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Abstract. A relatively new area of interest in differential geometry in-

volves determining if a model space has the properties of constant vector

curvature or constant sectional curvature. The natural setting in which

to begin studying these properties is in 3-dimensional space. This paper

in particular examines these properties in the Lorentzian setting, where

the Ricci Operator takes on one of four Jordan-Normal forms. We deter-

mine that three of the four forms possess the property of constant vector

curvature, and that under an orthonormal basis, only the diagonalizable

family has constant sectional curvature, and that is only when the Ricci

Operator has precisely one eigenvalue. By examining these families to-

gether, we draw some interesting and unifying conclusions that may be

useful for exploring these properties in higher dimensions.

1. Introduction & Background

We begin by considering a real-valued, n-dimensional vector space, and
establish the following definitions.

Definition 1.1. An inner product on V is a function that takes each
ordered pair (u, v) of elements of V to a number 〈u, v〉 ∈ R and has the
following properties

(1) Symmetry: 〈u, v〉 = 〈v, u〉,
(2) Additivity: 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ V ,
(3) Homogeneity: 〈λu, v〉 = λ〈u, v〉 for all λ ∈ R and u, v ∈ V ,
(4) Non-Degenerate: 〈v, w〉 ≥ 0 for all v ∈ V , and 〈v, v〉 = 0 if and only

if v = 0

We say the inner product is positive definite rather than non-degenerate
if 〈v, v〉 ≥ 0 for all v ∈ V , and 〈v, v〉 = 0 if and only if v = 0.

Definition 1.2. Let V be a real-valued, finite-dimensional vector space.
Define R : V × V × V × V → R as a multilinear function that satisfies the
following conditions:

(1) R(x, y, z, w) = −R(y, x, z, w)
(2) R(x, y, z, w) = R(z, w, x, y)
(3) R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0

1
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for all x, y, z, w ∈ V . We say R is an algebraic curvature tensor
(ACT).

Definition 1.3. A model space M = (V, 〈·, ·〉, R) consists of a vector
space V = span{e1, . . . , en}, an inner product 〈·, ·〉 on V which is symmetric,
bilinear and non-degenerate, as well as an ACT R.

We wish to examine certain properties of model spaces in the 3-dimensional
setting. These properties, along with some methods for studying them, are
defined below.

Definition 1.4. Let V be a real-valued, finite-dimensional vector space with
v, w ∈ V , and suppose π = span{v, w} is a non-degenerate 2-plane. Then
the sectional curvature is defined as

κ(π) =
R(v, w,w, v)

〈v, v〉〈w,w〉 − 〈v, w〉2

Note that this definition is independent of the basis chosen.

Definition 1.5. A model space M = (V, 〈·, ·〉, R) has constant sectional
curvature ε, denoted csc(ε), if κ(π) = ε for all non-degenerate π.

Definition 1.6. A model space M = (V, 〈·, ·〉, R) has constant vector
curvature ε, denoted cvc(ε), if for every v ∈ V , there exists some w ∈ V
such that κ(π) = ε and π is non-degenerate.

Definition 1.7. Let M = (V, 〈·, ·〉, R) be a model space with dimV = n
and a basis {e1, . . . , en}, which is not necessarily orthonormal. Define [gij ] =
〈·, ·〉. The Ricci Tensor ρ is defined by

ρ(x, y) =
n∑
i,j

gijRxijy = 〈Aei, ej〉

Where [gij ] = [gij ]
−1 and A is the Ricci Operator.

A relatively new and active area of research in Differential Geometry in-
volves studying the properties of constant sectional curvature and constant
vector curvature for n-dimensional model spaces. In this paper, we study
these properties in the case of 3-dimensional space, where the ACT is deter-
mined uniquely by a simpler function, the Ricci Tensor. In particular, we
consider four different cases of M , as dictated by the four possible Jordan-
Normal Forms in the 3-dimensional Lorentzian setting.

For a precise definition of Jordan bases and Jordan forms, see [1]. The four
possible forms will be explored later in this paper. Of the four types, Peng
and Doktorova have extensively and completely studied the diagonalized
form [2] [3]. Their results are included here for completeness. In addition,
the Riemannian case has also been completely solved [4]. In that case, it
was shown that every model space is cvc(ε). We study the three remaining
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forms in this paper and draw some unifying results that may be useful in
studying cvc in higher dimensions.

We proceed by first considering a significant amount of preliminary ma-
terial that is necessary for examining each of the cases. We then present the
results obtained by Peng and Doktorova for the diagonalized case. After-
wards, we move to examining the case of one real eigenvalue, then two real
eigenvalues, and finally one real and one complex eigenvalue. In each case,
we first recover the metric of that particular Jordan form. Next, we recover
the Ricci and curvature tensor entries. Then, we eliminate all possible val-
ues of ε with the exception of one particular value. Finally, we utilize some
preliminary material to either isolate the circumstances which allow M to
have cvc(ε) or demonstrate that it cannot be cvc(ε).

2. Preliminaries

There are a handful of results which are used throughout the paper; they
are summarized here. Our first lemma we defer to [citation] for a proof.

Definition 2.1. The Jordan-Normal Forms are defined as follows:

J(λ, k)
λ∈R

=


λ 1 0 . . . 0
0 λ 1 0
... 0

. . .
. . .

0 λ 1
0 . . . λ

 J(ã+ b̃i, k)
λ=ã+b̃i∈C−R

=



ã b̃ 1 0 0 . . .

−b̃ ã 0 1 0 . . .

0 0 ã b̃ 1 0

0 0 −b̃ ã 0 1
...

...
. . .

. . .
. . .

0 . . . ã


Lemma 2.1. Every matrix A is similar to a direct sum of Jordan blocks.

Using this fact, we can derive the four possible Jordan forms in 3-dimensional
space. Also note that, by Lemma 2.1, we can examine all possible families of
3-dimensional model spaces by studying their corresponding Jordan forms.
These Jordan forms are:λ1 0 0

0 λ2 0
0 0 λ3


Type Iλ1 1 0

0 λ1 0
0 0 λ2


Type III

λ 1 0
0 λ 1
0 0 λ


Type II ã b̃ 0

−b̃ ã 0
0 0 λ2


Type IV

Much of what we do when determining whether a family of model spaces
have constant vector curvature involves sectional curvature. To that end,
the next two lemmas are key tools that we can utilize.



4 ANDREW LAVENGOOD-RYAN

Lemma 2.2. Let v, w ∈ V , a real-valued, finite-dimensional vector space.
v, w span a non-degenerate 2-plane if and only if 〈v, v〉〈w,w〉 − 〈v, w〉2 6= 0.

Proof. (⇒) :
Suppose v, w span a non-degenerate 2-plane. Then there exists some

orthonormal basis {e1, e2} ∈ V such that we can express v, w as

v = ae1 + be2
w = ce1 + de2

Notice that this can be expressed as the matrix equation

[
v
w

]
=

[
a b
c d

] [
e1
e2

]
(1)

where

A =

[
a b
c d

]
(2)

Notice that det(A) 6= 0 since the row vectors of A are linearly independent
(v & w cannot be multiples of one another or they would not span a 2-plane).
Now consider the denominator 〈v, v〉〈w,w〉−〈v, w〉2 for v, w defined as above.
We obtain

〈v, v〉 = a2〈e1, e1〉+ b2〈e2, e2〉
〈w,w〉 = c2〈e1, e1〉+ d2〈e2, e2〉
〈v, w〉2 = [ac〈e1, e1〉+ bd〈e2, e2〉]2

After expanding and collecting terms,

[a2d2 − 2abcd+ b2c2]〈e1, e1〉〈e2, e2〉

=⇒ ±1(ad− bc)2

since 〈ei, ei〉 = ±1. Notice that this is simply ±(det(A))2, which we previ-
ously stated is nonzero. Thus

〈v, v〉〈w,w〉 − 〈v, w〉2 6= 0

as desired.
(⇐) :
Suppose now that

〈v, v〉〈w,w〉 − 〈v, w〉2 6= 0

Suppose also, for the sake of contradiction, that there exists some nonzero
u ∈ span{v, w} such that u is perpendicular to itself and every other vector.
That is,

〈u, x〉 = 0 for all x ∈ V



A COMPLETE DESCRIPTION OF CONSTANT VECTOR CURVATURE IN THE 3-DIMENSIONAL SETTING5

Now we can write u as a linear combination of v and w:

u = av + bw

Consider the inner products of u with each of v and w:

0 = 〈u, v〉 = a〈v, v〉+ b〈v, w〉
0 = 〈u,w〉 = a〈v, w〉+ b〈w,w〉

=⇒
[
0
0

]
=

[
〈v, v〉 〈v, w〉
〈v, w〉 〈w,w〉

] [
a
b

]
(3)

Define

A =

[
〈v, v〉 〈v, w〉
〈v, w〉 〈w,w〉

]
(4)

Notice that det(A) 6= 0 by assumption, so there exists only one solution
to (3); in particular, the only solution is the trivial solution. But this con-
tradicts the assumption of the existence of a nonzero u as defined above.
Thus v, w must span a non-degenerate 2-plane. �

Lemma 2.3. If v = ae1 + be2 + ce3 and w = xe1 + ye2 + ze3 and κ(π) is
defined as above, then the numerator of κ(π) is the sum of:

(1) R1221(ay − bx)2,
(2) R1331(az − cx)2,
(3) R2332(bz − cy)2,
(4) 2R1223(acy

2 − abyz − bcxy + b2xz),
(5) 2R2113(a

2yz − acxy − abxz + bcx2),
(6) 2R1332(abz

2 − acyz − bcxz + c2xy).

Proof. 1 of 6
For reference, the numerator we are working with follows:

R(ae1 + be2 + ce3, xe1 + ye2 + ze3, xe1 + ye2 + ze3, ae1 + be2 + ce3).

There are 4 possible ways to obtain R1221. One of these is detailed in the
diagram below.

R(ae1
↓
a

+ be2 + ce3, xe1 + ye2
↓
y

+ ze3, xe1 + ye2
↓
y

+ ze3, ae1
↓
a

+ be2 + ce3)

=⇒ R1221a
2y2

We proceed in this manner for every other case.

(1) R1221 =⇒ R1221(a
2y2)

(2) R1212 =⇒ −R1221(abxy)
(3) R2112 =⇒ R1221(b

2x2)
(4) R2121 =⇒ −R1221(abxy)
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Collecting these terms gives us

R1221(a
2y2 − 2abxy + b2x2)

=⇒ R1221(ay − bx)2

as desired. �

Proof. 2 of 6
We now consider all of the ways to get R1331:

(1) R1331 =⇒ R1331(a
2z2)

(2) R1313 =⇒ −R1331(acxz)
(3) R3113 =⇒ R1331(c

2x2)
(4) R3131 =⇒ −R1331(acxz)

Collecting these terms gives us

R1331(a
2z2 − 2acxz + c2x2)

=⇒ R1331(az − cx)2

as desired. �

Proof. 3 of 6
Next consider all of the ways to get R2332:

(1) R2332 =⇒ R2332(c
2y2)

(2) R2323 =⇒ −R2332(bcyz)
(3) R3223 =⇒ R2332(b

2z2)
(4) R3232 =⇒ −R2332(bcyz)

Collecting these terms gives us

R2332(c
2y2 − 2bcyz + b2z2)

=⇒ R2332(cy − bz)2

as desired. �

Proof. 4 of 6
Next consider all of the ways to get R1223:

(1) R1223 =⇒ R1223(acy
2)

(2) R3221 =⇒ R1223(acy
2)

(3) R1232 =⇒ −R1223(abyz)
(4) R2321 =⇒ −R1223(abyz)

(5) R2123 =⇒ −R1223(bcxy)
(6) R3212 =⇒ −R1223(bcxy)
(7) R2132 =⇒ R1223(b

2xz)
(8) R2312 =⇒ R1223(b

2xz)

Collecting these terms gives us

R1223(2acy
2 − 2abyz − 2bcxy + b2xz)

=⇒ 2R1223(acy
2 − abyz − bcxy + b2xz)

as desired. �

Proof. 5 of 6
Next consider all of the ways to get R2113:
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(1) R1231 =⇒ R2113(a
2yz)

(2) R1321 =⇒ R2113(a
2yz)

(3) R1213 =⇒ −R2113(acxy)
(4) R3121 =⇒ −R2113(acxy)

(5) R1312 =⇒ −R2113(abxz)
(6) R2131 =⇒ −R2113(abxz)
(7) R2113 =⇒ R2113(bcx

2)
(8) R3112 =⇒ R2113(bcx

2)

Collecting these terms gives us

R2113(2a
2yz − 2acxy − 2acxz + 2bcx2)

=⇒ 2R2113(a
2yz − acxy − abxz + bcx2)

as desired. �

Proof. 6 of 6
Finally, consider all of the ways to get R1332:

(1) R1332 =⇒ R1332(abz
2)

(2) R2331 =⇒ R1332(abz
2)

(3) R1323 =⇒ −R1332(acyz)
(4) R3231 =⇒ −R1332(acyz)

(5) R2313 =⇒ −R1332(bcxz)
(6) R3132 =⇒ −R1332(bcxz)
(7) R3123 =⇒ R1332(c

2xy)
(8) R3213 =⇒ R1332(c

2xy)

Collecting these terms gives us

R1332(2abz
2 − 2acyz − 2bcxz + 2c2xy)

=⇒ 2R1332(abz
2 − acyz − bcxz + c2xy)

as desired. �

The last result we need involves the concept of generalized eigenspaces.
All of the material that follows in this section is adapted from [1].

Definition 2.2. Suppose A ∈ L(V ) and λ ∈ F, where F = R or C. The
generalized eigenspace of A corresponding to λ, denoted G(λ,A), is defined
by

G(λ,A) = null(A− λI)dimV

Definition 2.3. An operator on a complex inner product space is normal
if it commutes with its adjoint.

Lemma 2.4. Suppose A ∈ L(V ) is normal. Then eigenvectors of A corre-
sponding to distinct eigenvalues are orthogonal.

Lemma 2.5. Suppose A ∈ L(V ). Let n = dimV . Then

V = nullAn ⊕ rangeAn

Lemma 2.6. Suppose A ∈ L(V ) and p ∈ P(F). Then null p(A) and range
p(A) are invariant under A.
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Lemma 2.7. Suppose V is a complex vector space and A ∈ L(V ). Let
λ1, . . . , λm be the distinct eigenvalues of A, with multiplicities d1, . . . , dm.
Then there is a basis of V with respect to which A has a block diagonal
matrix of the form M1 0

. . .

0 Mm


where each Mj is a dj-by-dj upper-triangular matrix of the form

Mj =

λj ∗
. . .

0 λj

(5)

Lemma 2.8. Let A ∈ L(V ). Suppose λ1, . . . , λm are distinct eigenval-
ues of T and v1, . . . , vm are corresponding generalized eigenvectors. Then
v1, . . . , vm is linearly independent.

Theorem 2.1. Let V be an arbitrary complex vector space and let A be a
linear operator on V . Then the following assertions are true:

(1) V decomposes as the direct sum of its generalized eigenspaces.
(2) If ϕij is a non-degenerate inner product on V , and A is self-adjoint

with respect to ϕij, then the generalized eigenspaces of A are orthog-
onal.

Proof. In this proof, we allow λ to be either real or complex. We also let V
have m eigenvalues.

We begin by showing (1). Let n = dimV . We prove by induction on n.
The result clearly holds for n = 1. We proceed by assuming n > 1, and that
the result holds for all vector spaces of a smaller dimension.

Since V is a complex vector space, it has at least one eigenvalue. Define
G(λi, A) as the generalized eigenspace for each distinct λi of A. We use
Lemma 2.5 with A− λ1I to obtain

(*) V = G(λ1, A)⊕ U

where U = range(A − λ1I)n. Now since U is invariant under A (simply
use p(z) = (z − λI)n with Lemma 2.6) and G(λ1, A) 6= {0}, we have dim
U < n. Thus our induction hypothesis applies to A|U . Furthermore, each
eigenvalue of A|U is in {λ2, . . . , λm}. By the induction hypothesis,

U = G(λ2, A|U )⊕ . . .⊕G(λm, A|U )

. It remains only to show that G(λk, A|U ) = G(λk, A) for k = 2, . . . ,m.
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Fix k ∈ {2, . . . ,m}, so that G(λk, A|U ) ⊂ G(λk, A) is clear. Now suppose
v ∈ G(λk, A). By (*), we have

v = v1 + u

where v1 ∈ G(λ1, A) and u ∈ U . We have

u = v2 + . . .+ vm

where each vj ∈ G(λj , A|U ) ⊂ G(λj , A). Thus

v = v1 + v2 + . . .+ vm

Now by Lemma 2.8, we have vj = 0 except, possibly, when j = k. Since
k 6= 1, we know at least that v1 = 0 and so v = u ∈ U . That is, v ∈
U =⇒ v ∈ G(λk, A|U ). So we have shown that G(λk, A|U ) = G(λk, A) for
k = 2, . . . ,m. Thus we have

V = G(λ1, A)⊕ . . .⊕G(λm, A)

as desired.
We now need to show that the generalized eigenspaces are perpendicular.

By Definition 2.2, A is normal; then by Lemma 2.4, its eigenvectors are
orthogonal. Now we defined each generalized eigenspace as corresponding
to a distinct eigenvalue, meaning that λj ∈ G(λj , A) and, in particular, the
jth eigenvector resides only in the jth eigenspace. Let wj ∈ G(λj , A) denote
the jth eigenvector corresponding to λj , and let vj ∈ G(λj , A) be a vector
other than the eigenvector. Note that

vj = awj + br

where r is a unit vector and a, b ∈ F. r cannot have entries below or above
the rows corresponding to λj by Lemma 2.7. Clearly, then,

vi ⊥ vj

=⇒ G(λi, A) ⊥ G(λj , A)

for i 6= j since any vector from one space is perpendicular to any vector from
another space.

�

Corollary 2.1. The eigenspace corresponding to any Jordan block is per-
pendicular to the eigenspace corresponding to any other Jordan block.

Proof. Let G(λi, A) be the eigenspace corresponding to the Jordan block
J(λi, k), where λi ∈ C or R and k is the size of the Jordan block. We may
construct V in the following way (by Lemma 2.1):

V =
n⊕
i=1

J(λi, k)
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where k ∈ {1, . . . , dimV }. The result now follows immediately from Theo-
rem 2.2.

�

It’s worth noting that this result holds for real vector spaces through the
process of complexification. For a detailed discussion of complexification, see
[1]. With these results established, we can begin to examine which models
spaces are cvc(ε) and which are not.

3. Three Real Eigenvalues

We begin by presenting the work done by [2] and [3]. Define

A =

λ1 0 0
0 λ2 0
0 0 λ3

(6)

Since this matrix is diagonalized (and A is self-adjoint), we are guaranteed
by the spectral theorem to have an orthonormal basis as follows:

[ϕij ] =

−1 0 0
0 1 0
0 0 1

 ,(7)

where the negative in the first slot comes from the Lorentzian setting. We
can now determine both the Ricci and curvature tensor entries:

ρ11 = −λ1 = R1221 +R1331

ρ22 = λ2 = −R1221 +R2332

ρ33 = −R1331 +R2332

ρ12 = 0 = R1332

ρ13 = 0 = R1223

ρ23 = 0 = R2113

R1221 = λ3−λ1−λ2
2

R1331 = λ2−λ3−λ1
2

R2332 = λ2+λ3−λ1
2

R1223 = 0
R1332 = 0
R2113 = 0

For the remainder of this section, we let

α = R1221, β = R1331, γ = R2332.

We also assume α > β. With the curvature entries, we can begin to
determine whether this family of model spaces has cvc(ε).

Lemma 3.1. Let M = (V, 〈·, ·〉, R) be a 3-dimensional Lorentzian model
space of Jordan Type I with the derived metric and curvature entries. If M
has cvc(ε), and:

(1) −α,−β ≤ γ, then ε = −α.
(2) γ ≤ −α,−β, then ε = −β.
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(3) −α < γ < β, then ε ∈ {−α, γ,−β}.
(4) α = β, then ε = −α = −β.

For a proof of this lemma, see the original statement in [3] or [2].

Theorem 3.1. Let M = (V, 〈·, ·〉, R) be a 3-dimensional Lorentzian model
space of Jordan Type I with the derived metric and curvature entries. Then
the following hold:

(1) If γ > −α,−β then M has cvc(−α).
(2) If γ < −α,−β then M has cvc(−β).
(3) If −α ≤ γ < −β or −α < γ ≤ −β then M does not have cvc(ε) for

any ε ∈ R.
(4) If −α = −β 6= γ, then M has cvc(−α).
(5) If −α = −β = γ, then M has csc(λ2 ).

For a proof of this theorem, see the original statement in [2]. What we
have shown is that depending on the ordering of the eigenvalues of A, M
either has cvc(ε), csc(ε), or neither. Going forward, we’ll see similar results
appear in the other forms.

4. One Real Eigenvalue

We turn our attention to the model spaces of type II; for quick reference,
define

A =

λ 1 0
0 λ 1
0 0 λ

(8)

Our first order of business will be to recover the metric of this form so
that we can use it, in conjunction with the matrix, to evaluate the Ricci
tensor entries. Note that we allow ϕij = 〈ei, ej〉, where {ei, ej} come from
whatever basis we are working with. We first compare the inner products
〈Ae1, e2〉 = 〈Ae2, e1〉, 〈Ae1, e3〉 = 〈Ae3, e1〉 and 〈Ae2, e3〉 = 〈Ae3, e2〉. As an
example, consider:

〈Ae1, e2〉 = λϕ12

〈Ae2, e1〉 = ϕ11 + λϕ12

Then we conclude that ϕ11 = 0. Repeating this process, we obtain:

ϕij =

 0 0 ϕ22

0 ϕ22 ϕ23

ϕ22 ϕ23 ϕ33

(9)

We let a = ϕ22 and employ the change of basis:
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f1 =
1√
a
e1,

f2 =
1√
a
e2,

f3 =
1√
a
e3.

Note that a > 0 since if a < 0 then we exchange the metric for its negative,
and if a = 0 the metric is degenerate, which contradicts our choice of the
inner product. This has the effect of putting 1’s on the off-diagonal of ϕij .
Now make one last change of basis:

g1 = f1,
g2 = xf1 + f2,
g3 = yf1 + xf2 + f3.

We wish to have ϕ23 = ϕ33 = 0. Solving for x and y gives

x =
−b
2

y =
3

4
b2 − c

It can be shown that these change of bases preserve the matrix A. Thus we
end up with

ϕij =

0 0 1
0 1 0
1 0 0

(10)

Utilizing this metric with the matrix A, we calculate the Ricci tensor
entries to be

ρ11 = 0 = R1221

ρ12 = 0 = R2113

ρ13 = λ = R1313 +R1223

ρ22 = λ = 2R1223

ρ23 = −1 = R1332

ρ33 = 0 = R2332

Thus we have

R1221 = 0
R1331 = −λ

2

R2332 = 0
R1223 = λ

2

R2113 = 0
R1332 = −1

With the curvature entries in hand, we can now examine whether this
family of model spaces has cvc(ε) for some ε.

Lemma 4.1. Let M = (V, 〈·, ·〉, R) be a 3-dimensional Lorentzian model
space of Jordan Type II with the derived metric and curvature entries. If M
has cvc(ε), then ε = λ

2 .
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Proof. Let w = xe1 +ye2 + ze3 for some x, y, z ∈ R, with not more than one
of them 0. Suppose v = e1. Then from Definition 1.4, we have

κ(π) =
z2(−λ/2)

−z2
=
λ

2
= ε

Notice that we are free to choose z 6= 0 since we can stipulate x = 0 without
affecting this equation. �

This lemma only establishes what the value of ε must be for M to have
cvc(ε). It does not guarantee that there exists a w for every possible v that
will result in this ε. As it turns out, there is a particular group of vectors
that cause M to fail to be cvc(λ2 ). In order to see why this is the case, we
first establish this lemma.

Lemma 4.2. If a model space that is Type II Jordan form has cvc(λ2 ), then
the following equation must be satisfied:

abz2 − acyz − bcxz + c2xy = 0

for v = ae1 + be2 + ce3 and w = xe1 + ye2 + ze3.

Proof. Let v, w be defined as above. We start with the numerator, using our
curvature entries and Lemma 2.3:

−λ
2

(az−cx)2+2(
λ

2
)(acy2−abyz−bcxy+b2xz)+2(−1)(abz2−acyz−bcxz+c2xy)

=⇒ −λ
2

(az−cx)2+λ(acy2−abyz−bcxy+b2xz)−2(abz2−acyz−bcxz+c2xy)

We now calculate the denominator:

〈v, v〉 = 2ac+ b2,
〈w,w〉 = 2xz + y2,
〈v, w〉2 = (az + cx+ by)2.

Which, plugging in to the denominator of Definition 1.4, gives us:

〈v, v〉〈w,w〉 = 4acxz + 2acy2 + 2b2xz + b2y2,
−〈v, w〉2 = −a2z2 − c2x2 − b2y2 − 2acxz − 2abyz − 2bcxy.

Thus we have

−(az − cx)2 + 2(acy2 − abyz − bcxy + b2xz).

Combining the numerator and denominator into Definition 1.4, and setting
κ(π) = λ

2 from Lemma 4.1, we have:

−λ
2 (az − cx)2 + λ(acy2 − abyz − bcxy + b2xz)− 2(abz2 − acyz − bcxz + c2xy)

−(az − cx)2 + 2(acy2 − abyz − bcxy + b2xz)
=
λ

2

The right-hand side of this equation will be

−λ
2

(az − cx)2 + λ(acy2 − abyz − bcxy + b2xz)



14 ANDREW LAVENGOOD-RYAN

Cancelling terms and simplifying, we arrive at the desired result:

abz2 − acyz − bcxz + c2xy = 0

�

Theorem 4.1. Let M = (V, 〈·, ·〉, R) be a 3-dimensional Lorentzian model
space of Jordan Type II. Such a model space cannot be cvc(ε) for any ε.

Proof. Let v and w be defined as in Lemma 4.2. Suppose M is cvc(ε). Then,
from Lemma 4.1, we know that ε = λ

2 . Suppose we are given v = ae1 + be2.
From Lemmas 2.3 and 4.2, we obtain

abz2 = 0.

Suppose it were the case that a 6= 0 and b 6= 0, so that z = 0. Now, utilizing
Lemma 2.2, we have:

〈v, v〉 = b2,
〈w,w〉 = 2xz + y2,
〈v, w〉2 = (az + by)2.

Which gives us:

2b2xz + b2y2 − a2z2 − 2abyz − b2y2 6= 0

=⇒ z(2b2x− a2z − 2aby) 6= 0.

But we already stated z = 0, which contradicts Lemma 2.2. Then we know
that v, w must span a degenerate 2-plane, and so we have found a set of
“bad vectors” that prevent the cvc condition from holding. It is the case,
then, that ε 6= λ

2 , which with Lemma 4.1 implies that M is not cvc(ε) for
any ε. �

And so we have now encountered our first example of a family of model
spaces that does not have the property of constant vector curvature. The
next case will prove to be more interesting by having cvc(ε) in some cases
but not others.

5. Two Real Eigenvalues

We now consider the family of model spaces of Type III Jordan-Normal
form. For quick reference, let

A =

λ1 1 0
0 λ1 0
0 0 λ2

(11)

Once again, we must first recover the metric for this form. Here we
make use of Theorem 2.2. Notice that λ1 and λ2 constitute two different
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eigenspaces, so that we know G(λ1, A) ⊥ G(λ2, A) and that they span the
vector space. This gives us

[ϕij ] =

ϕ11 ϕ12 0
ϕ12 ϕ22 0
0 0 ϕ33

(12)

We now employ the following change of basis to A:

f1 = e1,
f2 = e2 + xe1,
f3 = e3.

This provides ϕ22 = 0. The next change of basis provides ϕ11 = 0:

f1 = e1,
f2 = e2,
f3 = e3 + xe1.

Note that these change of bases do not change A. Upon scaling ϕ12 =
ϕ33 = 1, we obtain

[ϕij ] =

0 1 0
1 0 0
0 0 1

(13)

With this metric in hand, we can calculate the Ricci Tensor as well as the
corresponding curvature entries. From Definition 1.8, we determine that the
Ricci Tensor is expressed as

ρ(x, y) =
3∑
i,j

Rx12y +Rx21y +Rx33y.

From this we obtain the following:

ρ11 = 0 = R1331

ρ12 = λ1 = −R1221 +R1332

ρ13 = 0 = R2113

ρ22 = 1 = R2332

ρ23 = 0 = R1223

ρ33 = λ2 = 2R1332

Now let α = λ2
2 − λ1 and β = λ2

2 . Then we have

R1221 = α
R1331 = 0

R2332 = 1
R1223 = 0

R1332 = β
R2113 = 0

With these curvature entries in hand, we can determine what the value
of ε should be if M is cvc(ε).
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Lemma 5.1. Let M = (V, 〈·, ·〉, R) be a 3-dimensional Lorentzian model
space of Type III with the derived metric and curvature entries. If M has
cvc(ε), then ε = −α.

Proof. Suppose M has cvc(ε). Let w = xe1 + ye2 + ze3 for some x, y, z ∈ R,
with not more than one of them being 0.

Suppose v = e1. Then from Definition 1.4 we have

αy2

−y2
= −α = ε.

Note that we can allow y 6= 0 by stipulating x = 0. �

We now need to see if, for every v, there is guaranteed an appropriate w.
We first impose the restriction that λ1 = λ2.

Lemma 5.2. Let M = (V, 〈·, ·〉, R) be a 3-dimensional Lorentzian model
space of Type III with the derived metric and curvature entries. M does not
have cvc(ε) when λ1 = λ2.

Proof. Let w = xe1 + ye2 + ze3 for some x, y, z ∈ R, with not more than
one of them being 0. Suppose also for the sake of contradiction that M has
cvc(ε) for λ1 = λ2, and consider v = e3. Then we have

κ(π) =
2xyβ + y2

2xy + z2 − z2

= β +
y

2x
.

Note that β = α+ λ1. We wish to have κ(π) = ε = −α. So we have

α+ λ1 +
y

2x
= −α

=⇒ y

2x
= −2α− λ1.

Now substituing α = λ2
2 − λ1, we have

λ1 − λ2 =
y

2x
.

But λ1 = λ2 =⇒ y = 0, which we have seen results in a degenerate 2-plane
by Lemma 2.2. This contradicts our assumption of λ1 = λ2. Thus, we have
κ(π) = ε = −α if λ1 6= λ2. �

Before considering further restrictions on M , we establish this lemma.

Lemma 5.3. Let M = (V, 〈·, ·〉, R) be a 3-dimensional Lorentzian model
space of Type III with the derived metric and curvature entries. If M has
cvc(−α), then the following equation must be satisfied:

(cy − bz)2 + 2(α+ β)(abz2 − acyz − bcxz + c2xy) = 0.
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Proof. We begin with the numerator of the sectional curvature. From Lemma
2.3, we have

α(ay − bx)2 + (1)(cy − bz)2 + 2(β)(abz2 − acyz − bcxz + c2xy).

Now for the denominator:

〈v, v〉 = 2ab+ c2,
〈w,w〉 = 2xy + z2,
〈v, w〉2 = (ay + bx+ cz)2.

Expanding and collecting terms, we get

−(ay − bx)2 + 2(abz2 − acyz − bcxz + c2xy).

Now utilizing Definition 1.4 with κ(π) = −α, we have

α(ay − bx)2 + (cy − bz)2 + 2β(abz2 − acyz − bcxz + c2xy)

−(ay − bx)2 + 2(abz2 − acyz − bcxz + c2xy)
= −α.

The right-hand side of this equation will be

α(ay − bx)2 − 2α(abz2acyz − bcxz + c2xy).

Bringing everything to the left-hand side gives us the desired result:

(cy − bz)2 + 2(α+ β)(abz2 − acyz − bcxz + c2xy) = 0.

�

Lemma 5.4. Let M = (V, 〈·, ·〉, R) be a 3-dimensional Lorentzian model
space of Type III with the derived metric and curvature entries. M does not
have cvc(ε) when λ1 < λ2.

Proof. Suppose v = ae1 + ce3 and w = xe1 + ye2 + ze3, and note that
α+ β = λ2− λ1 6= 0. We scale c down to 1 for simplicity in this case. From
Lemma 5.1, we know that if M attains cvc(ε), then it must be the case that
ε = −α for α defined as above. Then from Lemmas 2.3 and 5.2, we have

y2 + 2(α+ β)(xy − ayz) = 0.

If y = 0, then v, w span a degenerate 2-plane, so it must be the case that
y 6= 0. Then the above equation simplifies to

y + 2(α+ β)(x− az) = 0

(*) =⇒ 2(x− az) =
−y
α+ β

.

We now need to check if v, w span a non-degenerate 2-plane. Using
Lemma 2.2 and v, w as defined above, we have

〈v, v〉〈w,w〉 − 〈v, w〉2 = 2xy + z2 − (ay + z)2

= 2xy − a2y2 − ayz
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= y[−a2y − 2(x− az)].
Now substituting in (*) and factoring a y gives us

y2[−a2 +
1

α+ β
].

Choose a2 = 1
α+β where α+ β > 0. Then we have

y2[
−1

α+ β
+

1

α+ β
] = 0,

which demonstrates that v, w actually span a degenerate 2-plane. Since we
assumed α+β > 0, we now know that λ1 < λ2 produces degenerate 2-planes.
That is, for the given v, there exists no w ∈ V for which κ(π) = −α.

�

Theorem 5.1. Let M = (V, 〈·, ·〉, R) be a 3-dimensional Lorentzian model
space of Type III with the derived metric and curvature entries. If λ1 > λ2,
then M has cvc(−α).

Proof. Suppose λ1 > λ2, and let w = xe1 + ye2 + ze3 for some x, y, z ∈ R.
We now consider the remaining forms of v.

Case 1:
Suppose v = e2. Then we have

κ(π) =
αx2 + z2

−x2

= −α− z2

x2

= −α = ε

when z = 0 and x 6= 0, which is allowable under the restrictions on w.
Case 2:
Suppose v = ae1 + be2. From Lemma 5.2, we have

−b2z2 + 2abz2(α+ β) = 0

We can let z = 0 since e1, e2 are a hyperbolic pair and so span a non-
degenerate 2-plane. To prove this, we utilize Lemma 2.2 with w = xe1+ye2.
We get:

(2ab)(2xy)− (ay + bx)2) 6= 0

=⇒ 4abxy − a2y2 − 2abxy − b2x2 6= 0

=⇒ −(ay − bx)2 6= 0.

This is only 0 when ay = bx, but we can choose x and y for any given
nonzero a and b such that this does not occur.

Case 3:
Suppose v = be2 + ce3, with b 6= 0 and c 6= 0. From Lemma 5.2, we have

(cy − bz)2 + 2(α+ β)(−bcxz + c2xy) = 0
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=⇒ (cy − bz)2 + 2x(α+ β)(c2y − bcz) = 0

Setting y = bz
c with x 6= 0, we find w = xe1 + bz

c e2 as a non-degenerate
pairing. From Lemma 2.2, we have

c2(
2xbz

c
)− (bx)2 6= 0

=⇒ 2bcxz − b2x2 6= 0.

Since b, x 6= 0, we simply choose an appropriate z so that 2cz 6= bx.
Case 4:
Suppose v = ae1 + be2 + ce3 with a, b, c 6= 0. For simplicity, we scale c

down to 1. From Lemma 5.2, we have

(y − bz)2 + 2(α+ β)(abz2 − ayz − bxz + xy) = 0

=⇒ z2[b2+2ab(α+β)]+z[−2by−2ay(α+β)−2bx(α+β)]+[y2+2xy(α+β)] = 0

when factoring for z. Using the quadratic formula, we arrive at

z =
by + ay(α+ β) + bx(α+ β)± (α+ β)(ay − bx)

b2 + 2ab(α+ β)
.

Then the positive and negative expressions for z are given by

z =
y

b
z =

y + 2x(α+ β)

b+ 2a(α+ β)
(14)

In either case, we can find a w that pairs with this v such that v, w span a
non-degenerate 2-plane. However, we need only consider z = y

b since b 6= 0.
Suppose w = xe1 + ye2 + y

b e3. Then from Lemma 2.2 we have:

(2ab+ 1)(2xy +
y2

b2
)− (ay + bx+

y

b
)2 6= 0

=⇒ 4abxy+
2aby2

b
+2xy+

y2

b2
−a2y2−b2x2− y

2

b2
− 2ay2

b
−2abxy−2xy 6= 0

=⇒ −(ay − bx)2 6= 0.

As in Case 1, this is a non-degenerate pairing.
Having exhausted all possible vectors v, we have shown that for λ1 > λ2,

M has cvc(ε) when ε = −α. �

This case has some similarities with the diagonalized case, in that the or-
dering of the eigenvalues is important in determining whether M has cvc(ε).
We will see in the next case that introducing a complex Jordan block elim-
inates the need for any restrictions on the eigenvalues.
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6. One Real and One Complex Eigenvalue

The final case for our consideration is a Type IV model space. For quick
reference, define

A =

 ã b̃ 0

−b̃ ã 0
0 0 λ2

(15)

We may assume without loss of generality that b̃ > 0.
In this form we needn’t concern ourselves with whether λ1 = λ2, because

that simply is not possible. Therefore we can immediately apply Theorem
2.2, and so G(λ1, A) ⊥ G(λ2, A) and these eigenspaces span the vector space.
Let ϕij = 〈ei, ej〉, where {ei, ej} comes from the basis we are working with;
then we have

ϕij =

ϕ11 ϕ12 0
ϕ12 ϕ22 0
0 0 ϕ33

 .(16)

By comparing the inner products 〈Ae1, e2〉 = 〈Ae2, e1〉 we obtain ϕ11 =
−ϕ22. Now employ the following change of basis:

f1 = xe1 + ye2 + e3
f2 = ye1 − xe2 + e3
f3 = e3

Note that this change of basis preserves the form of A. We wish to have
ϕ11 = 0, so we examine

〈f1, f1〉 = 2xyϕ12 + (x2 − y2)ϕ11 = 0

and set x = 1. Solving for y then gives us

y =
ϕ12

ϕ11
+

√
1 +

ϕ2
12

ϕ2
11

.

Notice that y = 0 is not possible here (since that implies 1 = 0), and that if
ϕ11 = 0 then we would not be making this change of basis in the first place.
So we have found a suitable x and y that ensure ϕ11 = −ϕ22 = 0. Now our
metric looks like the following:

ϕij =

 0 ϕ12 0
ϕ12 0 0
0 0 ϕ33

(17)
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Naturally, a change of basis will scale the remaining entries to 1’s (if
ϕ33 = −1, exchange ϕ for −ϕ. With our metric in hand, we can recover the
Ricci and Curvature entries.

ρ11 = −b̃ = R1331

ρ12 = ã = −R1221 +R1332

ρ13 = 0 = R2113

ρ22 = b̃ = R2332

ρ23 = 0 = R1223

ρ33 = λ2 = 2R1332

Let α = λ2
2 − ã and β = λ2

2 . Then we have

R1221 = α
R1331 = −b̃

R2332 = b̃
R1223 = 0

R1332 = β
R2113 = 0

We continue as usual by checking to see if M can be cvc(ε) for some ε.

Lemma 6.1. Let M = (V, 〈·, ·〉, R) be a 3-dimensional Lorentzian model
space of Jordan type IV with the derived metric and curvature entires. If M
has cvc(ε), then ε = −α.

Proof. We consider this proof by cases. Let w = xe1 + ye2 + ze3 for some
x, y, z ∈ R, with not more than one of them zero.

Case 1:
Suppose v = e1. We select y 6= 0 for this case. From Definition 1.4, we

have

κ(π) =
αy2 + b̃z2

−y2
= ε

=⇒ b̃z2 − αy2 = εy2

=⇒ b̃z2 − y2(α+ ε) = 0.

Now since b̃z2 ≥ 0, we know that y2(α+ ε) ≥ 0; that is,

ε ≥ −α.
Case 2:
Suppose v = e2. We select x 6= 0 for this case. From Definition 1.4, we

have

κ(π) =
αx2 + b̃z2

−x2
= ε

=⇒ αx2 + b̃z2 = −εx2

=⇒ b̃z2 + x2(α+ ε) = 0.

Again, since b̃z2 ≥ 0, we know that x2(α+ ε) ≤ 0 which means

ε ≤ −α.
Combining these cases, we know that ε = −α is the only possibility. �

We have established what the value of ε must be, but before we prove
that M is always cvc(−α), we establish one last lemma.
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Lemma 6.2. Suppose M = (V, 〈·, ·〉, R) is a 3-dimensional Lorentzian model
space of Jordan Type IV. If M has cvc(−α), then the equation that must be
satisfied is:

b̃[(bz − cy)2 − (az − cx)2] + 2(α+ β)(abz2 − acyz − bcxz + c2xy) = 0.

Proof. First we consider the numerator of Definition 1.4. From Lemma 2.3,
we have

α(ay − bx)2 − b̃(az − cx)2 + b̃(bz − cy)2 + 2β(abz2 − acyz − bcxy + c2xy)

= α(ay − bx)2 + b̃[(bz − cy)2 − (az − cx)2] + 2β(abz2 − acyz − bcxy + c2xy).

Now for the denominator, we have:

〈v, v〉 = 2ab+ c2,
〈w,w〉 = 2xy + z2,
〈v, w〉2 = (ay + bx+ cz)2.

Expanding and collecting terms, we have:

−(ay − bx)2 + 2(abz2 − acyz − bcxz + c2xy).

Now we know that ε = −α from Lemma 6.1, so we have:

α(ay − bx)2 + b̃[(bz − cy)2 − (az − cx)2] + 2β(abz2 − acyz − bcxy + c2xy)

−(ay − bx)2 + 2(abz2 − acyz − bcxz + c2xy)
= −α.

The right-hand side of this equation will be

α(ay − bx)2 − 2α(abz2 − acyz − bcxz + c2xy).

And, after bringing everything to one side, we obtained the desired result:

b̃[(bz − cy)2 − (az − cx)2] + 2(α+ β)(abz2 − acyz − bcxz + c2xy) = 0.

�

Theorem 6.1. Suppose M = (V, 〈·, ·〉, R) is a 3-dimensional Lorentzian
model space of Jordan Type IV. M has cvc(ε) for ε = −α.

Proof. We consider this proof by cases. Let w = xe1 + ye2 + ze3 for some
x, y, z ∈ R, with not more than one of them being 0.

Case 1:
Suppose v = e3. From Definition 1.4, we have

κ(π) =
−b̃x2 + b̃y2 + 2βxy

2xy
= ε.

We wish to see if it is possible for ε = −α in this case. Make the substitution
and multiply the denominator over to obtain:

b̃(y2 − x2) + 2xyβ = −2xyα

=⇒ 2xy(α+ β) = b̃(x2 − y2).
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Note that α+ β = λ2 − ã, which gives us:

2xy(λ2 − ã) = b̃(x2 − y2)

=⇒ x2 + 2xy(
ã− λ2
b̃

) = y2.

Let p = ã−λ2
b̃

. Then by completing the square we have

(x+ py)2 = y2(1 + p2)

=⇒ x+ py = y
√

1 + p2

=⇒ x = y(
√

1 + p2 − p).
Note that the coefficient on y cannot be zero since that would imply 1 = 0.
This means that, unless x = y = 0 (a ludicrous case), we have found a y that
pairs with x to produce a non-degenerate pairing for v. That is, ε = −α.

For the remaining cases, we find an appropriate w for the given v by
swapping the coefficients of e1 and e2. In two cases, we change one of the
signs.

Case 2:
Suppose v = ae1 + be2, with a and b nonzero. Then we select w =

−be1 + ae2. By Lemma 2.2, we can ensure this is a non-degenerate pairing
by examining the denominator of the sectional curvature.

−(2ab)2 − (a2 − b2)2 = 0

=⇒ −4a2b2 − a4 − b4 + 2a2b2 = 0

=⇒ −(a2 + b2)2 = 0.

Which occurs only if a = b = 0, which contradicts the given v. Thus v, w
span a non-degenerate 2-plane.

Case 3:
Suppose v = ae1 + ce3, with a and c nonzero. We select w = ae2 + ce3.

Then we have

c4 − (a2 + c2)2 = 0

=⇒ a4 + 2a2c2 = 0

=⇒ a2(a2 + 2c2) = 0.

Which is true only if either a = 0 or a = c = 0; both situations contradict
the given v. Then by Lemma 2.2, v, w span a non-degenerate 2-plane.

Case 4:
Suppose v = be2 + ce3, with b and c nonzero. We select w = be1 + ce3.

Then we have

c4 − (b2 + c2)2 = 0

and this proof proceeds exactly as in the previous case.
Case 5:
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Suppose v = ae1 + be2 + ce3. For simplicity, we scale c down to 1. We
select a w by comparing a2 and b2. If a2 ≥ b2, we select w = −be1+ae2+e3.
Then we have

(2ab+ 1)(−2ab+ 1)− (a2 − b2 + 1)2 = 0

=⇒ 1− 4a2b2 − a4 − b4 − 1− 2a2 + 2b2 + 2a2b2 = 0

=⇒ (a2 + b2)2 + 2(a2 − b2) = 0.

This equation is only zero when a = b = 0 or in the event that a2 < b2,
both of which violate the conditions set on v. So by Lemma 2.2, we have a
non-degenerate pairing.

For the case that a2 ≤ b2, we select w = be1−ae2+ce3. The proof follows
similarly, but now we end up with

(a2 + b2)2 + 2(b2 − a2) = 0

which has solutions only for a = b = 0 or a2 > b2. Both of these situations
violate the conditions on this v.

Having exhausted all possible combinations of v, we have shown that if
M has cvc(ε), then ε = −α. �

This is the only family of model spaces, then, that always have cvc(ε).
There is no restriction on the ordering of the eigenvalues in this case, unlike
the real cases.

7. General Results

We turn now from a form-specific analysis to some general results that can
be gleaned from prior results. To do this, we first convert all of our metrics
to orthonormal bases. Type I is already on an appropriate orthonormal
basis, so we instead provide change of bases for Types II, III, and IV. A
suitable change of basis for Type II is:

g1 = 1√
2
(e1 − e3)

g2 = e2
g3 = 1√

2
(e1 + e3)

This will change the form of A to: λ 1√
2

0

− 1√
2

λ 1√
2

0 1√
2

λ


A suitable change of basis for Types III and IV are:

g1 = 1√
2
(e1 − e2)

g2 = 1√
2
(e1 + e2)

g3 = e3
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This will change the form of A in Type III, but preserves the form of A
in Type IV. Type III becomes:λ1 − 1

2
1
2 0

−1
2 λ1 + 1

2 0
0 0 λ2


In all cases, the metric is now given by:

[ϕij ] =

−1 0 0
0 1 0
0 0 1

 .(18)

The Ricci and curvature entries are obtained in the same way as before.
We provide the curvature tensor entries by type below:

Type I:

R1221 = λ3−λ1−λ2
2

R1331 = λ2−λ3−λ1
2

R2332 = λ2+λ3−λ1
2

R2113 = 0

R1332 = 0
R1223 = 0

Type II:

R1221 = −λ
2

R1331 = −λ
2

R2332 = λ
2

R2113 = − 1√
2

R1332 = − 1√
2

R1223 = 0

Type III:

R1221 = λ2
2 − λ1

R1331 = 1−λ2
2

R2332 = 1+λ2
2

R2113 = 0

R1332 = −1
2

R1223 = 0

Type IV:

R1221 = λ2
2 − ã

R1331 = −λ2
2

R2332 = λ2
2

R2113 = 0
R1332 = −b̃
R1223 = 0

With these in hand, we can state three general results. Note that the
proofs of these results are not provided, since they have been demonstrated
by the results found throughout this paper.

Corollary 7.1. cvc(ε) is well defined in the 3-dimensional setting.

Theorem 7.1. Let M = (V, 〈·, ·〉, R) be a 3-dimensional Lorentzian model
space on the derived orthonormal basis. If M is cvc(ε), then ε = −R1221.
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Theorem 7.2. Let M = (V, 〈cdot, cdot〉, R) be a 3-dimensional Lorentzian
model space on any basis. If M is cvc(ε), then

ε =
n∑
i=1

(±1)
Re(λi)

2
di.

Where n is the number of distinct eigenvalues and di is the multiplicity of
each eigenvalue.

One note to make is that we take some liberties with the meaning of
“multiplicity” in this case. We consider the multiplicity of the complex
eigenvalue to be 2 by counting both itself and its conjugate.

8. Conclusions

In 3 dimensions there is only one family of model spaces which do not
have cvc(ε) for any ε. These model spaces are of the form J(λ, 3) and so
have one eigenspace. In this form, e1 and e3 form a hyperbolic pair while e2
is the spacelike unit vector; whenever e1 is paired with e2, the model space
fails to have cvc(ε). However, when e2 is paired with e3, everything works
out fine. Future research should examine what, if any, significance arises
from this choice of pairing.

The other model spaces constitute two or three eigenspaces. In the case
of two eigenspaces, the value for ε turns out to be nearly identical. In fact,
to unify the two cases one may be able to say that ε is the real part of
the first eigenvalue minus half the second. Further research is again needed
in this area. In the case of three eigenspaces, there are a fair number of
conditions and cases to consider. One conjecture is that the orientation,
size, and positioning of the eigenspaces may play a role in deciding cvc(ε);
this may be a good case to start with in testing that conjecture.

9. Open Questions

(1) The major unanswered question that came from this research is
whether these results hold in higher dimensions. A great place to
start to see if these results are further generalizable would be to
look at certain types of 4-dimensional model spaces whose curvature
tensor entries are generated by Ricci tensor entries.

(2) One conjecture is that R1221 is invariant under certain change of
bases, and so one could generalize Theorem 1 to include more situ-
ations than just orthonormal bases. A good place to start would be
to wonder what the relationship is between the hyperbolic basis and
the orthonormal basis derived in this paper.

(3) The formula given for ε in Theorem 2 is very closely related to the
trace of the Jordan form. However, there is a difference of a negative
sign on the third term (and in one instance, the second term for the
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diagonalized case). Our conjecture at this point is that perhaps
the eigenvalues must be ranked according to modulus, and that the
largest of those ranked will be negative in the trace. In addition, the
Jordan block containing the timelike vector is excluded from this
ranking (and so is always positive).

10. Acknowledgements

Thank you to Dr. Corey Dunn for his patience and wisdom throughout
the research experience, as well as his invaluable mentorship. Thanks also
go out to Dr. Rollie Trapp, in conjunction with Dr. Dunn, for organizing
the REU at CSUSB. This research was made possible both by funding from
the NSF grant DMS-1461286 and the generous support of California State
University, San Bernardino.

References

[1] Sheldon Axler. Linear Algebra Done Right. Springer, 2015.

[2] A. Doktorova. Constant Vector Curvature in 3-Dimensional Lorentzian Space with

Diagonalized Ricci Tensor. CSUSB REU, August 2016.

[3] A. Peng. The Study of the Constant Vector Curvature Condition for Model Spaces of

Three Dimensions in the Lorentzian Setting. CSUSB REU, August 2015.

[4] A. Thompson. A Look at Constant Vector Curvature on Three-Dimensional Model

Spaces according to Curvature Tensor. CSUSB REU, August 2014.


