

), it is clear that this
definition is equivalent to the previous one. Relaxing our model space by suppressing the metric
tensor, we obtain a weak model space.

Definition 1.5. We say (M, g) is k-weak curvature homogeneous if there exists a weak model
space M = (V,R0, . . . , Rk

) such that for all p 2 M there exists a weak model space isomorphism
�

p

: T
p

M ! V . Note that there is no requirement of pulling back a metric.

Definition 1.6. We define an algebraic curvature operator as an element of ⌦3V ⇤ ⌦ V which
satisfies the same symmetries of the Riemann curvature operator restricted to the tangent space of
a single point. An algebraic covariant derivative curvature operator is similarly defined. We use
script R to distinguish a curvature operator from a curvature tensor.

Definition 1.7. We say (M, g) is k-homothety curvature homogeneous if there exists a model space
(V, h, i,R0, . . . ,Rk

) such that for each p 2 M there exists a linear isomorphism �
p

: T
p

M ! V and
a smooth function � : M ! R such that �⇤

p

h, i = �
p

g
p

and �⇤
p

R
i

= riR
p

for i = 0, . . . , k.
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The following theorem is due to Corey Dunn and Cullen Mcdonald [3].

Theorem 1.1. M is k-homothety curvature homogeneous if and only if there exists a smooth

positive function � : M ! R such that for each p 2 M there is an isometry � : T
p

M ! V and such

that �⇤R
i

= �(p)
i+2
2 riR

p

.

2 G-curvature Homogeneity

The aforementioned homogeneity conditions all turn out to be examples of the following more
general phenomenon.

If T is a tensor on a vector space V and A 2 GL(V ), we let A⇤T denote the precomposition of
T with A in each slot.

The notion of a structure group is useful for the results to follow.

Definition 2.1. We define the structure group, GM, of a model space M = (V, h·i, R
i0 , . . . , Ri

n

)
as

G = {A 2 GL(V ) : A⇤h·i = h·i and A⇤R
i

k

= R
i

k

for k = 0, . . . , n}.

The following is the central object of study for this project.

Definition 2.2. Let G  GL(n) be a Lie group and let (M, g) be a n-dimensional pseudo-
Riemannian manifold. We say M is G-curvature homogeneous with respect to a model space
M and index set S ⇢ N if for each p 2 M , there is an A 2 G such that there exists a linear
isometry �

p

: T
p

M ! V , such that
�⇤

p

A⇤R
i

= R
p

for i 2 S. We also require that for each A 2 G, there exists a p 2 M and isometry �
p

: T
p

M ! V
such that �⇤

p

A⇤R
i

= riR
p

for all i 2 S. If S = {1, . . . , k}, we say that M is G-modeled on M up

to order k.

Theorem 2.1.

1. If M is G-modeled on M up to order k, then M is k-weak curvature homogeneous.

2. M is k-curvature homogeneous, if and only if M is k-GM-curvature homogeneous where GM
is the structure group of the k-model M = (V, h, i, R0, . . . , Rk

).

3. Suppose M is k-homothety curvature homogeneous with respect to the model space
(T

p0M, g
p0 ,Rp0 , . . . ,rkR

p0) where p0 is some base point of M . Suppose moreover that the
homothety scalar function � : M ! R+ has the property that the set

{A 2 GL(T
p0M) : A⇤g

p0 = cg
p0 for some c 2 �(M)}

forms a group under composition of functions. Then, M is G-modeled up to order k on the
model space M = (T

p0 , h·i,R0, . . . ,Rk

) and G = Hh·i = {A 2 GL(V ) : A⇤h·i = �h·i}, where
the action of G on M is given by A⇤M = (V,A⇤h·i,R0, . . . ,Rk

). The converse also holds.
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Proof.

1. Suppose there is a model space M = (V, h·i, R0, . . . , Rk

) and that for each p 2 M there exists
an isometry �

p

: T
p

M ! V and some A
p

2 G such that �⇤
p

A⇤R
i

= riR
p

.
The map  = A

p

��
p

is to be our weak model space isomorphism. Pulling back R
i

by  , we
obtain that  ⇤R

i

= �⇤
p

A⇤
p

R
i

= R
p

as desired.

2. This follows immediately from the definition of the structure group and homogeneity condi-
tions.

3. Suppose M is k-homothety curvature homogeneous with respect to the model space
(T

p0M, g
p0 ,Rp0 , . . . ,rkR

p0) where p0 is some base point of M .

Then by definition of homothety curvature homogeneity, given any q 2 M , there is a model
space isomorphism between (T

q

M, g
q

,R
q

, . . . ,riR
q

) and (T
p0M,�

q

g
p0 ,Rp0 , . . . ,riR

p0) =
(T

p0M,A⇤g
p0 ,Rp0 , . . . ,riR

p0) for some A in the homothety group of g
p0 . If the homoth-

ety scalar function � : M ! R+ has the property that the set {A 2 GL(T
p0M) : A⇤g

p0 =
cg

p0 for some c 2 �(M)} forms a group under composition of functions, thenM isG-curvature
homogeneous.
For the converse, the existence of such model space isomorphisms gives us k-homothety cur-
vature homogeneity directly.

Although our theory falls under the category of weak curvature homogeneity, it serves to dis-
tinguish various types of weak curvature homogeneity. We conjecture, moreover, that if M is a
connected pseudo-Riemannian manifold, that k-weak curvature homogeneity implies k-G-curvature
homogeneity.

3 Construction One

We will now construct a manifold which is 0-G-curvature homogeneous, but neither curvature
homogeneous nor homothety curvature homogeneous. By convention, we write only the non-zero
entries of the metric and curvature tensors. We let our model space M = (V, h·i, R0) where
V = Span({x, y, z}),

R0(x, z, z, x) = R0(y, z, z, y) = 1 , R0(x, y, z, x) = 1

and

hx, xi = hy, zi = 1.

We let our Lie group G  GL(V ) be the following set of matrices on the basis (x, y, z):

G =

8
<

:

0

@
1 0 0
0 t 0
0 0 1

1

A : t 2 R+

9
=

;

Let (x, y, z) be the standard coordinates on R3 and let M = {(x, y, z) 2 R3 : x > 0}. Let the
metric, g, be defined by

g(@
x

, @
x

) = 1 , g(@
y

, @
z

) = e2f(x) , g(@
z

, @
z

) = h(x).
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Theorem 3.1. For certain choices of f , the manifold (M, g) is 0-G-curvature homogeneous with

respect to the model M. Moreover, (M, g) is neither curvature homogeneous, nor homothety cur-

vature homogeneous.

The non-zero covariant derivatives of vector fields are:

r
@

x

@
y

= f 0(x)@
y

, r
@

x

@
z

=
1

2
e�2f(x)(�2h(x)f 0(x) + h0(x))@

y

+ f 0(x)@
z

,

r
@

y

@
z

= e�2f(x)f 0(x)@
x

, r
@

z

@
z

= �1

2
h0(x)@

x

.

The curvature entries on the coordinate vector fields are:

R(@
x

, @
y

, @
z

, @
x

) = e�2f (f 0(x)2 + f 00(x)) , R(@
y

, @
z

, @
z

, @
y

) = e4f(x)f 0(x)2 ,

R(@
x

, @
z

, @
z

, @
x

) = �h(x)(f 0(x))2 + f 0(x)h0(x)� h00(x)

2
.

On the basis X = @
x

, Ỹ = 1
e

2f @y, Z̃ = @
z

� h

2e2f @y, we have

g(X,X) = 1 , g(Ỹ , Z̃) = 1

and

R(X, Ỹ , Z̃,X) = �((f 0)2 + f 00) , R(Ỹ , Z̃, Z̃, Ỹ ) = (f 0)2 , and

R(X, Z̃, Z̃, Z) = � = �h(f 0)2 + f 0h0 + h((f 0)2 + (f 00))� 1

2
h00.

If we rescale Z = 1/
p
�Z̃ and Y =

p
�Ỹ , we make R(X,Z,Z,X) = 1 and do not change the values

of the metric or the other curvature entries.
In order for M to be 0-G modeled on M, we solve the di↵erential equation

f 0 = �((f 0)2 + f 00)

for then if t = f 0, then on the frame (X,Y, Z) we would have

R(X,Y, Z,X) = t , R(X,Z,Z,X) = 1 , and R(Y, Z, Z, Y ) = t2.

f 0 = 1
e

x�1 is a solution to this equation, so we let f(x) = �x�Log(ex�1). Note that the range
of f 0 for x > 0 is all of R+ which means that every A 2 G is realized at some point on M . It is also
interesting to note that the solution is independent of h (so long as � 6= 0).
Scalar invariants: To show that M is not 0-homothety curvature homogeneous, and therefore

also not curvature homogeneous, we check to see that ||R||2
⌧

2 is non-constant [5]. The formulas for
these contractions are:

||R||2 = gi1i2gj1j2gk1k2gl1l2R
i1j1k1l1Ri2j2k2l2

⌧2 = gi1i2gj1j2gk1k2gl1l2R
i1j1j2i2Rk1l1l2k2
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Computing these invariants on our frame we have,

||R||2 = 8R(X,Y, Z,X)R(X,Z, Y,X) + 4R(Y, Z, Y, Z)R(Z, Y, Z, Y )

= 8R(X,Y, Z,X)2 + 4R(Y, Z, Y, Z)2

= 8t2 + 4t4

⌧2 = 4R(X,Y, Z,X)(4R(X,Y, Z,X) + 2R(Y, Z, Y, Z) + 2R(Y, Z, Y, Z)(4R(X,Y, Z,X) + 2R(Y, Z, Y, Z))

= 16R(X,Y, Z,X)2 + 16R(X,Y, Z,X)R(Y, Z, Y, Z) + 4R(Y, Z, Y, Z)2

= 4t4 � 16t3 + 16t2

Hence, since
||R||2

⌧2
=

4t2(2 + t2)

4t2(t2 � 4t+ 4)
=

t2 + 2

(t� 2)2
.

and t = f 0 is non-constant on M , it follows that M is neither homothety curvature homogeneous,
nor curvature homogeneous. Thus, our example departs from the previous theories of curvature
homogeneity.

4 Construction Two

In this example, we construct a 1-G-curvature homogeneous manifold where the action of G on the
space of algebraic curvature tensors is rank two at each point. Moreover, this manifold is neither
curvature homogeneous nor homothety homogeneous.

Our proposed 0-model is M = (V, h, i, R0) where V = Span({x, y, z}),

hx, xi = hy, yi = hz, zi = 1

and

R0(x, y, x, y) = R0(x, y, x, z) = R0(x, z, x, z) = 1.

The Lie group we will realize (on the basis (x, y, z)) is

G =

8
<

:

0

@
1 0 0
0 t 0
0 0 s

1

A |s, t 2 R+

9
=

;

Let (x, y, z) be coordinates on R3 and let M = {(x, y, z) 2 R3 : y > 0, z < 0}. Let the metric,
g, be defined by

g(@
x

, @
x

) = e2f(y)+2h(z) , g(@
y

, @
y

) = g(@
z

, @
z

) = 1.

Theorem 4.1. For certain choices of f and h the manifold (M,g) is 1-G-curvature homogeneous

with respect to the model M. Moreover, (M, g) is neither curvature homogeneous, nor homothety

curvature homogeneous.
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First, we will prove (M, g) is 0-G-curvature homogeneous. The covariant derivatives of the
coordinate vector fields are:

r
@

x

@
z

= h0(z)@
x

, r
@

x

@
y

= f 0(y)@
x

r
@

x

@x = �e2(f(y)+h(z))(f 0(y)@
y

+ h0(z)@
z

).

Let X = e�(f(y)+h(z))@
x

, Y = @
y

, and Z = @
z

. Then (X,Y, Z) forms an orthonormal frame. On
this frame, we have:

R(X,Y,X, Y ) = ((f 0)2 + f 00) , R(X,Y,X,Z) = f 0h0 , and

R(X,Z,X,Z) = ((h0)2 + h00)

In order that M be 0-G-modeled on M we solve the di↵erential equation:

(f 0(y))2(h0(z))2 = ((f 0(y))2 + f 00(y))((h0(z))2 + h00(z)).

One particular solution to this is f(y) = 2 log(y2 ) and h(z) = �Log(�z). With this solution, the
corresponding A 2 G at (x, y, z) 2 M is

0

@
1 0 0
0 1p

2
f 0 0

0 0
p
2h0

1

A =

0

B@
1 0 0

0
p
2
y

0

0 0 �
p
2

z

1

CA

Moreover, since the since the images of f 0 = 2
y

and h0 = � 1
z

are all of R+ on M (recall y > 0

and z < 0 on M), G does indeed form a group.
As polynomials in t = 1p

2
f 0 and s =

p
2h0, the non-zero entries of the first covariant derivative

of the curvature tensor up to the usual symmetries are:

rR(X,Y, Y,X, Y ) =
p
2t3 rR(X,Y, Z,X, Y ) =

1p
2
t2s

rR(X,Y, Z,X,Z) =
1p
2
s2t rR(X,Y, Z, Y,X) =

1p
2
t2s

rR(X,Z,Z,X,Z) = �
p
2s3 rR(X,Z,Z, Y, Z) =

1p
2
s2t

Hence, by adding to our model space the algebraic covariant derivative curvature tensor R1 2
⌦5V ⇤ whose entries are R1(x, y, y, x, y) =

p
2, R1(x, y, z, x, y) = 1p

2
, R1(x, y, z, x, z) = � 1p

2
,

R1(x, y, z, y, x) =
1p
2
, R1(x, z, z, x, z) = �

p
2, and R1(x, z, z, y, x) =

1p
2
, we can use the same mov-

ing frame (X,Y,Z) and the same selection of A 2 G for each p to obtain a model space isomorphism
from each TpM to (R3, h, i, A⇤

p

R0, A
⇤
p

R1). Therefore, M is 1-G-curvature homogeneous.

Moreover, since f 0 and h0 are smooth, we obtain a smooth map � : M ! G defined by

(x, y, z) 7!

0

@
1 0 0
0 1p

2
f 0 0

0 0
p
2h0

1

A
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We can endow G with the coordinates

� : G ! R2 �(

0

@
1 0 0
0 t 0
0 0 s

1

A) = (t, s)

. Then � � �) : R3 ! R2 has derivative,

D(� � �) =
✓
0 1p

2
f 00 0

0 0
p
2h00

◆
.

Since f 00 and h00 never vanish on M , D(� � �) always has rank two.
We can also identify the space of algebraic curvature tensors on a 3-dimensional vector space

with R6. Given a basis x1, . . . , xn

for a vector space V , let R[dx
i

, dx
j

, dx
k

, dx
l

] denote the algebraic
curvature tensor R such that R(x

i

, x
j

, x
k

, x
l

) = 1.
Then, the tensorsR[dx1, dx2, dx2, dx1], R[dx1, dx3, dx3, dx1], R[dx2, dx3, dx3, dx2], R[dx1, dx2, dx3, dx1],

R[dx2, dx3, dx1, dx2], R[dx1, dx3, dx3, dx2], form a basis for the space of algebraic curvature tensors
on R3, call this space (R, 3). In this manner, (R, 3) is vector space isomorphic to R6. If we define
 : G ! (R, 3) as the map A 7! A⇤R0, then its the derivative of  � ��1 is

0

BBBBBB@

2t 0
0 2s
s t

2ts2 2st2

2ts t2

s2 2ts

1

CCCCCCA
.

Then by the chain rule,

D( ���1����) = D( ���1)D(���) =

0

BBBBBBB@

0
p
2tf 00 0

0 0 2
p
2sh00

0 1p
2
sf 00 p

2th00

0
p
2ts2f 00 2

p
2st2h00

0
p
2tsf 00 p

2t2h00

0 1p
2
s2f 00 2

p
2tsh00

1

CCCCCCCA

=

0

BBBBBB@

0 f 0f 00 0
0 0 4h0h00

0 h0f 00 f 0h00

0 2(h0)2f 0f 00 2(f 0)2h0h00

0
p
2h0f 0f 00 1p

2
(f 0)2h0

0
p
2(h0)2f 00 2

p
2f 0h0h00

1

CCCCCCA
.

Since f 0, f 00, h0, h00 are all non-vanishing on M , this map is rank two at each point on M . In
fact, this implies that the image of  � � is a two-dimensional manifold [6].
This has the corollary that M is neither curvature homogeneous, nor homothety curvature homo-
geneous, for in the case of curvature homogeneity, the image of  � � is a single point, and in the
case of homothety curvature homogeneity, the image of  � � is an open subset of a radial line.
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5 Open Questions

• We have yet to prove whether or not the first example is 1-G-curvature homogeneous and
whether or not the second example is 2-G-curvature homogeneous.

• In general, the theory of invariants for G-curvature homogeneity seems rich, as there is no
“uniform” sort of action on the tangent space at each point, so more novel ways of contracting
tensors and finding invariant subspaces are required for showing a certain manifold is not G-
curvature homogeneous.

• The Singer number theory of G-curvature homogeneity might also be interesting to explore.
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