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Abstract

This research explores the property of constant vector curvature on model spaces
with curvature tensors constructed from skew-adjoint and self-adjoint linear
transformations. Constant vector curvature has been studied for general cur-
vature tensors in the past, but only in the 3-dimensional case. For this reason
we look at these specific cases to try to generalize results in higher dimensions.
We determine the constant vector curvature for all tensors constructed from
skew-adjoint linear transformations, some cases of tensors constructed from self-
adjoint linear transformations, and we find some general results about constant
vector curvature.

1 Introduction

We study a curvature condition called constant vector curvature. In the past,
constant vector curvature has only been studied in the three dimensional case.
In order to learn more about constant vector curvature in higher dimensions we
consider two specific kinds of curvature tensors, those built from skew-adjoint
and self-adjoint linear transformations.

Definition 1.1. Let V be a finite-dimensional real vector space. An algebraic
curvature tensor is a multilinear function R : V × V × V × V → R that
satisfies the following conditions

R(x, y, z, w) = −R(y, x, z, w) = R(z, w, x, y)and,

R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0.
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The kernel of an algebraic curvature tensor is very important in determining
what its constant vector curvature is. It will play a central role in Theorem 2.1.

Definition 1.2. Let R be an algebraic curvature tensor. We define the kernel
of R as follows:

kerR = {v ∈ V : R(x, y, z, w) = 0 for all y, z, w ∈ V }

We study a specific type of algebraic curvature tensor called a canonical
algebraic curvature tensor, which we define here.

Definition 1.3. Let 〈·, ·〉 be an inner product and let A and J be linear trans-
formations. Suppose J is skew-adjoint with respect to 〈·, ·〉 and A is self-adjoint
with respect to 〈·, ·〉. The canonical algebraic curvature tensor constructed
from J is

RJ(x, y, z, w) = 〈Jx, z〉〈Jy, z〉 − 〈Jx, z〉〈Jy,w〉 − 2〈Jx, y〉〈Jz, w〉.

And the canonical algebraic curvature tensor constructed from A is

RA(x, y, z, w) = 〈Ax, z〉〈Ay, z〉 − 〈Ax, z〉〈Ay,w〉.

RJ and RA are algebraic curvature tensors with these builds because J
is skew-adjoint and A is self-adjoint [2]. One reason that these tensors are
important to study is that span{RJ} = span{RA} = A(V ), where A(V ) is the
set of all algebraic curvature tensors on V .

Definition 1.4. Let 〈·, ·〉 be an inner product on vector space V and R be an
algebraic curvature tensor. Then M = (V, 〈·, ·〉, R) is a model space.

In this paper all inner products are assumed to be positive-definite. We can
now introduce a property that is central to this research: sectional curvature.

Definition 1.5. Let M = (V, 〈·, ·〉, R) be a model space, and let v, w ∈ V be
such that they span a 2-plane in V . The sectional curvature of the two-plane
spanned by v and w is

k(v, w) =
R(v, w,w, v)

R〈·,·〉(v, w,w, v)
,

where R〈·,·〉(x, y, z, w) = 〈x,w〉〈y, z〉 − 〈x, z〉〈y, w〉.

In a 2-dimensional model space, there is only one possible 2-plane so every
two dimensional model space has constant sectional curvature. For this reason,
in this paper, we assume that every model space is of dimension 3 or greater.
Furthermore, since sectional curvature is a function of 2-planes, two pairs of
vectors that span the same 2-plane will produce the same sectional curvature.
For any vector v ∈ V , if there exists a w ∈ V such that k(v, w) = ε then
there will be a u ∈ v⊥ with span{v, w} = span{v, u} for which k(v, u) = ε.
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For this reason we can always assume, without loss of generality, that v and w
are orthogonal. This amounts to finding an orthonormal basis for the 2-plane
spanned by v and w. We use this fact to simplify the calculations of sectional
curvature.

We can use sectional curvature to define curvature properties on model
spaces.

Definition 1.6. A model space M is said to to have constant sectional cur-
vature ε, denoted csc(ε), if for all v, w ∈ V such that v, w span a 2-plane,
k(v, w) = ε.

Constant sectional curvature is a very strong and somewhat uncommon prop-
erty of model spaces, so we study a slightly weaker, but more common property:
constant vector curvature.

Definition 1.7. A model space M is said to to have constant vector cur-
vature ε, denoted cvc(ε), if for all v 6= 0 ∈ V there exists a w ∈ V such that
k(v, w) = ε.

Note that constant sectional curvature always implies constant vector cur-
vature. We can also define a slightly stronger property extremal constant vector
curvature.

Definition 1.8. A model space M is said to to have extremal constant vector
curvature ε, denoted ecvc(ε), if M has cvc(ε) and ε is a bound on the possible
sectional curvature values for M .

In Section 2 we present general results about constant vector curvature that
can be applied to all model spaces. In Section 3 we determine all the sectional
curvature and cvc values for all canonical algebraic curvature tensors built from
skew-adjoint linear transformations. Additionally we provide a method for con-
structing a model space with a specific cvc value. In Section 4 we determine the
cvc values for some canonical algebraic curvature tensors built from self-adjoint
linear transformations, and put some restrictions on the possible cvc values for
others.

2 General Results

In this section we present general results about the constant vector curvature
of model spaces. We determine the cvc values of any model space that has a
curvature tensor with a non-trivial kernel. We also provide some methods for
constructing a model space with a desired cvc value through linear combinations
of curvature tensors.

Theorem 2.1. Let M = (V, 〈·, ·〉, R) be a model space such that ker(R) 6= 0.
Then M is cvc(0) and only cvc(0).
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Proof. If ker(R) = V , then R = 0 so M has csc(0), and therefore has cvc(0). If
ker(R) 6= V let v ∈ V be a non-zero vector. If v ∈ ker(R) then for any choice of
w, k(v, w) = 0. So 0 is the only possible cvc value. In this case let w ∈ ker(R)⊥

so v and w are linearly independent. Then M has cvc(0).
Now if v /∈ ker(R), let w ∈ ker(R). Then M has cvc(0).

Furthermore, it is known that if T is a self-adjoint or skew-adjoint linear
transformation ker(T ) = ker(RT ) unless T has rank 1 [2]. So, by Theorem 2.1,
all canonical algebraic curvature tensors built from linear transformations with
a non-zero kernel have only cvc(0). For this reason, we assume that all canonical
algebraic curvature tensors and linear transformations in this paper have a zero
kernel.

Theorem 2.2. If M = (V, 〈·, ·〉, R) is a model space with cvc(ε), and c is a real
number, then M = (V, 〈·, ·〉, cR) has cvc(cε).

Proof. Let v ∈ V be a non-zero vector. Since M is cvc(ε) there exists w such
that,

k(v, w) =
R(v, w,w, v)

R〈·,·〉(v, w,w, v)
= ε.

By replacing R with cR we get k(v, w) = cε. So M has cvc(cε).

We also know the cvc values for the sums of certain algebraic curvature
tensors.

Theorem 2.3. If M1 = (V, 〈·, ·〉, R1) is a model space with cvc(ε) and M2 =
(V, 〈·, ·〉, R2) is a model space with csc(δ) then M = (V, 〈·, ·〉, R1+R2) is a model
space with cvc(ε+ δ).

Proof. Let v ∈ V be a non-zero vector. Since M1 has cvc(ε), there exists w such

that R1(v,w,w,v)
R〈·,·〉(v,w,w,v)

= ε. Furthermore, since M2 has csc(δ), R1(v,w,w,v)
R〈·,·〉(v,w,w,v)

= δ.

This gives us

k(v, w) =
R1(v, w,w, v) +R2(v, w,w, v)

R〈·,·〉(v, w,w, v)
=

R1(v, w,w, v)

R〈·,·〉(v, w,w, v)
+

R2(v, w,w, v)

R〈·,·〉(v, w,w, v)
= ε+δ.

So M has cvc(ε+ δ).

These two theorems are useful for constructing a model space with a desired
cvc value in Corollary 3.5.2. Using them we can determine the cvc values for
some linear combinations of algebraic curvature tensors. In particular, we use
Theorem 2.3 to demonstrate that for every closed interval [a, b] over the real
numbers, there is a model space which has cvc(ε) for all ε ∈ [a, b].
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3 Curvature Tensors of Skew-Adjoint
Linear Transformations

In this section we determine the sectional curvature values and the constant
vector curvature values of all canonical algebraic curvature tensors constructed
from skew-adjoint linear transformations. First we present a useful theorem
regarding skew-adjoint linear transformations. Second, we present some lemmas
that are useful in the later proofs. Then we present the main result, that
all canonical algebraic curvature tensors constructed from skew-adjoint linear
transformations have an interval of cvc values. Finally we provide a method for
constructing a model space with specific cvc values.

Theorem 3.1. If J is a skew-adjoint linear transformation on a finite dimen-
sional vector space, then there exists an orthonormal basis {x1, y1, ...xk, yk, z1, ...zp}
such that Ker(J) = span{z1, ...zp}, Jxi = λiyi, and Jyi = −λixi. Furthermore,
by replacing xi with yi we can assume that λi > 0. [5]

Note that this implies that v and Jv are orthogonal, a critical fact in the
later proofs.

Lemma 3.2. If v, w ∈ V are orthogonal unit vectors and M = (V, 〈·, ·〉, RJ) is a
model space where J is a skew-adjoint linear operator, then k(v, w) = 3〈Jv,w〉2.

Proof. Since J is skew-adjoint, v and Jv are orthogonal, so 〈Jv, v〉 = 0 for all
v ∈ V . So R(v, w,w, v) = −〈Jv,w〉〈Jw, v〉−2〈Jv,w〉〈Jw, v〉 = 3〈Jv,w〉2. Since
v and w are unit and orthogonal, the denominator of k(v, w) is 1.

Because we can always assume, without loss of generality, that v and w
are orthogonal, this lemma is useful for simplifying calculations of sectional
curvatures. The following Lemma is very useful in the proofs of the next two
theorems.

Lemma 3.3. Let J be a skew-adjoint linear operator and let v be a unit vector.
Then min(λi) ≤ ||Jv|| ≤ max(λi) where λi is as in Theorem 3.1.

Proof. Let v = Σni=1viei

||Jv||2 = λ1v
2
2 + λ1v

2
1 + ...+ λkv

2
n−1 + λkv

2
n.

By replacing λi with max(λi) we get

||Jv||2 ≤ max(λ2i )(v
2
1 + v22 + ...+ v2n) = max(λ2i ).

Similarly, by replacing λi withminλi we get ||Jv||2 ≥ min(λ2i ). Somin(λi) ≤
||Jv|| ≤ max(λi).

Notice that min(λi) and max(λi) are attained when v = xi where xi cor-
responds to min(λi) or max(λi). Since ||Jv|| is a continuous function, by the
Intermediate Value Theorem, ||Jv|| attains every value in [min(λi),max(λi)].
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Now we can determine all possible sectional curvature and constant vector
curvature values of an algebraic curvature tensor built from a skew-adjoint linear
transformation.

Theorem 3.4. Let M = (V, 〈·, ·〉, RJ) be a model space where J is a skew-
adjoint linear transformation with a zero kernel. The set of all possible sectional
curvatures is [0, 3max(λ2i )] where λi is as in Theorem 3.1.

Proof. Without loss of generality assume that the λi’s are arranged such that
they are in decreasing order, so max(λi) = λ1. From Lemma 3.2 we can see
that the sectional curvature will always be positive. Since J is skew-adjoint we
have

0 ≤ 〈Jv,w〉2 = −〈Jv,w〉〈Jw, v〉.

This implies that either 〈Jv,w〉 or 〈Jw, v〉 is negative. Without loss of generality
assume that 〈Jw, v〉 is negative. Then, by the Cauchy-Schwarz Inequality and
Lemma 3.3,

0 ≤ 〈Jv,w〉〈−Jw, v〉 ≤ ||Jv|| · ||Jw|| ≤ max(λ2i ).

Now let ε ∈ [0, 3λ21] and let δ =
√

ε
3λ2

1
. Let v = x1 and let w = δy1 +

√
1− δ2x2. Such an x2 exists because we assume three or more dimensions.

Since 0 ≤ δ ≤ 1, w is a unit vector, and v and w are orthogonal, so, by Lemma
3.2, k(v, w) = ε.

Theorem 3.5. Let M = (V, 〈·, ·〉, RJ) be a model space where J is a skew
adjoint linear transformation with a zero kernel, then M has cvc(ε) if and only
if ε ∈ [0, 3min(λ2i )].

Proof. Let v ∈ V be a unit vector and let ε ∈ [0, 3minλ2i ]. We will construct an
orthonormal basis F = {f1, f2, ..., fn} as follows.

f1 = v, f2 =
Jv

||Jv||
, and fi ∈ span{f1, f2}⊥ for all i ≥ 3.

Note that ||Jv|| 6= 0 as J has a trivial kernel and v 6= 0. This is an orthonormal
basis becuase Jv ⊥ v.

Let δ =
√

ε
3||Jv||2 , and w = δf2 +

√
1− δ2f3. Note that 0 ≤ δ ≤ 1 so v and

w are orthogonal unit vectors, and, by Lemma 3.2, k(v, w) = 3||Jv||2δ2 = ε.
Now let M be cvc(ε). Let v be a unit vector such that ||Jv|| = min|λi|.

Then, by Cauchy-Schwarz, k(v, w) = 3〈Jv,w〉2 ≤ 3minλ2i . We know that
k(v, w) is always positive, so 0 ≤ ε ≤ 3minλ2i .

This result is particularly interesting because we have an interval of cvc
values. Previous work, in the three dimensional case, has only found model
spaces with a single cvc value [3].

We can also make a slightly stronger statement about ecvc for canonical al-
gebraic curvature tensors constructed from skew-adjoint linear transformations.
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Corollary 3.5.1. If M = (V, 〈·, ·〉, RJ) is a model space where J is a skew
adjoint linear operator, then M is ecvc(0). If all λi of J are equal then M is
ecvc(λ2).

Proof. This follows from Theorems 3.4 and 3.5 as 0 is a lower bound on all
sectional curvature values and always a cvc value for M . If all λi of J are equal
then minλ2i = maxλ2i = λ2, so the set of sectional curvature values is equal to
the set of cvc values.

Now we provide a method for constructing a model space with a desired
interval of cvc values.

Corollary 3.5.2. Let [a, b] be a closed interval over the real numbers. The
model space M = (V, 〈·, ·〉, aR〈·,·〉 + b

3RJ) where J is the skew-adjoint linear
transformation where λi = 1 has cvc(ε) if and only if ε ∈ [a, b].

Proof. This results follows from Theorems 3.5, 2.2, and 2.3. It is easy to see
that any model space with R〈·,·〉 as its curvature tensor is csc(1). So M will be
cvc(ε) for all ε ∈ [a, b].

4 Curvature Tensors of Self-Adjoint Linear Trans-
formations

In this section we determine the cvc values for all canonical algebraic curvature
tensors built from self-adjoint linear transformations with 3 or fewer eigenvalues.
We begin by noting some significant restrictions on the possible cvc values. Then
we determine the cvc values when A has one, two, or three eigenvalues.

First note that similarily to the skew adjoint case, we can assume that v,
and w are orthogonal unit vectors. This gives us k(v, w) = RA(v, w,w, v). Since
cvc is a property that must hold for all v ∈ V we can put some restrictions on
the possible cvc values by looking at what sectional curvature values we can get
from a specific v.

Lemma 4.1. Let M = (V, 〈·, ·〉, RA) be a model space where A is a self-adjoint
linear transformation with a zero-kernel. We can restrict the possible cvc values
of M in the following cases.

1. If all the eigenvalues of A have the same sign then M can only have
cvc(λ1λk) where λk is the largest eigenvalue.

2. If A has only one negative eigenvalue and at least three distinct eigenvalues
then M can only have cvc(λ1λ2).

3. If A has only one positive eigenvalue and at least three distinct eigenvalues
then M can only have cvc(λkλk−1).

Proof.
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1. By the Spectral Theorem [1], there exists an orthonormal basis E =
{e1, e2, ..., en} such that Aei = λiei. Let v = e1. We can assume that
w is orthongonal to v so it must be a linear combination of the other
eigenvectors. So k(v, w) = ||Av|| · ||Aw||. Since λ2 ≤ ||Aw|| ≤ λk our pos-
sible cvc values are [λ1λ2, λ1λk]. Now let v = ek. Using the same process
we get that all cvc values must be in [λ1λ2, λk− 1λk]. Therefore, the only
possible cvc value is λ1λk

2. Let v = e1. Then the set of possible cvc values is [λ1λk, λ1λ2]. Now let
v = e2. Then all cvc values must be in [λ1λ2, λ2λ4]. Therefore, the only
possible cvc value is λ1λ2.

3. It is known that RA = R−A, so, by 2, we have cvc(λ2λ3).

Now we only need to show that our model spaces have a single cvc value.

Theorem 4.2. Let M = (V, 〈·, ·〉, RA) be a model space where A is a self-adjoint
linear transformation with only one eigenvalue, λ, and a zero kernel. Then M
only has cvc(λ2)

Proof. Let v, w ∈ V . RA(v, w,w, v) = λ2R〈·,·〉 so k(v, w) = λ2.

Theorem 4.3. Let M = (V, 〈·, ·〉, RA) be a model space where A is a self-
adjoint linear transformation with two eigenvalues then M is cvc(λ1λ2) and if
the eigenvalues have the same sign, it is only cvc(λ1λ2).

Proof. Let v ∈ V be a unit vector. v can be orthogonally decomposed into v1
and v2 where vi is in the eigenspaces for λi. Let w = −||v2||v1 + ||v1||v2. Then
k(v, w) = λ1λ2(||v1||2 + ||v2||2)2 = λ1λ2.

Theorem 4.4. Let M = (V, 〈·, ·〉, RA) be a model space where A is a self-
adjoint linear transformation with three eigenvalues. If all eigenvalue have the
same sign then M is only cvc(λ1λ3) If only one eigenvalue is negative then M
is cvc(λ1λ2). If two eigenvalues are negative then M is cvc(λ2λ3)

Proof. Let v ∈ V . Note that v can be orthogonally decomposed into a linear
combinations v1, v2 and v3 where vi is a unit vector in the eigenspace corre-
sponding to λi. So v = av1 + bv2 + cv3. Since RA = R−A we have two cases,
all eigenvalues are positive, or there is only one negative eigenvalue. If all the
eigenvalues are positive, let δ = λ1λ2, ε = λ1λ3, and τ = λ2λ3. If there is one
negative eigenvalue let δ = λ1λ3, ε = λ1λ2, and τ = λ2λ3.

Now let w = −
√

(δ−ε)(ε−τ)
ε−δ v1 + v3. Thompson [4] did the necessary algebra

to show that k(v, w) = ε.

These results are all consistent with previous research that only found model
spaces with a single cvc value in three dimensions. These rsults also highlight an
important difference between canonical algebraic curvature tensors built from
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skew-adjoint transformations and those built from self-adjoint transformations.
In the skew-adjoint case we always get an interval of cvc values while in the
self-adjoint case we seem to only get a single value. It is known that the span
of curvature tensors built from skew-adjoint linear transformations is equal to
the span of those built from self-adjoint transformations. This means that a
curvature tensor with a single cvc value can be built by summing those with
intervals of cvc values.

5 Open Questions

• What are the cvc value for curvature tensors constructed from self-adjoint
linear transformations with four or more eigenvalues? The pattern sug-
gests that they are only cvc(λ1λk) if all eigenvalues have the same sign and
cvc(λlλl+1) where λl is the greatest negative eigenvalue, if the eigenvalues
have differing signs.

• What is the relation between the cvc values of two model spaces with
skew-adjoint curvature tensors to the model space whose curvature tensor
is their sum?
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