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Abstract

The purpose of this paper is to give an understanding of the geodesics in the knot
complement of the Borromean rings (which we shall denote as ’B’). This is done by
relating isometries of the fundamental region of B to isometries of H3 and the length
of the corresponding geodesic. We then give a topological realization of the geodesic.
Finally, we investigate how length spectra behave under belt sum.

1 Introduction

A knot is a closed curve of zero thickness, embedded in three-space with no self inter-
sections. A link is multiple knots interconnected, but still with no self intersections. In this
paper we focus on the Borromean rings, a link of 3 components:

Figure 1: Representation of Borromean Rings

The Borromean rings are a hyperbolic knot. To discuss what defines a hyperbolic knot,
let us first introduce the concept of a knot complement. The knot complement is the three-
dimensional space around the knot, but without the knot. For the purposes of this paper,
we shall denote the knot complement of the Borromean rings as B. A hyperbolic knot is
a knot whose knot complement is a hyperbolic polyhedron. In the case of the Borromean
rings, B is two regular, ideal octahedra. This is the geometric realization and structure we
will be working with in this paper.
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We will also be utilizing belt sum composition in this paper. Belt sum composition of
two links consists of slicing along one component of each link. Along the slice, there are two
planes left with two points each. Open these planes so that they are parallel and identify
the points from one link to another.

Figure 2: Belt Sum Instructions

Finally we introduce the notions of geodesics and length spectra. For the purposes
of our paper, we will be working with simple, closed geodesics in B and the belt sum of two
Borromean rings, denoted B#B. This can be imagined by a curve that goes through B,
that connects back to its starting point and does not intersect itself. We consider length
spectra of the Borromean rings to be the set of geodesic lengths in B. The primary focus of
this research is to be able to relate isometries of the fundamental region of B to isometries of
H3, the length of the corresponding geodesic γ, and finally to give a topological realization
of γ. We then begin to relate geodesics in B to geodesics in B#B.

2 Preliminaries

To begin, we note that the nature of this work requires a consistent labeling system. Here
we will introduce such labeling systems:

Figure 3: Labeling System Representation
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This labeling system allows us to compare this representation of the Borromean rings to
the cell decomposition of the Borromean rings, as pictured here:

Figure 4: Labeling of the Fundamental Region of B

In this cell decomposition, the vertices (one-cells) correspond colorwise to the edge they
come from and the faces on the decomposition are labeled in correspondence to the faces
from which they originate. First, note that the geometric structure this decomposes into
is two ideal octahedra. These octahedra are viewed from above in the above figure and
g is a point at infinity that all outer faces have as a vertex. Second, note that the half
decomposition that ”comes out of the page”, so to speak, is denoted by P+ (the left-hand
side octahedra) and the half decomposition that comes out of the page is denoted by P−

(the right-hand side octahedra).
Further, in order to to calculate lengths of the geodesics in B, we must choose

coordinates for the vertices of B. This is what we chosen: j = −2 + i,m = −2 − i, l =
−1, p = −i, f = i, a = 1, d = 2 + i, b = 2− i.

3 Methods

To begin, we consider the fundamental group of B, denoted π1(B). A fundamental group
is a group of closed curves. We consider π1(B) to be the geodesics in B and if a geodesic γ
is in B, we say γ ∈ π1(B). In order to find various geodesics in B, we begin by computing
the set of generators of π1(B), which we will denote G.
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Figure 5: Topological Realizations of the Generators A’,W,B

This group consists of all geodesics, with associated mobius transformation as an isom-
etry of the fundamental region of B, that travel from the face of the ideal octahderon P+

to the face of the same label in the P− ideal octahedron. We denote all such mobius
transformations as J...H, where J is the face originated at in P+, H is the face termi-
nated at in P−, and all labels in the middle are the faces intersected. Since the elements
in the fundamental group are of the form JXJ (i.e. the only face they intersect in be-
tween is face A), we will denote these elements simply as J. Thus the set of generators is
G = {A, Y,B′,W,A′, Z,B,A−1, Y −1, B′−1,W−1, A′−1, Z−1, B−1}. Since the X faces of P+

and P− are already ”glued” together, the mobius transformation is trivial.
To illustrate the method for calculating mobius transformations in this context, we

will demonstrate with the generator Z. To begin the mobius transformation, we want to map
the three vertices from one Z face to the other, matching color to color and corresponding
each one of these mappings to either 0, 1,∞.

j → d(0)

m→ b(1)

g → g(∞)

We then arrive to these mobius transformations:

M(x) =
(x− j)
(m− j)

N(w) =
(w − d
(b− d)

Solving for w, we achieve the mobius transformation from one B face to the other:

w =
x

ix+ 1

This mobius transformation represents the curve Z ∈ π1(B). It is known that there is a
homomorphism taking curves in π1(B) to isometries of H3 which are expressed as matrices
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in SL(2,C), whose entries are coefficients of the mobius transformation. Thus we can also
represent these curves as matrices:

Z =

(
1 0
i 1

)
Using this method we find all matrix representations of the generators of π1(B). These
matrices are available in Appendix 1. Once we have the generators as matrices, we can
represent any geodesic as a combination of multiplying the generating matrices. Once you
have the matrix representation of any geodesic, you can find the length by:

` = 2 arccosh

(
± Tr(M)

2

)

Following the processes described above, we used Maple Software to generate the length
of every geodesic possible from multiplying 2 and 3 generators. In writing this code, several
identities about the trace of a matrix were used to generate less duplicate data. It is known
that Tr(AB) = Tr(BA) and Tr(ABC) = Tr(BCA) = Tr(CAB), where A,B,C are matri-
ces. This code is avaiable in Appendix 2 and a portion of the generated data is available in
Appendix 3. The goal of generating this data was to have a length spectra that associated
the length of a geodesic with its generator representation. We achieve another length spectra
using the SnapPy program. While this program does not give us a generator representation
for the geodesics in the length spectra, it does give us the multiplicity of a geodesic of a spe-
cific length. The SnapPy outputs we used to inform our research are avaiable in Appendix
4.

Another goal of this research was to investigate how length spectra behave under belt
sum composition. This lead to us to construct a similar formalization for the belt sum of
the Borromean Rings, denoted B#B. This is explored in our next section.

4 Belt Sum of the Borromean Rings

We construct a similar formalization of B#B as we did to the Borromean rings in order
to investigate how geodesics are altered under this operation. We begin with a topological
realization of the belt sum of two Borromean rings.
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Figure 6: Labeling System for B#B

The cell decomposition of B#B is then performed to receive the fundamental region.

Figure 7: Fundamental Region of B#B
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Now that we have the fundamental region of B#B, we can use the same methods
as before to find the generators of the fundamental group, π1(B#B) and the length spectra
with generator representation using the same Maple Software code as before. The matrices
representing these generators are available in Appendix 5. The SnapPy output for B#B is
available in Appendix 4.

Since we now have methods for locating geodesics in both B and B#B, we can begin
to investigate the relation between the two. This is explored in the next section, along with
the topological realization of geodesics in the knot complements.

5 Examples

We begin by investigating the systole. The systole of B has length ` = 2.1225 and, as
evidenced by the SnapPy output, there are 12 geodesics that realize this length. Here is one
example of a systole:

Figure 8: A’B Systole

Further investigation shows that the twelve systoles are the geodesics that run through
two faces that share exactly one vertex.

For more complicated geodesics, we can form the topological realization by returning
to the fundamental group. To start, draw a point P in the X face. With the generator
representation, for each generator, draw a geodesic from point P , under the face, and then
back to point P . From these geodesics, the topological geodesic can be realized. Here is the
an example with the geodesic A′WB:
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A′WB has length ` = 2.6339, a length that does not appear in the length spectra of
B#B.

6 Results

Proposition. Let M be a matrix with associated geodesic γ ∈ π1(B) of length `. A geodesic
γ∗ ∈ π1(B#B) of length ` is not guaranteed.

Proof. Suppose to the contrary that for all γ ∈ π1(B) of length `, there exists γ∗ ∈
π1(B#B) of length `. A counter example to that, as mentioned above, is the geodesic
A′WB of length ` = 2.6339 of which there is no geodesic of length ` in the length spectra of
B#B.

This proposition contextualizes why the following theorem is not trivial.
Theorem. Let M be a matrix such that it corresponds to a geodesic γ ∈ π1(B) of length
`. Then the matrix M2 corresponds to a geodesic γ∗ ∈ π1(B#B) of length 2`.

Proof. Begin by tessellating H3 with the fundamental region of B#B. Any valid geodesic
γ∗ ∈ π1(B#B) is associated with a matrix M∗ that is an isometry of the tessellation. Now
let every fundamental region of B#B, call them F, be a refinement of two fundamental
regions of B, call them G and H. Any valid geodesic γ ∈ π(B) is associated with a matrix
M that is an isometry of the tessellation of fundamental regions of B. However, γ may not
a valid geodesic in π1(B). This leads us to two cases,

• Case 1. First consider the case where the matrix M maps a G fundamental region of B
to another fundamental region labeled G. Then the associated geodesic γ ∈ π(B#B)
because that would M would be an isometry of H3. This would trivially give you a
geodesic γ∗ ∈ π1(B#B) of length 2`.

• Case 2. Consider the case where M maps a fundamental region marked G to a funda-
mental region marked H. This is not an isometry of H3, so the corresponding geodesic
γ is not in π(B#B). Let M be any mapping that takes you from one fundamental
region of B to another one of the opposite labeling. Thus γ2 ∈ π(B#B) since M2 is
an isometry of H3 and γ2 has length 2`.

7 Further Research

• Conjecture. Let M be a matrix such that M ∈ π1(B). If M /∈ π1(B#B), then the
geodesic, γ, corresponding to M intersects all thrice punctured spheres in B.

• Extending the theorem to matrices Mn in B#B that will correspond to a geodesic γ
of length n`, where n ∈ 2Z.

• Observe and justify geodesics of length n` where n ∈ (Z) 2(Z) in the length spectra of
B#B.

• Relate the multiplicity of symmetry of the Borromean rings and the geometry of B.

• Is π1(B#B) ⊂ π1(B)?
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10 Appendices

10.1 Generating Matrices for the Fundamental Group of B

A =

(
2− i −4i
−1

2
i

)
, A′ =

(
−2− i −4i

1
2

i

)
,W =

(
1 −4i
0 1

)
,

Y =

(
1− 2i −4i
i 1 + 2i

)
, B =

(
1 0
1
2

1

)
, Z =

(
1 0
i 1

)
,

B′ =

(
1 0
1
2

1

)
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10.2 Maple Software Code
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10.3 Generated Length Spectra with Generator Representation
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10.4 SnapPy Outputs
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10.5 Generating matrices for the Fundamental Group of B#B

A =

(
2− i −4i
−1

2
i

)
, A′ =

(
−2− i −4i

1
2

i

)
,W =

(
1 −4i
0 1

)
,

Y =

(
1− 2i −4i
i 1 + 2i

)
, B =

(
1 0
1 1

)
, Z =

(
1 0
i 1

)
,

B′ =

(
1 0
1 1

)
, T =

(
1 −4i
0 1

)
, C =

(
−2− i −4i
−1

2
i

)
,

S =

(
1 0
i 1

)
, V =

(
1 + 2i −4i
i 1− 2i

)
, C ′ =

(
2− i 4i

1
2

i

)
,
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