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Abstract. This research investigates the restrictions on symmetric bilinear form ϕ such that R = Rϕ in

Einstein and Weakly Einstein model spaces. It has been determined that if a model space is Einstein and

has a positive definite inner product, then: if the scalar curvature τ ≥ 0, then the model space has constant
sectional curvature, and if τ < 0, Φ can have at most two eigenvalues. Alternatively, given R = Rϕ, a model

space is weakly Einstein if and only if Rϕ2 has constant sectional curvature. Also, it has been found that
given an Einstein model space with a non-degenerate metric, if Φ is diagnoalizable, then the above applies,

but if dim(V ) = 4 and there exists a basis such that Φ takes one of several specific Jordan forms, then it

must be the case that all eigenvalues of Φ are zero.

1. Introduction

An algebraic curvature tensor R over a vector space V is defined by R : V ×V ×V ×V → R satisfying:

R(x, y, z, w) = −R(y, x, z, w) = R(z, w, x, y), and

R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0,

the latter termed the Bianchi Identity. Such a function allows us to study the characteristics of M. Given
an orthonormal basis {e1, e2, . . . , en}, a notational convention is to say R(ei, ej , ek, el) = Rijkl.

The following are several preliminary definitions to aid in the understanding of the study of algebraic
curvature tensors.

Definition 1.1. Given vector space V , a symmetric bilinear form ϕ: V × V → R is:

(1) Symmetric: ϕ(x, y) = ϕ(y, x) ∀x, y ∈ V , and
(2) Linear in the first slot: ϕ(ax1 + x2, y) = aϕ(x1, y) + ϕ(x2, y) ∀x, y ∈ V .

Definition 1.2. An inner product or metric 〈·, ·〉 on vector space V is a symmetric bilinear form.
A metric is non-degenerate if, for all x ∈ V , there exist w ∈ V such that 〈x,w〉 6= 0.
A metric is positive definite if 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

Notice that positive definite implies non-degenerate.
A metric with respect to basis {e1, e2, . . . , en} will be expressed in the following form: 〈ei, ej〉 = gij . The

metric could also be represeted by the matrix G, where Gij = gij . For the purposes of future definitions,
gij = [G−1]ij = Gij = gij since the metric is non-degenerate and symmetric.

It may be assumed that any metric mentioned in this paper is positive definite unless otherwise stated.

Definition 1.3. Given vector space V of dimension n, a metric 〈·, ·〉, and an algebraic curvature tensor R,
a model space M is defined by:

M = (V, 〈·, ·〉, R).

Definition 1.4. A canonical algebraic curvature tensor Rϕ is an algebraic curvature tensor that can
be expressed as

Rϕ(x, y, z, w) = ϕ(x,w)ϕ(y, z)− ϕ(x, z)ϕ(y, w)

where ϕ is a symmetric bilinear form.

Henceforth, all algebraic curvature tensors will be canonical. That is, R = Rϕ.

Definition 1.5. The Ricci tensor [5] ρ over a vector space V of dimension n and basis {e1, ...en} is defined
by:

ρ(x, y) =

n∑
i,j=1

gijR(x, ei, ej , y).

1
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Definition 1.6. The scalar curvature [5] of model space M is defined by:

τ =

n∑
i=1

〉ρ(ei, ei)

on orthonormal basis {e1, . . . , en} for V .

Definition 1.7. A model space M is Einstein [5] if the Ricci tensor is a scalar multiple of the metric.
That is,

ρ(·, ·) = λ〈·, ·〉.
We will call λ the Einstein constant.

Furthermore, λ = τ
n .

Definition 1.8. A model space M is weakly Einstein [1] if, given orthonormal basis {e1, . . . , en} of V :

n∑
a,b,c=1

RabciRabcj = µgij i, j = 1, . . . , n

where µ = 1
n

∑n
w,x,y,z=1R

2
wxyz. We will call µ the weakly Einstein constant.

Given these preliminary definitions, it is now possible to establish the conventions for the results.
First, we will discuss symmetric bilinear form ϕ and its relationship with associated linear operator Φ,

whose eigenvalues will provide a base for the remainder of the calculations. In Section 3, we will discover
that Einstein model spaces with positive scalar curvature have Φ as a multiple of the identity matrix. On
the other hand, when the Einstein and weakly Einstein constants are 0, at most one eigenvalue of Φ will
be nonzero. In Section 4, we will find that if a model space is weakly Einstein, all the eigenvalues of Φ
will be the same, up to a sign. Section 5 reveals the precise relationship between the dimension of V in an
Einstein model space and the eigenvalues of Φ if the scalar curvature is negative. Finally, Section 6 will
explore Einstein model spaces with non-degenerate metrics and conclude that in multiple cases, either the
results are identical to those of the model spaces with positive definite metrics or all eigenvalues are zero.

2. Diagonalization and Eigenvalues of Φ

Let ϕ be a symmetric bilinear form. Given a model space M, and an orthonormal basis {e1, e2, . . . , en},
it is possible to express ϕ as the matrix:

ϕ =


ϕ(e1, e1) ϕ(e1, e2) . . . ϕ(e1, en)
ϕ(e2, e1) ϕ(e2, e2) . . . ϕ(e2, en)

...
...

. . .
...

ϕ(en, e1) ϕ(en, e2) . . . ϕ(en, en)

 .

There also exists a unique associated operator Φ : V → V defined by:

ϕ(x, y) = 〈Φx, y〉.

Furthermore, Φ is self-adjoint due to the symmetry of ϕ:

ϕ(x, y) = 〈Φx, y〉 = 〈x,Φ∗y〉 = 〈Φ∗y, x〉 = ϕ(y, x) = 〈Φy, x〉.

Thus, Φ = Φ∗, so Φ is self-adjoint.
In the case that the metric is positive definite, associated matrix Φ can be diagonalized on an orthonormal

basis [3]:

Φ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 .

Furthermore, we notice that since ϕ(ei, ej) = 〈Φei, ej〉 = 〈λiei, ej〉 = λigij = λiδij , the representation of
φ as a matrix (above) is equivalent to Φ. So, the matrix representation of ϕ when Φ is diagonal is:
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ϕ =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 .

Every symmetric bilinear form ϕ has a similar matrix Φ. For instance, given a positive definite metric as
the symmetric bilinear form, the associated matrix is the identity, I.

Therefore, if it is given that R = Rϕ, and the basis for V is such that Φ is diagonal, the only possible
nonzero entries of R are those given by Rijji = λiλj = −Rijij , i 6= j. This is true since ϕ(ea, eb) = 0 if
a 6= b. Furthermore, Riiii = ϕ(ei, ei)ϕ(ei, ei)− ϕ(ei, ei)ϕ(ei, ei) = 0. Thus, all other entries of R are zero.

Proposition 2.1. Let M be a model space with R = Rϕ and a positive definite metric. Let λ1, . . . , λn be
the eigenvalues of Φ and {e1, . . . , en} an orthonormal basis for V . Then, the following system of equations
holds when M is Einstein:

(1)

λ = λ1(λ2 + λ3 + . . .+ λn)
λ = λ2(λ1 + λ3 + . . .+ λn)
λ = λ3(λ1 + λ2 + . . .+ λn)

...
λ = λi(λ1 + λ2 + . . .+ λi − 1 + λi+1 + λn)

...
λ = λn(λ1 + λ2 + . . .+ λn−1)

Furthermore, the converse is true.That is, if System (1) holds in M with R = Rϕ and diagonalized Φ on an
orthonormal basis, then M is Einstein.

Proof. Recall that M is Einstein when the Ricci tensor is a constant multiple (λ) of the metric. Since
R = Rϕ,

ρ(ei, ej) = λ〈ei, ej〉 = λδij =

n∑
k=1

R(ei, ek, ek, ej).

Only nonzero terms contribute to the sum, so i = j. Let M be Einstein. Then,

λ =

n∑
k=1

R(ei, ek, ek, ei) =

n∑
k=1,k 6=i

λiλk = λi

n∑
k=1,k 6=i

λk ∀i ∈ {1, 2, . . . , n}.

Since each step of this proof is reversible, it is true that if System 1 is satisfied, then M is Einstein. �

Proposition 2.2. Let M be a model space with R = Rϕ and a positive definite metric. Let λ1, . . . , λn be
the eigenvalues of Φ and {e1, . . . , en} an orthonormal basis for V . Then, the following system of equations
holds when M is weakly Einstein:

(2)

µ̃ = λ21(λ22 + λ23 + . . .+ λ2n)
µ̃ = λ22(λ21 + λ23 + . . .+ λ2n)
µ̃ = λ23(λ21 + λ22 + . . .+ λ2n)

...
µ̃ = λ2i (λ

2
1 + λ22 + . . .+ λ2i−1 + λ2i+1 + λ2n)

...
µ̃ = λ2n(λ21 + λ22 + . . .+ λ2n−1)

where µ̃ = µ
2 . Furthermore, the converse is true.That is, if System 2 holds in M with R = Rϕ and

diagonalized Φ on an orthonormal basis, then M is weakly Einstein.

Proof. Recall that M is weakly Einstein if
∑n
a,b,c=1RabciRabcj = µgij . Since Rxyyx = −Ryxyx are the only

nonzero entries of any given Rabci, all other entries may be discarded. Thus, it is the case that in the
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definition of weakly Einstein, i = j if the term is nonzero. Then,
n∑

a,b,c=1

RabciRabcj =

n∑
a=1

R2
iaai +

n∑
a=1

R2
aiai = 2

n∑
a=1

R2
iaai = µ

Thus,
n∑
a=1

R2
iaai =

µ

2
= µ̃

Since Riiii = 0,

µ̃ =

n∑
a=1,a 6=i

λ2iλ
2
a = λ2i

n∑
a=1,a 6=i

λ2a ∀i ∈ {1, 2, . . . , n}

Once more, the logic is reversible, so the converse holds true. �

In the following sections, we will apply these equations to Einstein and weakly Einstein model spaces with
the purpose of solving for Φ given various parameters for Einstein constant λ, scalar curvature τ , or weakly
Einstein constant µ.

3. Constant Sectional Curvature in Einstein and Weakly Einstein Model Spaces
with R = Rϕ

Now, we will see why, in Einstein model spaces, when τ ≥ 0, a model space has a special property called
constant sectional curvature. Furthermore, we will find that this same property applies to weakly Einstein
model spaces when µ = 0.

Definition 3.1. A model space M has constant sectional curvature ε if:

κ(u, v) =
R(u, v, v, u)

〈v, v〉〈u, u〉 − 〈u, v〉2
= ε ∀u, v ∈ V

where u, v span a non-degenerate 2-plane.

One can notice that this definition simplifies to:

κ(u, v)
R(u, v, v, u)

R〈·,·〉(u, v, v, u)
= ε ∀u, v ∈ V.

Also, if a model space has csc(ε), it does so for any basis.

Lemma 3.2. Given a model space M and an algebraic curvature tensor Rϕ,

Rcϕ = c2Rϕ

Proof. This result can be obtained through a straightforward application of the definition of Rϕ:

Rcϕ(x, y, z, w) = cϕ(x,w) · cϕ(y, z)− cϕ(x, z) · cϕ(y, w)
= c2(ϕ(x,w)ϕ(cy, z)− ϕ(x, z) · ϕ(y, w))
= c2Rϕ(x, y, z, w)

�

Lemma 3.3. If ϕ = ω〈·, ·〉 (so Φ = ωI) and R = Rϕ, then M has csc(ω2).

Proof. Let ϕ = ω〈·, ·〉. Then,
Rϕ = Rω〈·,·〉 = ω2R〈·,·〉

Calculating the sectional curvature yields:

κ(u, v) =
Rϕ(u, v, v, u)

R〈·,·〉(u, v, v, u)
=
ω2R〈·,·〉(u, v, v, u)

R〈·,·〉(u, v, v, u)
= ω2

Thus, M has csc(ω2). �

Lemma 3.4. LetM be an Einstein model space with orthonormal basis {e1, . . . , en} of V and ρ(·, ·) = λ〈·, ·, 〉.
Let {λi|1 ≤ i ≤ n} be eigenvalues of diagonalized Φ, as in Section 2. If R = Rϕ, then the following are
equivalent:
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(1) λ = 0 and
(2) λi 6= 0 for at most one i ∈ {1, . . . , n}.

In this case, M has csc(0).

Proof. Suppose M is Einstein. If λi = 0, then

λ = λi

 n∑
j=1,j 6=i

λj

 = 0.

Conversely, suppose λ = 0. Let there be i nonzero eigenvalues of Φ, and suppose i ≥ 2. Without loss of
generality, suppose λ1, . . . , λi 6= 0. By System (1), for some a, b ∈ {1, . . . , i}, a 6= b,

λa

 n∑
c=1,c 6=a

λc

 = 0 and

λb

 n∑
c=1,c 6=b

λc

 = 0.

Dividing the first equation through by λa and the second by λb leads to,
n∑

c=1,c 6=a

λc = 0 and

n∑
c=1,c 6=b

λc = 0.

Then, subtracting the first equation from the second results in

λa − λb = 0,

and simplifying yields
λa = λb.

Since a, b ∈ {1, 2, . . . , i} were arbitrary,

λ1 = λ2 = · · · = λi = η 6= 0.

Furthermore, when this is substituted back into any of 1, 2, . . . , i of System (1), it becomes clear that

η

η(i− 1) +

n∑
j=i+1

λj

 = 0.

So since λj = 0 for j > i,

η(i− 1) +

n∑
j=i+1

λj = η(i− 1) = 0.

Thus, either i = 1, meaning Φ has one nonzero eigenvalue, or η = 0, contradicting there being more than
one nonzero eigenvalue. Therefore, at most one eigenvalue of Φ is nonzero.

Recall that the only nonzero entries of Rϕ are those in the format Rijji or Rijij for i 6= j. Also,
Rijji = ϕ(ei, ei)ϕ(ej , ej) = ΦiiΦjj = λiλj . Since at most one λi = 0 when λ = 0, Rijji = 0 for all i, j, and
thus Rϕ = 0 identically. It follows that M has csc(0). �

Lemma 3.5. Let M be a weakly Einstein model space with orthonormal basis {e1, . . . , en} of V and µ
defined by:

∑n
a,b,c=1RabciRabcj = µgij. Let µ̃ = µ

2 . Let {λi|1 ≤ i ≤ n} be eigenvalues of diagonalized Φ, as
in Section 2. If R = Rϕ, then the following are equivalent:

(1) µ = 0 and
(2) λi 6= 0 for at most one i ∈ {1, . . . , n}.

In this case, M has csc(0).

Proof. The proof for this lemma is identical to that Lemma 3.4, but with λ2i instead of λi. �
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Now that we found Einstein model spaces with λ = 0 to have csc(0), we will show that Einsein model
spaces with λ > 0 also have constant sectional curvature. When n = dim(V ) = 2, the model space is trivially
flat, so it has constant sectional curvatue. Lemma 3.6 will consider the non-trival case of n ≥ 3.

Lemma 3.6. Given R = Rϕ, if M is Einstein with λ > 0 and n ≥ 3, then Φ = cI. Furthermore,

c = ±
√

λ
n−1 , so M is csc( λ

n−1 ).

Proof. Let λ > 0. Suppose that ϕ 6= c〈·, ·〉. Then, there exists i 6= j such that λi 6= λj . Due to the
symmetries of System (1), we may assume without loss of generality that λ1 6= λ2. Then, subtracting the
first two equations of System (1), we find that:

(λ1 − λ2)(λ3 + λ4 + · · ·+ λn) = 0.

Since λ1 6= λ2, λ3 + λ4 + · · ·+ λn = 0. It is now evident that

−λl =

n∑
k=3,k 6=i

λk ∀l ∈ {3, . . . , n}.

Therefore, substituting that into all remaining equations from System (1) yields

λ = λl(λ1 + λ2 +

n∑
k=3,k 6=l

λk) = λl(λ1 + λ2 − λl) ∀l ∈ {3, . . . , n}.

Summing both sides of equations over l = 3, . . . , n, we find that:

n∑
l=3

λ =

n∑
l=3

λi(λ1 + λ2 − λl) =

n∑
l=3

λl(λ1 + λ2)−
n∑
l=3

λ2l , so

(n− 2)λ = (λ1 + λ2)

(
n∑
l=3

λl

)
−

(
n∑
l=3

λ2l

)
= −

(
n∑
l=3

λ2l

)
.

Since λ > 0 and −
(

n∑
l=3

λ2l

)
≤ 0, this equation is inconsistent. Therefore, it must be the case that ϕ = c〈·, ·〉

and Φ = cI.
Since all the eigenvalues of Φ are equal, we can write:

λ = λi ((n− 1)λi) = (n− 1)λ2i

Therefore, solving for λi,

λi = ±
√

λ

n− 1
.

It follows that c = ±
√

λ
n−1 , so, by Lemma 3.3, M has csc( λ

n−1 ). �

Theorem 3.7. Given R = Rϕ, if M is Einstein with scalar curvature τ ≥ 0, M has constant sectional
curvature.

Proof. Since τ ≥ 0, λ ≥ 0.
Let τ = 0. Then, by the results of Lemma 3.4, M is csc(0).
Let τ > 0. Then, by Lemma 3.6, M has constant sectional curvature. �

The results from this section are significant since they enumerate every possible ϕ when τ ≥ 0 for Einstein
spaces, and µ = 0 for weakly Einstein spaces. We will now take a closer look at the remaining cases for
weakly Einstein model spaces.
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4. Weakly Einstein Model Spaces in dim(V ) = n with R = Rϕ

In this section, we will determine that if a model space is weakly Einstein, accociated linear operator Φ
has identical eigenvalues, up to sign. The following theorem encapsulates this result.

Theorem 4.1. Let ϕ2 be the symmetric bilinear form with associated linear operator Φ2. Let M be a model
space with R = Rϕ . Let M̃ be a model space with R = Rϕ2 and the same metric as M. Then, M is weakly
Einstein if and only if Rϕ2 has constant sectional curvature.

Proof. Suppose M is weakly Einstein. Then, there exists µ̃ such that System (2) holds. Let ηi = λ2i . Then,
we know the following to be true:

Φ2 =


λ21 0 . . . 0
0 λ22 . . . 0
...

...
. . .

...
0 0 . . . λ2n

 =


η1 0 . . . 0
0 η2 . . . 0
...

...
. . .

...
0 0 . . . ηn


Furthermore, the following system holds:

µ̃ = λ21(λ22 + λ23 + . . .+ λ2n) = η1(η2 + η3 + . . .+ ηn)
µ̃ = λ22(λ21 + λ23 + . . .+ λ2n) = η2(η1 + η3 + . . .+ ηn)
µ̃ = λ23(λ21 + λ22 + . . .+ λ2n) = η3(η1 + η2 + . . .+ ηn)

...
µ̃ = λ2n(λ21 + λ22 + . . .+ λ2n−1) = ηn(η1 + η2 + . . .+ ηn−1).

This system clearly satisfies the requirements set by System 1, signifying that model space M̃ is Einstein
with R = Rϕ2 . Since µ̃ > 0, Theorem 3.8 states that M must have constant sectional curvature.

Conversely, suppose M̃ has constant sectional curvature. In [4], Gilkey proves that constant sectional
curvature implies Φ = cI, so it must be the case that Φ2 = ηI for some η. Here, it is known that η ≥ 0.
Clearly, this fulfills the requirements for M to be Einstein, as enumerated in System 1. Then, Φ2 can be
expressed as a diagonal matrix with eigenvalues η, while Φ can be written as:

Φ =


±√η 0 . . . 0

0 ±√η . . . 0
...

...
. . .

...
0 0 . . . ±√η

 .

Then, the equations in System 2 are fulfilled with µ̃ = (n− 1)η. Therefore, M is weakly Einstein. �

Theorem 4.1 has several important implications. First, given a weakly Einstein model space, we know
that the eigenvalues of Φ must be equal with the exception of sign. A simple calculation demonstrates that
we know how many possible matrices Φ yield weakly Einstein model spaces.

Corollary 4.2. Let M a model space with R = Rϕ, and Φ be diagonal with respect to an orthonormal basis.
Given that all eigenvalues are nonzero, if dim(V ) = n is even, then there are n

2 +1 unique sets of eigenvalues

of ϕ, and when n is odd, there are n−1
2 + 1 unique sets eigenvalues, both excluding negation of all entries. If

at most one eigenvalue is nonzero, there is one set of possible eigenvalues excluding scaling, and the same is
true if all eigenvalues are zero.

Proof. In all cases, we must be careful to not double count any permutations of the basis vectors. Therefore,
suppose that λ1, . . . , λi < 0 and λi+1, . . . , λn > 0.To account for negation, i ≤ n

2 .
Let n be even. Then, there are n

2 possible sets of eigenvalues of Φ from above and one more from the
possibility that all are the same sign, for a total of n

2 + 1.

Let n be odd. Then, to account for the above constraints, there are n−1
2 possibilities with some negative

eigenvalues and another from the possibility that all eigenvalues are the same sign. This totals to n−1
2 + 1

possible sets of eigenvalues.
The case that only one eigenvalue is nonzero is trivial, though that eigenvalue can take on any value. The

case that all eigenvalues are zero is trivial as well.
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By Lemma 3.2, R−ϕ = (−1)2Rϕ = Rϕ, so negation of all entries of Φ leads to an identical algebraic
curvature tensor. �

Despite the fact that if a model space is weakly Einstein then, then M̃ = (V, 〈·, ·〉, R) with R = Rϕ2 has
constant sectional curvature, this may not be the case for M = (V, 〈·, ·〉, R) with R = Rϕ might not have
constant sectional curvature.

Example 4.3. LetM = (V, 〈·, ·〉, R) be of dimension four with R = Rϕ. Let Φ have eigenvalues (λ1, λ2, λ3, λ4) =
(1, 1,−1,−1). It is easy to check that M is indeed weakly Einstein by referencing System (2).

Now, to show that M does not have constant sectional curvature, we will compute curvature κ with two
distinct sets of vectors.

κ(e1, e2) =
R1221

g11g22 − g212
=
λ1λ2
1− 0

= 1

κ(e1, e3) =
R1331

g11g33 − g213
=
λ1λ3
1− 0

= −1

Since 1 6= −1, M does not have constant sectional curvature.

Now that we have completely solved for the possible canonical algebraic curvature tensors in weakly
Einstein model spaces of dimension n, we will do the same for Einstein model spaces.

5. Einstein Model Spaces in dim(V ) = n with R = Rϕ

The case in which τ, λ ≥ 0 in Einstein spaces has already been solved in Section 3, leaving the case in
which τ, λ < 0. To solve for the eigenvalues of Φ, we will first establish that there exist at most 2 distinct
eigenvalues of Φ.

Theorem 5.1. Given an Einstein model space M with and diagonalized ϕ with respect to an orthonormal
basis, if R = Rϕ, then Φ can have at most 2 distinct eigenvalues.

Proof. If dim(V ) ≤ 2, Φ is smaller than or equal to a 2 × 2 matrix, and therefore can have at most 2
eigenvalues.

Suppose then that dim(V ) ≥ 3, and ϕ has at least 3 distinct eigenvalues. Due to the symmetries of
System 1, we can let λ1 = X, λ2 = Y , and λ3 = Z, where X,Y, and Z are unique nonzero constants. (The
case in which any one of {X,Y, Z} is zero is covered in Lemma 3.4.) Manipulating the first three equations
yields:

λ
X = Y + Z + λ4 + . . .+ λn
λ
Y = X + Z + λ4 + . . .+ λn
λ
Z = X + Y + λ4 + . . .+ λn

Subtracting the second equation from the first and simplifying shows that:
λ
X −

λ
Y = Y −X

So, λ = XY . Similar operations for the second and third equations, as well as the first and third equations,
lead to the conclusion that λ = XY = Y Z = XZ. Since X,Y , and Z are nonzero, X = Y = Z, which
contradicts their being distinct. Thus, Φ can have at most 2 distinct eigenvalues. �

Let x, y be distinct eigenvalues of Φ. Let j be the number of times x is an eigenvalue of Φ and k be the
number of times y is an eigenvalue of Φ, so j + k = n. Since λ = xy, as in Theorem 5.1, one of {x, y} must
be negative and the other positive, and we may assume that x > 0 and y < 0 without loss of generality. The
following system of equations can be compiled from the equations presented in previous sections:

(3) λ = xy

(4) n = j + k

(5) (j − 1)x+ (k − 1)y = 0

Equation 5 is derived from System 1, which states that, in this case,

λ = x(y + (j − 1)x+ (k − 1)y) = xy + x((j − 1)x+ (k − 1)y)

Thus, x((j − 1)x+ (k − 1)y) = 0, and dividing by x yields: (j − 1)x+ (k − 1)y = 0.
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Note that j, k 6= 1 since that would imply that either x or y equals zero, which contradicts their being
nonzero. If j or k is zero, Φ has only one eigenvalue, which simplifies to the Φ = cI case covered in Section
3.

Theorem 5.2. Let M be an Einstein model space with R = Rϕ, and let Φ be diagonalized with eigenvalues
λ1, . . . , λn. Let scalar curvature τ < 0. Then,

(6) (λ1, . . . , λj , λj+1, . . . , λn) =
√
n|τ |

√
k − 1

j − 1
(1, . . . , 1,− j − 1

k − 1
, . . . ,− j − 1

k − 1
).

Proof. Since τ < 0, we know that λ < 0.
Manipulating Equation 5 and combining it with Equation 3 yields:

λ

x
= y = − j − 1

k − 1
· x

Since λ < 0, −λ = |λ|, so x2 = |λ|k−1j−1 . Thus,

x =

√
|λ|k − 1

j − 1
, y = −

√
|λ| j − 1

k − 1

Hence,

(λ1, . . . , λj , λj+1, . . . , λn) = (

√
|λ|k − 1

j − 1
, . . . ,

√
|λ|k − 1

j − 1
,−
√
|λ| j − 1

k − 1
, . . . ,−

√
|λ| j − 1

k − 1
)

Factoring the right hand side and substituting in n|τ | for λ leads to the conclusion that:

(λ1, . . . , λj , λj+1, . . . , λn) =
√
|nτ |

√
k − 1

j − 1
(1, . . . , 1,− j − 1

k − 1
, . . . ,− j − 1

k − 1
)

�

Corollary 5.3. Let M be an Einstein model space with R = Rϕ and let j and k be as in Theorem 5.2.
Then, switching the values of j and k yields the same solution up to permutation and negation.

Proof. Beginning with Equation 6 and swapping j and k, we get:√
|λ|
√
j − 1

k − 1
(1, . . . , 1,−k − 1

j − 1
, . . . ,−k − 1

j − 1
)

Multiplying the
√

j−1
k−1 into the parentheses, then factoring out −

√
k−1
j−1 leads to:

−
√
|λ|

√
k − 1

j − 1
(1, . . . , 1,− j − 1

k − 1
, . . . ,− j − 1

k − 1
)

Therefore, the two solutions are identical up to a permutation and a negation. �

Corollary 5.4. Let M be an Einstein model space with R = Rϕ. If dim(V ) = n is even, then there are
n−2
2 unique sets of eigenvalues, up to permutation and negation. If dim(V ) = n is odd, then there are n−3

2
unique sets of eigenvalues, up to permutation and negation.

Proof. Suppose n is even. Then, j ∈ {2, 3, . . . , n− 3, n− 2}. This provides for n− 3 total possibilities for j.
However, j = a leads to the same solution as j = n− a by Corollary 5.3. Furthermore, there is one case in
which j = k. Therefore, the total number of solutions is given by n−3

2 + 1
2 = n−2

2 .
Alternately, suppose n is odd. Once more, there are n−3 possible values for j, and each is double counted.

Hence, the possible number of solutions for n odd is n−3
2 . �

In 2010, it was proven that in four dimensions, if a model space is Einstein, it is also weakly Einstein [2].
However, it is not true in higher dimensions.

Corollary 5.5. In model spaces, the Einstein condition does not imply a weakly Einstein condition for
dim(V ) ≥ 5.
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Proof. Take the construction of the eigenvalues of Φ to be dictated by j = 2, as described in Theorem 5.2.
Then, it is clear that in dimensions other than 4, the eigenvalues are not negatives of each other, as required
by Theorem 4.1 for a model space to be weakly Einstein. Thus, a model space with such an R = Rϕ is
Einstein but not weakly Einstein. The following is a concrete example of this concept. �

Example 5.6. Einstein does not imply weakly Einstein. Let M have R = Rϕ defined by the eigen-
values of Φ being:

(λ1, λ2, λ3, λ4, λ5) =

√
1

2
(1, 1, 1,−2,−2).

Clearly, this satisfies being Einstein with j = 3, k = 2. However,(√
1

2

)2(√
1

2

2

+

√
1

2

2

+ (−2

√
1

2
)2 + (−2

√
1

2
)2

)

6=

(
−2

√
1

2

)2(√
1

2

2

+

√
1

2

2

+

√
1

2

2

+ (−2

√
1

2
)2

)
=
µ

2
,

which is the necessary condition for weakly Einstein. Therefore, Einstein does not imply weakly Einstein.

6. Einstein Model Spaces in Higher Signature Settings

The signature of a metric refers to the sigs of the entries of G, the matrix representing the metric. Model
spaces in higher signature settings therefore imply having a non-degenerate metric. In this section, we will
investigate the effect of the signature of a metric on the algebraic curvature tensor of a model space.

Any matrix A may be expressed in a form called a Jordan-Normal (Jordan) form [3]. The basis under
which A is Jordan-Normal is called the Jordan basis. Given any Jordan basis, matrix may take only one
Jordan-Normal form [3]. Which Jordan form the matrix takes is determined by the rank of the matrix and
the number of repeated eigenvalues.

Thus far, we have considered the diagonalized form of Φ, which is the first Jordan form. As we previously
discussed, a positive definite metric leads to a diagonalizable Φ, which is why no other Jordan forms have
been considered. The following are Jordan forms for matrices of dimension 4 with real eigenvalues:

Type I:


λ1 1 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 Type II:


λ1 1 0 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ2



Type III:


λ1 1 0 0
0 λ1 1 0
0 0 λ1 0
0 0 0 λ2

 Type IV:


λ1 1 0 0
0 λ1 1 0
0 0 λ1 1
0 0 0 λ1


It is possible for λi = λj in any of the above cases.

However, a model space with a non-degenerate metric may still have a diagonalizable Φ.

6.1. Einstein Model Spaces with Non-degenerate Metrics and Diagonalizable Φ. Given an Ein-
stein model spaceM with diagonalizable Φ, it is possible to express the metric as gij = εiδij , where εi = ±1.
Thus, ϕ(ei, ej) = εiλiδij . Let λ be the constant associated with the definition of Einstein spaces. Computing
the Ricci tensor yields the following equations:

(7)

ρ(ei, ei) = g11Ri11i + g22Ri22i + g33Ri33i + · · ·+ gnnRinni
= ε1(εiλi)(ε1λ1) + ε2(εiλi)(ε2λ2) + · · ·+ εi−1(εiλi)(εi−1λi−1)

+εi+1(εiλi)(εi+1λi+1) + · · ·+ εn(εiλi)(εnλn)
= εiλi(

∑n
j=1,j 6=i λj)

= λεi.

Clearly, ρ(ei, ej) = 0 for i 6= j since gij = 0.

Theorem 6.1. Let M be a model space with diagonalized Φ with respect to an orthonormal basis, R = Rϕ,
and non-degenerate metric. Let {e1, . . . , en} be an orthonormal basis for V . The following are then true:
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(1) If the scalar curvature τ ≥ 0, then M has constant sectional curvature.
(2) Let dim(V ) = n, and j, k ∈ {2, . . . , n− 2} such that j + k = n. If τ < 0, then

(λ1, . . . , λj , λj+1, . . . , λn) =
√
|λ|

√
k − 1

j − 1
(1, . . . , 1,− j − 1

k − 1
, . . . ,− j − 1

k − 1
).

Proof. Equation 7 can be rewritten as:

λgii = εiλ = εiλi(

n∑
j=1,j 6=i

λj).

So,

λ = λi(

n∑
j=1,j 6=i

λj).

This equation is identical to the case in which the metric is positive definite, and therefore it has the same
solutions. Thus, by Theorem 3.8, the first claim is true, and by Theorem 5.2, the second claim is true. �

6.2. Einstein model spaces in higher signature settings and Type I Φ.
Given the Einstein condition (with a corresponding λ) and Φ in the Jordan-Normal form

Φ =


λ1 1 0 0
0 λ1 0 0
0 0 λ2 0
0 0 0 λ3

 ,

it is possible to solve for the metric g by using the symmetric bilinear form ϕ. Let {e1, e2, e3, e4} be an
orthonormal basis for V . The equations are as follow:

(8)
ϕ(e1, e2) = 〈Φe1, e2〉 = λ1g12

= 〈Φe2, e1〉 = λ1g12 + g11

Thus, we know that g11 = 0.

(9)
ϕ(e1, e3) = 〈Φe1, e3〉 = λ1g13

= 〈Φe3, e1〉 = λ2g13

From Equation 9, we know that either λ1 = λ2 or g13 = 0.

(10)
ϕ(e1, e4) = 〈Φe1, e4〉 = λ1g14

= 〈Φe4, e1〉 = λ3g14

Equation 10 tells us that either λ1 = λ3 or g14 = 0.

(11)
ϕ(e2, e3) = 〈Φe2, e3〉 = g13 + λ1g23

= 〈Φe3, e2〉 = λ2g23

From Equation 9, we know that λ1 = λ2 or g13. Suppose λ1 = λ2. Then, g13 = 0. If not, g13 = 0 from
above. Thus, we know g13 = 0. Then, we know that it must be the case that either λ1 = λ2 or g23 = 0.

(12)
ϕ(e2, e4) = 〈Φe2, e4〉 = g14 + λ1g24

= 〈Φe4, e2〉 = λ3g24

By the same logic as above, from Equation 10, we know that g14 = 0. Then, either λ1 = λ3 or λ24 = 0.

(13)
ϕ(e3, e4) = 〈Φe3, e4〉 = λ2g34

= 〈Φe4, e3〉 = λ3g34

Therefore, either λ2 = λ3 or g34 = 0.
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For the purpose of generalizing as much as possible, we will suppose we know nothing of the eigenvalues
of Φ. Thus, all that we know of the matrix G (as defined by Gij = gij) is:

G =


0 g12 0 0
g21 g22 g23 g24
0 g32 g33 g34
0 g42 g43 g44


Note that g12 = g21 6= 0 since the metric is non-degenerate. Now, we must create a series of change of

bases that will place G in a helpful form.

Lemma 6.2. Let {e1, . . . , e4} be a Jordan-Normal basis of V . Given a change of basis that involves any
fi = ei+xej, such that ej is an eigenvector of Φ and such that ei and ej have identical associated eigenvalues.
Then, Φ is preserved.

Proof. Let µ be the eigenvalue associated with ei and ej . Then,

Φfi = Φ(ei + xej) = Φei + xΦej = µei + xµej = µ(ei + xej) = µfi.

Thus, fi is preserved as an eigenvector of Φ. Similarly, all other fj are preserved. Therefore, the matrix Φ
is preserved. �

Lemma 6.3. Let {e1, . . . , en} be a Jordan basis for V . Given a change of basis that involves any fi = Cei,
such that C 6= 0 and ei is an eigenvector of Φ. Then, Φ is preserved.

Proof. Let µ be the eigenvalue associated with ei. Then,

Φfi = Φ(Cei) = nΦei = Cµei = µ(Cei) = µfi.

By similar reasoning as in Lemma 6.2, the matrix Φ is preserved. �

Lemma 6.4. Let {e1, e2, e3, e4} be a Jordan basis for V . Then, the basis {f1, f2, f3, f4} defined by:

f1 = e1
f2 = − g22

2g12
e1 + e2

f3 = e3
f4 = e4

preserves Φ and sets 〈f2, f2〉 to 0 without altering the remaining 0 entries of the metric.

Proof. First, the change of basis does not alter Φ by Lemma 6.2. To confirm that 〈f2, f2〉 = 0 and none of
the other zero entries of G are affected, we must check all of the inner products.

〈f1, f2〉 = 〈e1,− g22
2g12

e1 + e2〉 = − g22
2g12

g11 + g12 = g12 6= 0

〈f2, f2〉 = (− g22
2g12

)2g11 + g22 + 2 · − g22
2g12

g12 = 0

Of the remainder of the entries, those that contain an inner product with f2 do not matter since the values
are not yet set, and all the others are preserved since 〈ei, ej〉 = 〈fi, fj〉 for i, j 6= 2. �

Now, the matrix Φ is unaltered, while

G̃ =


0 g12 0 0
g21 0 g23 g24
0 g32 g33 g34
0 g42 g43 g44


with basis {f1, . . . , fn} of V . All gij in the following lemma are in reference to this updated metric.

Lemma 6.5. Let {f1, . . . , fn} be a basis as described above. Then, the basis {h1, h2, h3, h4} defined by:

h1 = 1
|g12|f1

h2 = f2
h3 = f3
h4 = f4

preserves Φ and sets g12 = g21 = ε1 = ±1 without altering the remaining 0 entries of the metric.
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Proof. By Lemma 6.3, this change of basis does not alter Φ. As stated earlier, g12 = g21 6= 0. Then,

〈h1, h2〉 = 〈 1

|g12|
f1, f2〉 =

1

|g12|
〈f1, f2〉 =

1

|g12|
· g12 = ±1 = ε1.

Note that 〈h1, hi〉 for i 6= 2 remains 0 and g22 is completely unaffected. �

Once more, following this change of basis, Φ is still in the above Jordan form. The updated matrix
representation of the metric is:

G′ =


0 ε1 0 0
ε1 0 g23 g24
0 g32 g33 g34
0 g42 g43 g44


with basis {h1, . . . , hn}, as described in Lemma 6.5. Henceforth, all gij = G′ij .

Now, suppose λ2 6= λ3. Then, by Equation 13, g34 = 0. However, this may not be the case. Setting g34
to 0 is covered in the following lemma.

Lemma 6.6. Let {h1, h2, h3, h4} be a basis for V as described above. Then, there exists a basis {l1, l2, l3, l4}
such that 〈l3, l4〉 = 0 while preserving Φ and all other known entries of the metric.

Proof. Suppose g44 = 0. Then, we first want to create a change of basis such that g44 6= 0.
Suppose that g33 6= −2g34. Then, use the following change of basis for V .

a1 = h1
a2 = h2
a3 = h3
a4 = h3 + h4

Then,
〈a4, a4〉 = g44 + g33 + 2g34 = g33 + 2g34 6= 0, and

〈a1, a4〉 = 〈h1, h3 + h4〉 = g13 + g14 = 0 = g14,

which is exactly as desired. All other inner products are either not affected or we do not care about the
results.

Now, suppose that g33 = −2g34. Then, use the following change of basis for V .

b1 = h1
b2 = h2
b3 = h3
b4 = h3 + 2h4

In this case,
〈b4, b4〉 = 4g44 + 4g34 + g33 = 2g34 6= 0,

which, once more, is the desired result.
By combining Lemmas 6.2 and 6.3, both change of bases preserve Φ. Now, adopt the change of basis that

corresponds with G′, and call the new metric:

G” =


0 ε1 0 0
ε1 0 g23 g24
0 g32 g33 g34
0 g42 g43 d

 , d 6= 0.

For simplicity, call whichever basis applies {c1, c2, c3, c4}.
Now, apply the following change of basis:

l1 = c1
l2 = c2
l3 = c3 − g34

d c4
l4 = c4

By Lemma 6.2, this change of basis preserves Φ. Furthermore,

〈l3, l4〉 = 〈c3 −
g34
d
c4, c4〉 = g34 −

g34
d
g44 = g34 −

g34
d
d = 0,
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as desired. The only other relevant inner product to check is:

〈l1, l3〉 = 〈c1, c3 −
g34
d
c4〉 = g13

g34
d
g14 = 0,

as desired. �

The updated matrix representation of the metric, with inserted variable names for ease of notation, is
now:

Ĝ =


0 ε1 0 0
ε1 0 a b
0 a c 0
0 b 0 d

 , d 6= 0.

Nothing is known about a, b, and c. From now on, gij = Ĝij . Furthermore, this is also the case if λ2 6= λ3,
so we are now ready to tackle further cases.

From Equation 12, if λ1 6= λ3, g24 = 0. Suppose then that λ1 = λ3. We will now see that there exists a
change of basis such that λ24 = 0.

Lemma 6.7. Let {l1, l2, l3, l4} be a basis for V as described in the previous lemma. Then, the basis defined
by:

m1 = l1
m2 = l2
m3 = l3
m4 = l4 − b

ε1
l1

preserves Φ and sets 〈m2,m4〉 to 0 while keeping all other known entries of the metric constant.

Proof. By Lemma 6.2, Φ is preserved. Now,

〈m2,m4〉 = 〈l2, l4 −
b

ε1
l1〉 = b− b

ε1
ε1 = 0,

as desired. Furthermore,

〈m1,m4〉 = 〈l1, l4 −
b

ε1
l1〉 = 0 and

〈m3,m4〉 = 〈l3, l4 −
b

ε1
l1〉 = 0.

All other inner products are unaffected or their values are not fixed. �

The updated matrix representation of the metric, with variable names for ease of notation, is now:

G∗ =


0 ε1 0 0
ε1 0 a 0
0 a c 0
0 0 0 d


Note that a, c, and d are not as in Ĝ.

When λ1 6= λ2, a = 0, as per Equation 11. Suppose then that λ1 = λ2. We must now find a change of
basis that makes a = 0.

Lemma 6.8. Let {m1,m2,m3,m4} be a basis for V as in the previous lemma. Then, the basis defined by:

p1 = m1

p2 = m2

p3 = m3 − a
ε1
m1

p4 = m4

preserves Φ and sets 〈p2, p4〉 to 0 while keeping all other known values of the metric constant.

Proof. This proof proceeds with identical logic to that of Lemmas 6.4-7. �
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The updated matrix representation of the metric is now:

Ḡ =


0 ε1 0 0
ε1 0 0 0
0 0 c 0
0 0 0 d


which preserves Φ. Once again, note that c, d are not as in G∗.

There is now one final step to simplifying this matrix as completely as possible: setting the value of every
nonzero entry to ±1.

Lemma 6.9. Let {p1, p2, p3, p4} be a basis for V as defined above. Then, the basis defined by:

q1 = p1
q2 = p2

q3 =
√

1
|c|p3

q4 =
√

1
|d|p4

preserves Φ and sets 〈q3, q3〉 and 〈q4, q4〉 to ±1.

Proof. First, c, d 6= 0 since g is non-degenerate.
Clearly, the following is true:

〈q3, q3〉 = 〈

√
1

|c|
p3,

√
1

|c|
p3〉 =

1

|c|
〈p3, p3, 〉 =

c

|c|
= ±1 = ε2.

Similarly,

〈q4, q4〉 =
d

|d|
= ±1 = ε3.

The remainder of the proof follows the logic of Lemmas 6.4-8. �

Theorem 6.10. Let M be a model space with non-degenerate inner product (metric) g and R = Rϕ. Then,
if Φ has one generalized eigenvalue, then there exists a change of basis such that it is possible to express G,
where Gij = gij, as:

G =


0 ε1 0 0
ε1 0 0 0
0 0 ε2 0
0 0 0 ε3


without altering Φ.

Proof. This follows from Lemmas 6.4-9. �

Lemma 6.11. Let M be an Einstein model space, λ being the constant in the definition of Einstein, with
the remainder of the conditions dictated in Theorem 6.10. Let {e1, e2, e3, e4} be the basis that achieves
those conditions. Then, the only nonzero entries of the Ricci tensor are ρ(e1, e2) = ρ(e2, e1), ρ(e3, e3), and
ρ(e4, e4), and they yield the following equations:

(14)
λ = λ1(−λ1 + λ2 + λ3)
λ = λ2(2λ1 + λ3)
λ = λ3(2λ1 + λ2).
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Proof. Since M is an Einstein model space, we know that ρ(ei, ej) = λ〈ei, ej〉 =
∑4
a,b=1 g

ijRiabj . Clearly,

gij = 0 when (i, j) 6= (1, 2), (2, 1), (3, 3), or (4, 4), so the same is true of ρ. Furthermore, calculating ρ yields:

ρ(e1, e2) = ε1λ

=
∑4
a,b=1 g

abR1ab2

= ε1 · 0 + ε1(ε1λ1)2 + ε2(ε1λ1)(ε2λ2) + ε3(ε3λ3)(ε2λ2)
= ε1λ

2
1 + ε1λ

2
2 + ε1λ

2
3

= ρ(e2, e1)
ρ(e3, e3) = ε2λ

=
∑4
a,b=1 g

abR3ab3

= ε1(ε1λ1)(ε2λ2) + ε1(ε1λ1)(ε2λ2) + ε2 · 0 + ε3(ε3λ3)(ε1λ1)
= ε2λ

2
1 + ε2λ

2
2 + ε2λ

2
3

ρ(e4, e4) = ε2λ

=
∑4
a,b=1 g

abR4ab4

= ε1(ε1λ1)(ε3λ3) + ε1(ε1λ1)(ε3λ3) + ε2(ε2λ2)(ε3λ3) + ε3 · 0
= ε3λ

2
1 + ε3λ

2
2 + ε3λ

2
3.

Cancelling out the epsilons leads to the final system of equations:

λ = λ1(−λ1 + λ2 + λ3)
λ = λ2(2λ1 + λ3)
λ = λ3(2λ1 + λ2).

�

Theorem 6.12. Let M be an Einstein model space with R = Rϕ and a non-degenerate inner product
(metric) g and basis {e1, e2, e3, e4} for V such that:

gij =


ε1 (i, j) = (1, 2) or (2, 1)

ε2 (i, j) = (3, 3)

ε3 (i, j) = (4, 4)

0 otherwise

.

Let λ1, λ2, λ3 be eigenvalues for Φ. Then, scalar curvature τ = 0 and λ1, λ2, λ3 = 0.

Proof. First, it is helpful to calculate ρ(e2, e2), although we know its value:

ρ(e2, e2) = ε2R2332 + ε3R2442 = ε2(ε1)(ε2λ2) + ε3(ε1)(ε3λ3) = ε1(λ2 + λ3) = 0.

Since ε1 6= 0, λ2 = −λ3.
Substituting this result into the first equation of System (14) yields:

λ1 =
√
|λ|.

The second two equations in System (14) may be rewritten as:

λ = λ2(2λ1 − λ2) = 2λ1λ2 − λ22

λ = −λ2(2λ1 + λ2) = −2λ1λ2 − λ22.

Subtracting the second equation from the first and dividing through by 4 results in:

λ1λ2 = 0.

Then, either λ1 = 0 or λ2 = 0. If λ1 = 0, then λ = 0, and substituting this into the updated equations
above shows that λ2λ3 = 0, so λ2, λ3 = 0. If λ2 = 0, then λ3 = 0 and λ = 0, so λ1 = 0. Therefore,
λ1, λ2, λ3, λ, τ = 0 since λ = τ

n . �
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7. Examples

Here are several examples of model spaces that fulfill the conditions discussed in previous sections.

Example 7.1. Einstein model space. Let V be a four-dimensional vector space and let 〈·, ·〉 be a positive
definite inner product on V . Let R = Rϕ be defined by the following Φ:

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


Let M = (V, 〈·, ·〉, Rϕ).
Then, the first two equations of System (1) are:

λ = 1(1− 1− 1) = −1,

while the second two equations are:

λ = −1(1 + 1− 1) = −1.

Therefore, the equations are satisfied, so M is Einstein.

Example 7.2. Weakly Einstein model space. Let M be a model space as described in Example 7.1.
Then, each equation from System (2) is:

µ̃ = 12(12 + (−1)2 + (−1)2) = (−1)2(12 + 12 + (−1)2) = 3,

meaning M is weakly Einstein.

As seen in Examples 7.1-2, it is possible for a model space to be both Einstein and weakly Einstein.

Example 7.3. Weakly Einstein but not Einstein. Let M = (V, 〈·, ·, 〉, Rϕ, with dim(V ) = 5. Let the
eigenvalues of Φ be (1, 1, 1,−1,−1). Then, the equations from System (2) are:

µ̃ = 12(12 + 12 + (−1)2 + (−1)2) = (−1)2(12 + 12 + 12 + (−1)2) = 4.

Therefore, M is weakly Einstein.
However, the two distinct equations from System (1) are:

λ = 1(1 + 1− 1− 1) = 0

λ = −1(1 + 1 + 1− 1) = −2.

Since 0 6= −2, M is not Einstein.

Example 7.4. Einstein but not wealy Einstein. This is covered in Example 5.6.

8. Open Questions

(1) Section 6 focuses nearly exclusively on dim(V ) = 4 Type I Φ. Are there analogous results for the
other Jordan forms, and are there results in dim(V ) = n?

(2) This paper demonstrates the necessary characteristics of ϕ for a model space with R = Rϕ to be
Einstein or weakly Einstein. Are the converse results true - that is, under what conditions is R = Rϕ
if M is Einstein?

(3) If the above is not true, then are there characteristics of a model space that easily lend information
regarding whether the algebraic curvature tensor is canonical?

(4) Does Einstein imply weakly Einstein in manifolds of dimension greater than four?
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