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Abstract

In this paper, we define nested torus links. We then go on to introduce a cell
decomposition of nested torus links. Using the cell decomposition and its resulting
circle packing we prove that nested torus links can be geometrically realized via
regular ideal octahedra in hyperbolic space.

1 Introduction

A link is hyperbolic if and only if its complement admits a complete hyperbolic structure.
This means the complement must admit a metric of constant curvature −1. Hyperbolic
polyhedra provide another way to describe hyperbolic structures on link complements.
Starting with the link complement, one can find a cell decomposition slicing the link
complement, so to define edges and faces of an ideal polyhedron in hyperbolic space. We
then invoke Andreev’s Theorem to result in a circle packing associated with the ideal
polyhedra.

Cell decomposition is a way of assigning 0, 1, 2, and 3 cells such that 0-cells have
no dimension, 1-cells are in one dimension, 2-cells are 2-dimensional, and 3 cells are
3-dimensional. Cutting along 2-cells determines the faces of the 3-cells, which become
the ideal polyhedra in H3. A cell decomposition, together with gluing instructions,
realizing a link complement as hyperbolic must satisfy Poincaré’s Polyhedral Theorem,
see [1]. In [3], Champanerkar, et al use a tetrahedral decomposition to determine volume
bounds for Dehn fillings of nested torus links -called twisted torus links. Here we seek to
better understand the geometry of nested torus links by proving they have an octahedral
geometric realization. The proof of Theorem 3 in [4] says if that we can recognize an
octahedral cell decomposition by looking at its resulting circle packing.

1.1 Torus Links

Before defining nested torus links, we introduce torus links and their notation.
Torus links are those which lie on the surface of an unknotted torus in 3-Space, such
that there are no self-intersections of the link on the surface of the torus. Such links are
classified with the notation (p, q), where p is the number of times the link completes a
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Figure 1: The δ̃qp nested torus link

full revolution around the longitude of the torus, and q is the number of times the link
winds around the meridian. Note that with a simple isotopy of the torus, the (p, q) link
is equivalent to the (q, p). The number of components of the (p, q) link is the gcd(p, q),
see [2]. Thus when p and q are coprime, the link is of one component - a true torus knot.

Following the notation from [3], torus links are realized as closed braids having the
form

(σ1σ2 · · ·σp−1)q

where δp = σ1σ2 · · ·σp−1 is a pth root of the full twist, , ∆2
p, of p strands. Note that

δpp = ∆2
p.

2 Nested Torus Links

Nested torus links are the result of adding p−1 crossing circles, C1, C2, · · · , Cp−1 over the
(p, q) link such that C1 encompasses the entire closed braid, C2 encompasses the right
most p− 1 strands, and so on, until Cp−1 crosses over only the two right most strands,
see Figure 1. As a convention, we will always nest in this way - so that the inner most
crossing circle encompasses only the right most strands. The closed braid word for the
(p, q) torus link is δqp, so to differentiate between the torus link and its nested partner,

the notation for a nested (p, q) torus link will hereafter be δ̃qp.
Associated to each crossing circle Ck is a crossing disk, Dk, perpendicular to the

plane of projection. For simplicity, let all Dk be coplanar. It is important to note that
Dk is a thrice-punctured sphere. The inner most crossing disk,Dp−1 is punctured twice
by knot strands and once by the crossing circle Cp−1. In general, Dk is punctured by a

single knot strand, Ck−1, and Ck. Figure 1 demonstrates a general δ̃qp.

2.1 Homeomorphisms and Equivalence of Nested Torus Links

Our ultimate goal is to show nested torus links are octahedral. Because isotopic and
homeomorphic links have the same geometric structure, we use them to restrict the
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(a) δ̃15 , The (5, 1) nested torus link
(b) Euclidean reflection of δ̃15 ; the (5,−1)

twisted torus link, also (δ̃15)−1 = δ̃5
−1

Figure 2: Equivalence of links via Euclidean Reflection

number of cases we need to consider. There are certain allowable moves to describe an
equivalence via homeomorphism between nested torus links.
Reflection
Reflection is a true Euclidean isometry. Therefore if there exists a reflection between
two nested torus links over a plane in the embedding space (IR3), then the two nested
torus links are homeomorphic. Figure 2 shows that (p, q) ≡ (p,−q), or in braid notation:

δ̃qp = (σ1σ2 · · ·σp−1)q ≡ (σ1σ2 · · ·σp−1)−q = δ̃p
−q

where δ̃qp is nested on the right and δ̃p
−q

is nested on the left.
Isotopies
Two links are isotopic if one can simply pull the strands of the first link so that it
coincides with the second, without cutting, gluing, or changing the sign of crossings.
These are used to define topological equivalence between links.
Full Twists
In the discussion of fully augmented links, it is known that slicing along crossing disks
and regluing with a full twist yields homeomorphic links. In the case of nested torus
links, the same is true over any given crossing disk. Full twists are in the form δpp , or

(p, p). Therefore, given a nested full twist, δ̃pp , we can apply the homeomorphism in
which the inverse of a full twist is inserted:

δ̃ppδ
−p
p = (σ1σ2 · · ·σp−1)p · (σ1σ2 · · ·σp−1)−p

= (σ1σ2 · · ·σp−1)0

= δ̃0p

In the above notation, we see that inserting the inverse of a full twist to a full twist
undoes each of the crossings in the braid. Generally, this means δ̃0p ≡ δ̃pp . Furthermore,

we can undo any existing full twist in a given δ̃qp nested torus link. Therefore, we know

δ̃qp ≡ δ̃p
qmodp

. Consequently, let q < p for δ̃qp.
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Lemma 2.1. Up to homeomorphism, for δ̃qp, 0 < q ≤ p/2.

Proof. We show this by proving if q + z = 0modp, then δ̃qp and δ̃zp are homeomorphic.
Recall that q + z = 0modp if and only if q + z = np for some n.
Starting with δ̃qp = (σ1σ2 · · ·σp−1), apply the inverse of a full twist n times. This is
the composition of n full twist homeomorphisms, so it is itself a full twist homeomor-
phism.Thus we have:

δ̃qp ≡ ˜δq−npp

But q − np = −z, so we have

δ̃qp ≡ ˜δq−npp ≡ ˜δ−zp ≡ δ̃zp

The homeomorphism from ˜δ−zp to δ̃zp is a reflection.

3 Cell Decomposition

Throughout this section, we prove that nested torus links, δ̃qp are octahedral for p ≥ 3
and q ≥ 1.

Note that δ̃0p contains an embedded annulus, regardless of p, and is thus not hyper-
bolic. Additionally if, p < 3, Lemma 2.1 says q ≤ 1. If q = 0, then the link is clearly
not hyperbolic. But when p < 3 and q = 1, the link also contains an embedded annulus
and is thus not hyperbolic. Furthermore, up to homeomorphism, proving that nested
torus links are octrahedral for 1 ≤ q ≤ p/2 is sufficient for proving the same result for
all q ≥ 1, by Lemma 2.1.

3.1 Preliminaries

The results from [4] generalize the cell decomposition of a half twist over a singe crossing
disk, see Figure 4, to one involving multiple strands . In the case of nested torus links,
we will again generalize the cell decomposition for a half twist over a single crossing disk,
but only over a subset of braid strands. Additionally, we will recall the geometry of ∆p

because it will be illustrative in understanding the geometry of δ̃qp.

Cells
Recall that in cell decomposition, 0-cells are end points for 1-cells, 1-cells bound

2-cells, and 2-cells bound 3-cells. In the case of cell decomposition for fully augmented
link complements, we assign 1-cells as the intersection of the crossing disk plane with the
plane of projection. The end points of these segments are knot and crossing strands, or
punctures in the link complement. Therefore, there are no 0-cells in the manifold; these
become ideal vertices in hyperbolic space. The 2-cells are “planar” regions, including
twisted bands that live along the plane of projection, and the 3-cells are “space” like
regions above and below the plane of projection. The plane of projection splits space
so that we have 2 3-cells, P+ and P−. The 2-cells bounding P+ are those visible from
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Figure 3: Flattened cell decomposition of an untwisted crossing disk

above. Similarly the 2-cells visible from below are associated with P−.

Cell Decomposition Over a Single Crossing Disk
Cell decomposition over untwisted crossing disks is well understood, through the

discussion of fully augmented links. As usual, there are no 0-cells, the 1-cells are the
intersection of the crossing disk with the plane of projection, and there are two 3-cells
split by the plane of projection. The 2-cells are determined so that cutting along them
yields the boundary faces of the two 3-cells. Figure 3 illustrates that the 3-cell P+ is
bounded by the planar regions, A,B,C, and E, and twice by Dk - once from the front
and once from the back. A reflection of the same picture occurs for P−.

The cell decomposition over a single half-twisted crossing disk, described in [4], is
similar to that over an untwisted crossing disk. However, the half twist changes the
gluing instructions for 2-cells, as illustrated in Figure 4, so that P+ is bounded by D′k on
the front and Dk on the back. That is, because of the half twist, D′k is visible from the
3-cell above the plane of projection. For this reason, it is helpful to look at the 2-cells for
P+ from the front and back separately, keeping gluing instructions consistent. A similar
picture describes the cell decomposition on P−. See [4] for more details.

Cell Decomposition of Nested Half Twists
Let us recall the general structure of such a nested half twist, using the example

∆5. Figure 5a illustrates the a half twist over the entire crossing region, composed of
the sub crossing disks, E, F, G, and H. Looking at the diagram from the front, consider
the inner most punctures of the crossing disk E - a single strand and the outer most
puncture of the crossing disk F. There is a half twist over these two punctures. The
same is true between the punctures of F, G, and H. That is, there is a half twist on
the front side of each crossing disk. Looking at the diagram from the back, each of the
crossing disks lay flat. Note that in the gluing instructions for the cell decomposition
illustrate this nicely, see Figure 5b. We see E’,F’,G’, and H’ on the front, corresponding
to a half twist. On the back, where the two cells are glued flat, we see E, F, G, and H. [4]

Understanding Nested Torus Links
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Figure 4: Cell decomposition on a half twisted crossing disk

(a) ∆5

(b) ∆5 Cell Decomposition

Figure 5: Understanding the ∆5 link
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In order to apply the cell decomposition of half twisted crossing disks to the more
general case of the nested torus link, we first isotope δ̃qp so to better describe gluing
instructions for 2-cells.

Lemma 3.1. There is an isotopy of δ̃qp such that the braid can be viewed as a half-twist
over the first q crossing disks on the front, and a half twist over the last q − 1 crossing
disks on the back.

Proof. Start with δ̃qp. Note that the sub-braid consisting of the left-most q strands is
in the form (q, q) and is thus a full twist. The left q strands cross over the last p − q
strands, so that the left q strands end up the right q strands on the back. Isotope the
last half of the full twist on the left q strands around to the back of the crossing disks.
On this side, this represents a half twist over the last q strands. Because the last two
strands puncture only the inner most crossing disk, this corresponds to a half-twist over

the last q− 1 crossing disks on the back. Figure 6 demonstrates this isotopy for δ̃25 , and

the general δ̃qp.

...q ...q...
p ...

p

Figure 6: Left: The δ̃25 nested link after the isotopy from Lemma 3.2. Middle: The front

copy of δ̃qp after Lemma 3.2. Right: The back copy of δ̃qp after the same isotopy.

3.2 Nested Torus Cell Decomposition

Theorem 3.2. The nested torus link, δ̃qp is octahedral for p ≥ 3 and q ≥ 1

Proof. As aforementioned, Lemma 3.1 results in Figure 6. Because we are dealing with
half twisted crossing disks, it is helpful to use this picture to determine the cell decom-
position for δ̃qp, keeping consistent gluing instructions. Additionally, we look at the cell
decomposition of P+. The proof for P− is analogous.

1-Cells Because each crossing disk is a thrice punctured sphere, the resulting cell
decomposition will have an even number of triangular crossing disk faces, each bounded
by 1-cells. The 1-cells bounding crossing disk Dk are denoted a1k, a

2
k, and a3k. For all
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Figure 7: 1-cells of δ̃qp.

values of k, a3k is to the right of the closed braid because of nesting. See Figure 7.

2-Cells First preform the isotopy from Lemma 3.1. The 2-cells are determined
by grouping like strands on half-twisted bands, and considering the front and back
separately. See labels W,X, Y and Z in Figure 8. Regions containing many knot strands
decompose into many separate 2-cells.The half-twisted band, denoted region Y in the
Figure 8, contains q strands. As a result, there are q−1 distinct 2-cells grouped together
in this region. These are counted by the number of planar spaces between strands.
Similarly, the flat band, denoted by region W has p− q strands, and p− q − 1 distinct
2-cells within this region. The regions denoted X,V and Z each contain exactly one
2-cell because they are not sliced by knot strands.
Now because all twisting occurs near the crossing disks, away from the crossing disks,
all 2-cells lie planar - or untwisted. As we approach crossing disks on the front, the left q
strands lie on a half-twisted band; the right p− q strands lie on a flat band. The 2-cells
between these bands are as in the case of a single half twist applied to this more general
situation.
Note that the first q crossing disks have a half twist over their crossing disks on the
front. Therefore, by the cell decomposition described in [4], D′1 · · ·D′q are visible from
P+ on the front. On the back, the crossing disks D′q+2 · · ·D′p−1 are visible from P+ for
the same reason. All other crossing disks are flat. Figure 8 demonstrates regions of two
cells, including their gluing instructions over crossing circles.

x y zwv
z y x w v

Front Back

Figure 8: 2-cell regions of δ̃qp.

Flattening the Cell Decomposition Shrinking the crossing strands to ideal ver-
tices results in Figure 9. Note that Region Y contains q − 1 2-cell faces, and Region
W contains p − q − 1 2-cell faces, as previously explained. Each of these regions must
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contain at least one 2-cell bounded by exactly three 1-cells because each region has two
strands puncturing the inner most crossing disk. These 2-cells are tangent to exactly
three other 2-cells, not including crossing disks.
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Figure 9: flattended 2-cells of δ̃qp.

Circle Packing Finally, we shrink the knot strands to result in a circle packing,
Figure 10. Each 2-cell, not including those from crossing disk shrinks to a circle. The
crossing disks shrink to an even number of triangular faces. The 2-cell region Z is tangent
to each 2-cell in regions X,W, and V , and only the outermost 2-cell of region Y . This is
the outside face of circle packing. The 2-cell in region X is tangent to every other 2-cell,
so each circle in the resulting circle packing must be tangent to the circle labeled X.
Each region W and Y contains a 2-cell that decomposes to a circle tangent to exactly
three other circles, because both regions contain a triangular 2-cell. According to the
proof of Theorem 3 in [4], we can recognize a circle packing as octahedral if the it is
the result of adding a mutually tangent circle between three existing mutually tangent
circles; the corresponding polyhedron is the result of appending an octahedron onto an
existing polyhedron. Through this, we see that the resulting circle packing associated to
any δ̃qp corresponds to an ideal polyhedron formed by appending octahedra to an existing

polyhedron. Therefore, the link complement for δ̃qp is octahedral.

Figure 11 illustrates the octahedral cell decomposition of δ̃25 .
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Figure 11: Cell decomposition for δ̃25

4 Open Questions

How does knowing that nested torus links are octahedral improve volume bounds for
their Dehn fillings, twisted torus links?
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