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Abstract. This research generalizes the properties known as constant sec-

tional curvature and constant vector curvature in Riemannian model spaces
of arbitrary finite dimension. While these properties have been previously

studied using 2-plane sectional curvatures, we generalize them by considering

k-plane scalar curvature. We prove that there is a unique algebraic curvature
tensor with k-plane constant sectional curvature ε for 2 ≤ k ≤ n − 2, which

coincides with a 2-plane constant sectional curvature tensor. As with k = 2,

there are model spaces without k-plane constant scalar curvature but with k-
plane constant vector curvature for k > 2. Through two examples, we explore

properties of k-plane constant vector curvature in a given model space. In

particular, we demonstrate a method for determining values for ε, bounding
values of ε, and generating a connected set of values for ε. Many results are

generalizations of known aspects of 2-plane constant curvature conditions. By
studying general k-plane curvature, we can further characterize model spaces

by generating representative numbers for the various subspaces.

SPLASHING IN THE SHALLOW END

1. Introduction and Background

Classical differential geometry uses the tools of calculus to study local properties
of some topological surfaces, called manifolds. As manifolds locally resemble Eu-
clidean space, we can use calculus and linear algebra to examine the tangent space
of the manifold at a particular point. We can create model spaces to represent
this local picture of our manifold, and investigate properties of the model space to
describe the curvature of the manifold at a point. In order to study curvature, we
need to develop a way to measure distance in the tangent space of a point, which
is a vector space. One such metric that describes geometric notions of distance in
Euclidean space is the inner product :

Definition 1.1. An inner product on a vector space V ⊆ Rn is a function from
pairs of vectors to scalars,

〈 , 〉 : V × V → R,
that is

(1) Symmetric: 〈x, y〉 = 〈y, x〉 for all x, y ∈ V ,
(2) Bilinear: 〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉 and 〈λx, y〉 = λ〈x, y〉 for all x, y ∈ V

and λ ∈ R. Linearity in the second slot follows from symmetry,
(3) Non-degenerate: for all x ∈ V there is some y such that 〈x, y〉 6= 0.

We say the inner product is positive-definite if 〈x, x〉 ≥ 0 for all x ∈ V , with
the equality if and only if x = 0. Note that every positive-definite inner product is
non-degenerate.
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For the purposes of this research, we assume all inner products to be positive-
definite unless explicitly stated otherwise. A Riemannian manifold has a positive-
definite inner product for the tangent space of each point, whereas a pseudo-
Riemannian manifold has a non-degenerate inner product for the tangent spaces
of each point.

To further characterize the properties of a manifold, we can use the algebraic
curvature tensor as a powerful algebraic tool to calculate curvature in higher di-
mensions.

Definition 1.2. An Algebraic Curvature Tensor (ACT) is a function from
four tangent vectors in V ⊆ Rn to a scalar,

R : V × V × V × V → R

with the following properties, for all x, y, z, w ∈ V :

(1) Multilinearity: R(x+ x′, y, z, w) = R(x, y, z, w) +R(x′, y, z, w) and
R(λx, y, z, w) = λR(x, y, z, w) for all x′ ∈ V and λ ∈ R. This shows
linearity in the first slot; linearity is similar for the other slots,

(2) Skew-symmetry in the first two slots: R(x, y, z, w) = −R(y, x, z, w),
(3) Interchange symmetry: R(x, y, z, w) = R(z, w, x, y),
(4) The Bianchi Identity: R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0.

For basis vectors {e1, . . . , en}, denote R(ei, ej , ek, el) as Rijkl.

Definition 1.3. Let φ be a symmetric, bilinear function that takes pairs of vectors
to scalars. A canonical ACT with respect to φ is defined as

Rφ(x, y, z, w) = φ(x,w)φ(y, z)− φ(x, z)φ(y, w).

Note that the ACT with respect to the inner product is canonical, with the
associated matrix In. Denote this particular ACT as R〈 , 〉 = R∗, so R∗(x, y, z, w) =
〈x,w〉〈y, z〉 − 〈x, z〉〈y, w〉.

From the span of canonical ACTs, we can build a vector space that contains all
ACTs, denoted A(V ), and all vector space properties follow.

Proposition 1.1. The following properties hold for all S, T ∈ A(V ), x, y, z, w ∈ V ,
and λ ∈ R,

(1) Addition: (S + T )(x, y, z, w) = S(x, y, z, w) + T (x, y, z, w),
(2) Scalar multiplication: (λS)(x, y, z, w) = λS(x, y, z, w).

Definition 1.4. Define the kernel of R as follows:

ker(R) = {v ∈ V |R(v, y, z, w) = 0, ∀y, z, w ∈ V }.

Theorem 1.5. Suppose rank(φ) ≥ 2. Then

ker(φ) = {v ∈ V |φ(v, w) = 0, ∀w ∈ V } = ker(R).

Proof. See [3]. �

Now understanding algebraic curvature tensors, we have described the main tools
necessary to build model spaces:

Definition 1.6. A model space M = (V, 〈 , 〉, R) is defined as a vector space
V ⊆ Rn, a non-degenerate inner product on V , and an algebraic curvature tensor.
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Given a manifold, a metric, and a specific point on the manifold, we can build a
model space from the tangent space, metric, and Riemannian curvature tensor at
that point. If we are interested in the curvature of a manifold at a point, we can
study the curvature given by a model space.

One curvature measurement is called the sectional curvature. This calculation
inputs a non-degenerate 2-plane π and returns a number κ(π). Subce we are working
with a positive definite inner product, all subspaces here are non-degenerate.

Definition 1.7. Let M be a model space and let x, y ∈ V be tangent vectors.
Let π = span{x, y} be a non-degenerate 2-plane. The sectional curvature is a
function that takes pairs of tangent vectors to scalars, κ : V × V → R, where

κ(π) =
R(x, y, y, x)

〈x, x〉〈y, y〉 − 〈x, y〉2
.

The sectional curvature is a geometric invariant. That is to say, this measurement
is independent of the basis chosen for π, meaning that for any u = ax + by and
v = cx+ dy that form another basis for π,

R(x, y, y, x)

〈x, x〉〈y, y〉 − 〈x, y〉2
=

R(u, v, v, u)

〈u, u〉〈v, v〉 − 〈u, v〉2
.

The sectional curvature is an important and celebrated measurement. Note that
if {x, y} is an orthonormal set of vectors, κ(π) = R(x, y, y, x). Let κij denote the
sectional curvature of the 2-plane spanned by ei, ej .

Another curvature invariant is the scalar curvature, which assigns a real number
to each point on the manifold based on the sectional curvatures at that point.

Definition 1.8. Let M be a model space with orthonormal basis {e1, . . . , en}. De-
fine the scalar curvature (or Ricci scalar) τ by

τ =
∑
i,j

εiεjRijji

where εk = 〈ek, ek〉 = ±1.

Since we are working with a positive definite inner product, calculating τ amounts
to summing over the Rijji entries on an orthonormal basis. On such a basis, for all
basis vectors ei, ej , 〈ei, ej〉 = 1 if and only if i = j and equals 0 otherwise.

Definition 1.9. Let V be a vector space spanned by an orthonormal basis {e1, . . . , en}.
The Ricci tensor is a symmetric, bilinear function from pairs of tangent vectors
to a scalar, ρ : V × V → R, where

ρ(x, y) =

n∑
i=1

εiR(x, ei, ei, y).

Again, since we are working with a positive definite inner product, εi = 1 for all
i ∈ {1, . . . , n}. Note that summing ρ(ei, ei) across all basis vectors is equal to the
scalar curvature.

Now that we have sufficiently defined the tools necessary to study curvature, we
can work towards our main goal of understanding generalized constant curvature
conditions. We begin by defining the special condition whereupon a model space
gives the same sectional curvature value for all two-planes:
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Definition 1.10. A model space M has constant sectional curvature ε, de-
noted csc(ε), if κ(π) = ε for all non-degenerate 2-planes π.

Constant sectional curvature is particularly important in that a manifold with
this condition is locally homogeneous: there is some locally distance-preserving map
between any of two points. A manifold with constant sectional curvature is called a
space form. Examples of such space forms include Euclidean n-space, the n-sphere,
and hyperbolic n-space.

As constant sectional curvature is a somewhat uncommon property, we can also
study the weaker condition of constant vector curvature:

Definition 1.11. A model space M has constant vector curvature ε, denoted
cvc(ε), if for every v ∈ V , there is some 2-plane π where v ∈ π and κ(π) = ε for
all non-degenerate 2-planes π.

Studying constant vector curvature has generated interesting results about the
manifolds and model spaces with this condition. In 2011, Schmidt and Wolfson
published the first study of constant vector curvature in 3-manifolds [4]. Since
then, constant vector curvature has been completely resolved for 3-dimensional
model spaces. Through a combined effort, it has been shown that all 3-dimensional
Riemannian model spaces have cvc(ε) for some ε ∈ R, however this is not necessarily
the case for Lorentzian model spaces with a non-degenerate inner product [9, 10].
In studying both constant sectional curvature and constant vector curvature we can
learn more about the structures of model spaces that have each condition.

While these conditions are well understood for model spaces of dimension 3,
not much is known about model spaces of higher dimensions. The work that has
been done in characterizing higher dimensional Riemannian model spaces considers
curvature strictly using 2-planes [8]. It seems natural that we should be able to
generalize curvature conditions using k-planes for model spaces of arbitrary finite
dimension. In [1], Chen defines the scalar curvature of a k-plane as a sum of some
sectional curvatures:

Definition 1.12. LetM = (V, 〈 , 〉, R) with {e1, . . . , en} orthonormal basis for V ⊆
Rn and non-degenerate inner product. Define ML = (L, 〈 , 〉, RL) with {f1, . . . , fk}
orthonormal basis for L ⊆ V , 〈 , 〉L = 〈 , 〉|L, and RL = R|L ∈ A(L). Define the
k-plane scalar curvature of L by KRL : L→ R, given by

KRL(L) =

k∑
j>i=1

κ(fi, fj).

If it is clear that we are considering KR(L) with respect to a certain R, we can omit
the subscript and simply writeK(L). We will also denoteK(L) = K(span{e1, . . . , ek})
by simply K(e1, . . . , ek).1

Although it is understood that we are evaluating K(L) with respect to the restricted
model space ML, for the ease of notation we will discuss K(L) mostly in terms of
the given model spaceM. Additionally, since we are considering a positive definite
inner product and computing these quantities on an orthonormal basis, calculating
K(L) amounts to summing over certain Rijji terms. Note that if L is a 2-plane,
K(L) is equal to the sectional curvature. When k = n, K(L) = τ

2 . Since the only

1In his work, Chen uses τ instead of K.
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n-plane curvature is characterized by the curvature of the entire vector space, we
are mostly interested in k-planes such that 2 ≤ k ≤ n− 1.

Just as sectional curvature is a geometric invarient, k-plane scalar curvature
generates representative numbers that are independent of the chosen basis for the
k-plane. Given this tool for examining k-plane curvatures, we can study constant
curvature conditions on model spaces of any dimension. An intuitive adaptation of
definitions 1.6 and 1.7 follow:

Definition 1.13. A model space M has k-plane constant sectional curvature
ε, denoted k-csc(ε), if K(L) = ε for all non-degenerate k-planes L.

Definition 1.14. A model space M has k-plane constant vector curvature ε,
denoted k-csc(ε), if for all v ∈ V there is some non-degenerate k-plane L containing
v such that K(L) = ε.

In the following sections we will further explore these k-plane constant curvature
conditions. Section 2 introduces some immediate propositions that easily generalize
from known results from 2-csc and 2-cvc. In Section 3, we further investigate k-plane
constant sectional curvature. We prove that in a model space where all k-planes
have curvature 0, for some given value of 3 ≤ k ≤ n − 2, that model space must
have R = 0. This result gives several corollaries, including that there is a unique
R with k-csc(ε). We move on to the weaker condition of k-cvc in Sections 4 and 5,
each section exploring an example model space with a canonical tensor. The first
example gives a 6-dimensional model space with k-cvc(ε) for certain values of k and
ε. We demonstrate a method for calculating values for ε for various values of k,
and show that a model space can have multiple ε values for a given k. The second
example gives an n-dimensional model space with a large kernel, and demonstrates
bounding possible values for ε. We also show this model space to have k-cvc(ε) for
any ε ∈ [0, 1]. Section 6 gives more general results for model spaces with canonical
tensors. Sections 7 and 8 summarize the results and list some open questions.

2. k-Plane Curvature General Results

With this understanding of k-plane curvature conditions, some intuitive proper-
ties follow immediately, including generalizations of some results given in [8].

Proposition 2.1. If a model space M has k-csc(ε) then it has k-cvc(ε).

Proof. SupposeM has k-csc(ε) for some ε ∈ R. Let {e1, . . . , en} be an orthonormal
basis and let v ∈ V . Choose a k-plane L with orthonormal basis {f1, . . . , fk} such
that f1 = v

||v|| . So K(L) = ε, and such an L exists for all v ∈ V . Hence M has

k-cvc(ε). �

Proposition 2.2. Let M1 = (V, 〈 , 〉, R1) have k-csc(ε) and M2 = (V, 〈 , 〉, R2)
have k-cvc(δ). Then M = (V, 〈 , 〉, R = R1 +R2) has k-cvc(ε+ δ).
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Proof. Let v ∈ V and let L be a k-plane containing v such that KR2
(L) = δ. Note

also that KR1(L) = ε. So then

KR(L) =

k∑
j>i=1

Rijji

=

k∑
j>i=1

(R1 +R2)ijji

=

k∑
j>i=1

((R1)ijji + (R2)ijji) (by Proposition 1.1.1)

=

k∑
j>i=1

(R1)ijji +

k∑
j>i=1

(R2)ijji

= ε+ δ.

�

Proposition 2.3. Suppose M = (V, 〈 , 〉, R) has k-cvc(ε). Let c ∈ R. Then
M = (V, 〈 , 〉, cR) has k-cvc(cε).

Proof. Let v ∈ V , and let L be a k-plane containing v such that KR(L) = ε. Then

KcR(L) =

k∑
j>i=1

(cR)ijji

=

k∑
j>i=1

c(Rijji) (by Proposition 1.1.2)

= c

k∑
j>i=1

Rijji

= cε.

�

These three propositions generalize quite easily from results previously known
about cvc. However, in generalizing the following lemma, we see that it is the
dimension of the kernel relative to the dimension of the 2-plane is what gives k-
cvc(0), rather than simply a non-zero kernel.

Lemma 2.1. Let M be a model space with ker(R) 6= 0. Then M has 2-cvc(0) and
only 2-cvc(0).

Proof. See [8]. �

It is clear that what generalizes to higher dimensions is the relationship between
the dimensions of the kernel and the k-plane, although it is not generally the case
that we will get only k-cvc(0), as is illustrated by Example 1 in Section 4.

Proposition 2.4. Let M = (V, 〈 , 〉, R) where dim(ker(R)) ≥ k− 1. Then M has
k-cvc(0).
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Proof. Let M be a model space and suppose α = dim(ker(R)) ≥ k − 1. Let
e1, . . . , ek−1, . . . , eα is an orthonormal basis for ker(R) and eα+1, . . . , en complete
an orthonormal basis for V . Let v ∈ V where v = x1e1 + · · · + xnen. Construct a
k-plane L spanned by

f1 = e1, . . . , fk−1 = xk−1ek−1 + · · ·+ xαeα/
√
x2k−1 + · · ·+ x2α,

and fk = xα+1eα+1 + · · ·+ xnen/
√
x2α+1 + · · ·+ x2n.

Note that since α ≥ k − 1, fk−1 6= 0. In the event that xk−1 = · · · = xα = 0,
set fk−1 = ek−1. Similarly, if xα+1 = · · · = xn = 0, set fk = en. So when

K(L) =
∑k
j>i=1R(fi, fj , fj , fi) is written in terms of the ei’s, an ei ∈ ker(R)

appears in each Rijkl term. So K(L) = 0 and M has k-cvc(0). �

Having established these general propositions about k-plane constant curvature
conditions, the following sections will explore each property more in-depth.

JUMPING IN THE DEEP END

3. k-plane Constant Sectional Curvature

Now that we have defined a general notion of k-plane constant sectional curva-
ture, we can prove our main result. It seems intuitive that, given K(L) = 0 for
any k-plane L, our algebraic curvature tensor must be 0. It is known that a model
space with 2-csc(0) must have R ≡ 0, and this result is easily proven as R can be
written in terms of sectional curvatures [6]. Hence in our proof, we consider k > 2.

For 3 ≤ k ≤ n−2, the extra two dimensions give a degree of freedom that allows
us to first show the Rijki entries to be 0 (for j 6= k), and the rest follows. However,
when considering (n − 1)-planes, we cannot isolate Rijkl terms in the same way,
and in fact we conjecture that there exists R 6= 0 that gives (n− 1)-csc(0).

Theorem 3.1. Set 2 ≤ k ≤ n−2. Let M = (V, 〈 , 〉, R) be a model space. Suppose
K(L) = 0 for all k-planes L. Then R = 0.

Proof. Let M be a model space with {e1, . . . , en} orthonormal basis for V . The
result is already known for k = 2. Let 3 ≤ k ≤ n − 2, and suppose M has k-
csc(0). First we will prove that the ACT entries of the form Rijjk are 0 (for i 6= k):
Consider the k-plane L spanned by

f1 = cos θe1 + sin θe2,

f2 = e3,

...

fk = ek+1 = eα.
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By hypothesis, the k-plane scalar curvature of L is 0, regardless of the value of θ,
so

0 = K(cos θe1 + sin θe2, e3, . . . , eα)

= cos2 θ(R1331 + · · ·+R1αα1) + sin2 θ(R2332 + · · ·+R2αα2)

+ 2 cos θ sin θ(R1332 + · · ·+R1αα2) +

α∑
j>i=3

Rijji

= cos2 θ(

α∑
j=3

R1jj1 +

α∑
j>i=3

Rijji)− cos2 θ(

α∑
j>i=3

Rijji)

+ sin2 θ(

α∑
j=3

R2jj2 +

α∑
j>i=3

Rijji)− sin2 θ(

α∑
j>i=3

Rijji)

+

α∑
j>i=3

Rijji + 2 cos θ sin θ(

α∑
j=3

R1jj2) (by adding clever 0s).

But now notice that
∑α
j=3R1jj1+

∑α
j>i=3Rijji = K(e1, e3, . . . , eα) and

∑α
j=3R2jj2+∑α

j>i=3Rijji = K(e2, e3, . . . , eα). Both of these equations equal 0 by supposition,
so

0 = − cos2 θ(

α∑
j>i=3

Rijji)− sin2 θ(

α∑
j>i=3

Rijji) +

α∑
j>i=3

Rijji + 2 cos θ sin θ(

α∑
j=3

R1jj2)

= (cos2 θ + sin2 θ)(−
α∑

j>i=3

Rijji) +

α∑
j>i=3

Rijji + 2 cos θ sin θ(

α∑
j=3

R1jj2)

= 2 cos θ sin θ(

α∑
j=3

R1jj2).

Since the equation must hold true for all values of θ,

0 =

α∑
j=3

R1jj2.(3.1)

Since we were considering k ≤ n − 2, we can construct a new k-plane by setting
fk = en and keeping all other fi basis vectors the same. We repeat the process
above to get

0 =

n∑
n−16=j=3

R1jj2.(3.2)

Now, subtracting (3.2) from (3.1):

0 = R1αα2 −R1nn2,

which means R1αα2 = R1nn2. Note that our choice of eα and en was arbitrary, so we
could permute any ei, ej basis vectors to get R1ii2 = R1jj2. Since 0 =

∑α
j=3R1jj2 =

(α − 2)R1332, and since α > 2, we can conclude that R1332 = R1jj2 = 0 for all
j ∈ {1, . . . , n}. By replacing e1 and e2 with ei and ek, we can repeat the process
to get that Rijjk = Rjikj = 0 for any distinct i, j, k ∈ {1, . . . , n}.

Next, we will show that the Rijji entries must be 0. Set f1 = ei, f2 = cos θej +
sin θek, f3 = cos θek − sin θej for some ei, ej , ek ∈ {e1, . . . , en}. Extend f1, f2, f3 to
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an orthonormal basis βf for V . Since Rijjk = 0 on any orthonormal basis, including
βf , we get

0 = R(f2, f1, f1, f3)

= cos2 θRijki − sin θ cos θRijji − sin2 θRikji + sin θ cos θRikki

= − sin θ cos θRijji + sin θ cos θRikki.

Since this equation must hold for all values of theta, we get 0 = Rikki − Rijji,
meaning that Rijji = Rikki. Since 0 = K(L) for all k-planes L, including the
coordinate plane spanned by e1, . . . , ek, we get that

k∑
j>i=1

Rijji =
k(k − 1)

2
R1221 = 0,

which implies R1221 = Rijji = 0 for all i, j ∈ {1, . . . , n}.
Finally, we will show that the Rijkl entries are also 0. Set f1 = cos θei + sin θel

and f2 = cos θej + sin θek. As before, extend f1, f2 to an orthonormal basis for V .
Then, knowing that on any orthonormal basis Rijji = 0 = Rijki for all indices,

0 = R(f1, f2, f2, f1)

= 2 cos2 θ sin2 θRijkl + 2 cos2 θ sin2 θRikjl

= 2 cos2 θ sin2 θ(Rijkl +Rikjl).

Since this equation holds for all theta, 0 = Rijkl + Rikjl. We can then permute ei
and ej without loss of generality to get 0 = Rjikl + Rjkil. Subtracting this result
from our first one, we get

0 = Rijkl +Rikjl −Rjikl −Rjkil
= Rijkl −Rkijl +Rijkl −Rjkil (by property 2 of Definition 1.2)

= 2Rijkl − (Rkijl +Rjkil)

= 2Rijkl − (−Rijkl) (by property 3 of Definition 1.2)

= 3Rijkl.

Hence Rijkl = 0 for all i, j, k, l ∈ {1, . . . , n}. Since we have shown all components
of R to be 0, we can conclude R = 0. �

Corollary 3.1.1. Set 2 ≤ k ≤ n − 2. Suppose KR1(L) = KR2(L) for all k-planes
L. Then R1 = R2.



10 MAXINE CALLE

Proof. Set R = R1 −R2. Then for any L = span{e1, . . . , ek}

KR(L) =

k∑
j>i=1

R(ei, ej , ej , ei)

=

k∑
j>i=1

(R1 −R2)(ei, ej , ej , ei)

=

k∑
j>i=1

(R1(ei, ej , ej , ei)−R2(ei, ej , ej , ei)) by properties of A(V )

=

k∑
j>i=1

R1(ei, ej , ej , ei)−
k∑

j>i=1

R2(ei, ej , ej , ei)

= KR1(L)−KR2(L)

= 0.

Then by Theorem 3.1, 0 = R = R1 −R2, meaning that R1 = R2. �

Corollary 3.1.2. There is a unique R giving k-csc(ε) where R = 2ε
k(k−1)R∗ for

2 ≤ k ≤ n− 1.

Proof. Let M be a model space with R = 2ε
k(k−1)R∗. Let L = span{e1, . . . , ek} for

some orthonormal basis {e1, . . . , en}. Then

K(L) =

k∑
j>i=1

Rijji

=

k∑
j>i=1

2ε

k(k − 1)
(R∗)ijji (by Proposition 1.1.2)

=
2ε

k(k − 1)

k∑
j>i=1

1 (since the inner product is positive definite)

=
2ε

k(k − 1)
(
1

2
)

k∑
i=1

k−1∑
j=1

1 (since j > i and for each of the k i’s, there is one j where i = j)

=
ε

k(k − 1)
(k − 1)

k∑
i−1

1

=
ε

k
k

= ε.

Now suppose there is some R1 6= R with k-csc(ε). Then, for all k-planes L, KR(L) =
KR1

(L). But then by Corollary 3.1.1, R = R1. Hence R is unique. �

An equivalent statement is to say thatM has k-csc(ε) if and only if R = 2ε
k(k−1)R∗.

Note that this means M has 2-csc(γ) if and only if R = γR∗.

Corollary 3.1.3. M has k-csc(ε) if and only if it has j-csc(δ), where δ = ε j(j−1)k(k−1) .
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Proof. Suppose M has k-csc(ε) for some k ≤ n− 2 and ε ∈ R. By Corollary 3.1.1,

R = 2ε
k(k−1)R∗. So M has 2-csc(γ) where γ = 2ε

k(k−1) . Set δ = ε j(j−1)k(k−1) . Then

γ = 2δ
j(j−1) , so γR∗ = 2δ

j(j−1)R∗. Hence by Corollary 3.1.1, M has j-csc(δ). The

argument from j-csc(δ) to k-csc(ε) is similar by swapping k and ε with j and δ. �

These corollaries align neatly with what is known about the 2-csc condition. In
any given model space, the complete collection of curvature equations uniquely
determines the tensor. Further, the unique tensor giving k-csc(ε) coincides with
the 2-plane constant sectional curvature tensor. Considering any model space,
if all k-dimensional subspaces have constant curvature for any k ≤ n − 2, then
subspaces of any dimension must also have constant curvature for some constant
that is determined by some proportion of dimensions.

With this work completed for 2 ≤ k ≤ n − 2, we turn to k = n − 1. When
we suppose a model space has (n − 1)-csc(0), we discover that the model space is
Ricci-flat, and there is a duality between the curvature of certain planes. However
we could not prove that R = 0, and in fact we conjecture that it could be non-zero.

Theorem 3.2. Suppose a model spaceM has (n−1)-csc(0). Then the Ricci scalar
τ = 0 and the Ricci tensor ρ = 0.

Proof. Suppose M has k-csc(0) for k = n− 1. Recall

τ

2
=

n∑
j>i=1

Rijji =

n−1∑
j>i=1

Rijji +

n−1∑
j>i=1

Rinni,

and note
∑n−1
j>i=1Rijji = K(L) = 0 for L spanned by {e1, . . . , en−1}, so τ

2 =∑n−1
j>i=1Rinni = ρ(en, en). By permuting the basis vectors, we get n > 2 equations,

one for each ei, where τ
2 = ρ(ei, ei). Summing over the equations, we get nτ

2 =∑n
i=1 ρ(ei, ei). But recall

∑n
i=1 ρ(ei, ei) = τ , and since n > 2, n

2 τ = τ implies
0 = τ = ρ(ei, ei) for all i ∈ {e1, . . . , en} on any orthonormal basis. There exists
a particular basis upon which ρ is diagonalized since ρ is a symmetric, bilinear
form, so the ρii entries are the only possible non-zero entries. But ρii = 0 on this
orthonormal basis, and so ρ = 0. �

Theorem 3.3. Suppose a model space M has (n − 1)-csc(0). Set 2 ≤ k ≤ n − 2
and let {e1, . . . , en} be an orthonormal basis for V . Choose k of the ei to span a
plane L, and let L⊥ be the plane spanned by the remaining n − k coordinate ei.
Then K(L) = K(L⊥).

Proof. Let a model space M have (n − 1)-csc(0), then consider the (n − 1)-plane
spanned by {e1, e3, . . . , en}. So

0 = K(L)

=

n∑
j=3

R1jj1 +

n∑
j>i=3

Rijji

= (ρ(e1, e1)−R1221) +

n∑
j>i=3

Rijji

= −κ(e1, e2) +K(e3, . . . , en).
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This shows that the sectional curvature of the 2-plane spanned by e1, e2 is equal to
the k-plane scalar curvature of the (n − 2)-plane spanned by the remaining basis
vectors of V . By permuting the basis vectors, this equality holds for any way we
choose to divide the ei basis vectors into a collection of 2 and n− 2. We claim that
the equality in fact holds for any division of the ei into a collection of k and n− k
for all k ≥ 2. Suppose the property holds for some m ≥ 2. Then, by the induction
hypothesis,

0 = −K(e1, . . . , em) +K(em+1, . . . , en)

= −(

m∑
j>i=1

Rijji) +

n∑
j>i=m+1

Rijji

= −(

m∑
j>i=1

Rijji) +

n∑
j=m+2

R(em+1, ej , ej , em+1) +

n∑
j>i=m+2

Rijji

= −(

m∑
j>i=1

Rijji) + (ρ(em+1, em+1)−
m∑
j=1

R(em+1, ej , ej , em+1)) +

n∑
j>i=m+2

Rijji

= −(

m∑
j>i=1

Rijji +

m∑
j=1

R(em+1, ej , ej , em+1)) +

n∑
j>i=m+2

Rijji

= −(

m+1∑
j>i=1

Rijji) +

n∑
j>i=m+2

Rijji

= −K(e1, . . . , em+1) +K(em+2, . . . , en)

which shows the desired equality for (m+1)-planes and (n−(m+1))-planes. Hence
the property holds for all m ≥ 2 by the Principle of Mathematical Induction. �

A model space with (n− 1)-csc(0) must have these properties, but it is not yet
known whether the tensor in such a model space must be the zero tensor. Working
with 4-planes in R5 led us to construct the following tensor as a possible non-zero
candidate for a model space with (n− 1)-csc(0).

Conjecture 3.3.1. There exists R 6= 0 such that M has (n − 1)-csc(0). The
proposed R is has the following components on an orthonormal basis: R1221 =
R3443 = 1, R1331 = R2442 = −1, and otherwise is 0.

Due to the high degree of symmetry in this tensor, it seems to satisfy all the
requirements. In order to prove or disprove the conjecture, we look for particular
(n − 1)-planes that disproportionately skew some Rijkl components. If we cannot
find a plane that gives non-zero k-plane scalar curvature using the proposed tensor,
then we have proven the conjecture. If we do find such a plane, then we will have
proved that R must be 0, since this plane will allow us to isolate some tensor
components as equal to 0, and the rest would follow easily.

4. k-plane Constant Vector Curvature: First Example

Having fully characterized model spaces with k-plane constant sectional curva-
ture (for 2 ≤ k ≤ n − 2), we now investigate model spaces with k-plane constant
vector curvature for 3 ≤ k ≤ n − 1. As previously mentioned, model spaces with
k-csc also have k-cvc. But there are many model spaces that only have the weaker
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condition of k-cvc. We use two examples of such model spaces to demonstrate in-
teresting aspects of this curvature condition. In particular, we investigate methods
for determining k-cvc values, including establishing bounds and showing the values
to lie within a connected set.

In order to show a model space has k-cvc(ε), we choose an arbitrary vector and
construct a k-plane that contains the vector. The plane is specifically constructed
to have a curvature value that does not depend on the specific components of our
chosen vector. That is to say, the construction of our plane should work indis-
criminately for a vector with non-zero components any number of dimensions. The
method used in the first example is to decompose v based on components in the
eigenspaces of a symmetric, bilinear form φ, where R = Rφ.

Definition 4.1. Let A : V → V be a linear transformation. A non-zero v ∈ V is
an eigenvector of A with eigenvalue λ ∈ R if Av = λv.

The eigenvalues of a linear transformation are basis independent, as λ is an
eigenvalue if and only if det(A − λIn) = 0 and the determinant calculation does
not depend on the choice of a basis of V . We can also discuss eigenvalues in the
context of symmetric, bilinear forms. It is known that for any φ that is a symmetric,
bilinear function which takes pairs of vectors to scalars, if the vector space has a non-
degenerate inner product, then there is a self-adjoint linear transformation A such
that φ(x, y) = 〈Ax, y〉. Hence the eigenvalues of φ are precisely the eigenvalues of A.
So for orthonormal eigenvectors fi, fj , we know φ(fi, fj) = 〈Afi, fj〉 = λi〈fi, fj〉,
which is equal to 0 unless i = j. Given an eigenvalue λi, there is an eigenspace
spanned by the associated eigenvector vi. The eigenspace associated with any λi is
denoted as Ei.

Definition 4.2. Let φ be a symmetric, bilinear form. The spectrum of φ, denoted
spec(φ), is the collection of eigenvalues of φ, repeated according to multiplicity.

In this research, the geometric multiplicity of λi (the number of times λi appears
in the spectrum) is equal to the algebraic multiplicity of λi (dim(Ei)) for all λi ∈
spec(φ). In our first example, each eigenvalue has multiplicity of 2.

Proposition 4.1. Let M = (V, 〈 , 〉, Rφ) be a model space. If fi, fj are unit
vectors in the eigenspaces for λi, λj, respectively, then κ(fi, fj) = λiλj.

Proof. By the Spectral Theorem, there is some change of basis that diagonalizes φ,
so φ(ei, ej) = 0 for i 6= j. Suppose fi ∈ Ei and fj ∈ Ej are unit vectors. Then

κ(fi, fj) = Rφ(fi, fj , fj , fi)

= φiiφjj − φ2ij
= λiλj .

�

This proposition allows K(L) to be determined in terms of products of eigenvalues.

Example 4.3. LetM = (V, 〈 , 〉, R) be a model space such that {e1, . . . , e6} is an
orthonormal basis for V , the inner product is positive definite, and R = Rφ where
φ is represented by  I2 02 02

02 −I2 02
02 02 02
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where I2 is the 2 × 2 identity matrix and 02 is the 2 × 2 matrix whose entries are
all 0. So φ(ei, ej) is the ijth entry of the array above. Let E1 = span{e1, e2} be
the eigenspace for λ1 = 1, E2 = span{e3, e4} be the eigenspace for λ2 = −1, and
E3 = span{e5, e6} = ker(R) be the eigenspace for λ3 = 0. Since {e1, . . . , e6} is
an orthonormal basis, it follows that Ei ⊥ Ej for i 6= j. We will show that M
has multiple k-cvc values for different choices of k. This amounts to constructing
different k-planes containing an arbitrary v ∈ V whose curvature is a constant that
does not depend on specific components of v. One way to approach this problem
is to construct basis vectors that are contained entirely in some eigenspace. Such a
construction is often possible in multiple ways for a given value of k.

In Section 4 of [8], a similar approach is used to determine possible 2-cvc values
for a 3-dimensional model space. By orthogonally decomposing v into unit vectors
vi in the eigenspace corresponding to eigenvalue λi, Beveridge determines 2-cvc
values as products of the eigenvalues. We can further split each vi between different
fi basis vectors and calculate the curvature value ε as a sum of products of the
eigenvalues. It seems likely that further developing this method of decomposing
into eigenspaces is most promising for generally determining k-cvc values for an
arbitrary model space.

Proposition 4.2. The model spaceM of Example 4.3 has the following properties:

(1) 2-cvc(0) and only 2-cvc(0),
(2) 3-cvc(0) and 3-cvc(−1),
(3) 4-cvc(−1),
(4) 5-cvc(−1) and 5-cvc(−2).

(1) M has 2-cvc(0) and only 2-cvc(0).

Proof. Set k = 2. Let v ∈ V . Note that dim(ker(R)) ≥ 2. So by Lemma 2.7,
M has 2-cvc(0) and only 2-cvc(0). To show this explicitly, we can decompose
v = av1 + bv2 + cv3 where a, b, c ∈ R and vi ∈ Ei are unit vectors. Construct an
orthonormal basis for L = span{f1, f2} where f1 = av1+bv2/

√
a2 + b2 and f2 = v3.

So v = (
√
a2 + b2)f1 + cf2 and is contained in L. In the event that a = b = 0, set

f1 = e1. Similarly, if c = 0, set f2 = e5. Then

K(L) = R(f1, f2, f2, f1) = 0 since f2 ∈ ker(R).

Since this construction of L works for arbitrary v ∈ V , M has 2-cvc(0). �

(2) M has 3-cvc(0) and 3-cvc(−1).

Proof. Set k = 3. Let v ∈ V be expressed as before. Again, by Proposition 2.4,
we know M has 2-cvc(0). We can show this explicitly by constructing L similarly

as we did in (a), but set f1 = av1 + bv2/
√
a2 + b2, f2 = e5, and f3 = e6. In the

event that a = b = 0, set f1 = e1. Since f2, f3 ∈ ker(φ) = ker(R) by Theorem 1.5,
K(L) = 0.

However, M also has 3-cvc(−1). Construct L = span{f1, f2, f3} where f1 = v1,
f2 = v2, and f3 = v3. If a = 0, set f1 = e1. If b = 0, set f2 = e3. If c = 0, set
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f3 = e5. Since f3 ∈ ker(R),

K(L) = R(f1, f2, f2, f1) +R(f1, f3, f3, f1) +R(f2, f3, f3, f2)

= λ1λ2 + 0

= −1

which shows M has 3-cvc(−1). �

(3) M has 4-cvc(−1).

Proof. Set k = 4. Let v ∈ V as before. We can show M has 4-cvc(−1), and in fact
there are multiple constructions of 4-planes that give curvature -1, for any v. One
way is to construct L such that f1 = e1, f2 = e2, f3 = v2, and f4 = v3. As before,
in the event that b = 0 or c = 0, we can set f2 = v3 or f3 = e5 as needed. Then
K(L) = λ21 + 2λ1λ2 = 1− 2 = −1. �

(4) M has 5-cvc(−1) and 5-cvc(−2).

Proof. Set k = 5. Let v ∈ V as before. First, we can show that M has 5-cvc(−1)
by constructing L such that f1 = v1 and fi = ei+1 for i ∈ {2, . . . , 5}. If a = 0, set
f1 = e1. Then

K(L) = 2λ1λ2 + 2λ1λ3 + λ22 + 4λ2λ3 + λ23

= −2 + 0 + 1 + 0 + 0

= −1.

Next, show M has 5-cvc(−2). Construct L such that fi = ei for i ∈ {1, . . . , 4}
and f5 = v3. So f3 ∈ ker(R) and

K(L) = λ21 + 4λ1λ2 + λ22 + 0

= 1− 4 + 1

= −2.

�

5. k-Plane Constant Vector Curvature: Second Example

Example 5.1. Let M = (V, 〈 , 〉, R) be a model space such that dim(V ) = n, the
inner product is positive definite, and R = Rφ where φ is represented by

I2 02 . . . 02
02 0 . . . 0
...

...
. . .

...
02 0 . . . 0


where I2 and 02 are expressed as in Example 4.3. Note that λ1 = 1 where dim(E1) =
2 and λ2 = 0 where dim(E2) = n− 2.

Proposition 5.1. The model spaceM in Example 5.1 has the following properties:

(1) k-cvc(0) for k ≥ 2,
(2) k-cvc(1) for k ≥ 3,
(3) If M has 3-cvc(ε), then ε ∈ [0, 1],
(4) For k ≥ 4, if M has k-cvc(ε) then ε ∈ [0, k − 1),
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(5) M has k-cvc([0, 1]).2

(1) M has k-cvc(0) for k ≥ 2.

Proof. Since ker(R) 6= 0, by Lemma 2.7, M has 2-cvc(0) and only 2-cvc(0). Set
k ≥ 3, and let v ∈ V be decomposed as v = av1+bv2, where a, b ∈ R, and v1 ∈ E1 =
span{e1, e2}, v2 ∈ E2 = span{e3, . . . , en} be unit vectors. Construct a k-plane L0

containing v, by setting f1 = v1, and f2 = v2. Since dim(E2) = n − 2, we can
create an orthonormal basis for E2 by finding vectors w1, . . . , wn−3 perpendicular
to v2. Complete the orthonormal basis for L by setting f3 = w1, . . . , fk = wk.
If b = 0, then set fi = ei+1 for i ∈ {2, . . . , k}. Then f2, . . . , fk ∈ ker(R), so

K(L) =
∑k
j>i=1Rijji = 0. �

(2) M has k-cvc(1) for k ≥ 3.

Proof. Set k ≥ 3. Let v ∈ V be expressed as before. Construct L1 by setting
f1 = e1, f2 = e2, f3 = v2, f4 = w1, . . . , fk = wk−3 where {v2, w1, . . . , wn−3} is
an orthonormal basis for E2 as before. If b = 0, set fi = ei for i ∈ {3, . . . , k}.
So f3, . . . , fk ∈ ker(R). Then R1221 is the only non-zero Rijji term in K(L), so
K(L) = 1. �

(3) If M has 3-cvc(ε), then ε ∈ [0, 1].

Proof. SupposeM has 3-cvc(ε) for some ε ∈ R. Set v = e3. Let L = span{f1, f2, f3}
be a 3-plane containing v such that K(L) = ε. Without loss of generality, since v is
contained in L, we can construct an orthonormal basis for L such that f1 = v.
Let f2 = a1e1 + · · · + anen and f3 = b1e1 + · · · + bnen. Since f1 ∈ ker(R),
K(L) = R(f2, f3, f3, f2). By [7], the sectional curvature values are bounded by the
products of eigenvalues, so for π = span{f2, f3}, 0 ≤ κ(π) = R(f2, f3, f3, f2) ≤ 1.
Hence 0 ≤ K(L) = ε ≤ 1. �

(4) For k ≥ 4, if M has k-cvc(ε) then ε ∈ [0, k − 1).

Proof. Suppose M has k-cvc(ε) for some ε ∈ R. Set v = e1. Let L be a k-plane
containing v such that K(L) = ε. As before, without loss of generality, we can
set f1 = v, and extend to an orthonormal basis {f1, . . . , fk} for L. So each fi =
ai2e2 + · · ·+ainen for some aij ∈ R where

∑n
j=2 a

2
ji = 1. Since e3, . . . , en ∈ ker(R),

ε = K(L) = a222R1221 + · · ·+ a2k2R1221

= a222 + · · ·+ a2k2

< 1 + · · ·+ 1

= k − 1.

The strict inequality holds since fi are orthonormal, so if any of the a2i2 = 1 then
aj2 = 0 for all j 6= i. We get a lower bound of 0, as K(L) is a sum of squares of
real numbers and so cannot be negative. Hence 0 ≤ K(L) = ε < k − 1. �

(5) Let v ∈ V . For all ε ∈ [0, 1], there is a k-plane L containing v and some θ such
that K(AθL) = ε. Hence M has k-cvc([0,1]).

2We do not claim that M does not have k-cvc(δ) for δ /∈ [0, 1].
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Proof. For any v ∈ V , we can rotate (k − 1)-planes in v⊥ to get a connected set
of curvature values. We do so by creating a linear transformation represented by
a matrix in SO(n), the group of orthogonal matrices with determinant 1. Let the
linear transformation Aθ : [0, π2 ]→ SO(n) be represented by

Aθ =

Ik−1 0 0
0 R 0
0 0 In−k−1


where

R =

[
cos θ sin θ
− sin θ cos θ

]
This matrix rotates the kth vector into the (k + 1)th, and the (k + 1)th into the
−kth. We can construct two k-planes L0, L1 containing v such that K(L0) = 0
and K(L1) = 1, and use the above special orthogonal matrix to rotate between the
two. Thus we can obtain a connected set of k-cvc values, that is to say, for every
ε ∈ [0, 1], there is some k-plane containing v such that K(L) = ε. For this example,
we are considering k ≥ 3, n ≥ 4.

We again decompose V into E1 and E2 = ker(φ) = ker(R), the eigenspace
associated with λ1 = 1. Then decompose v as v = av1 + bv2, where vi ∈ Ei are
unit vectors. Since E1 is 2-dimensional, span{v1, u} = E1 for some unit vector
u⊥v1. Similarly, we can construct an orthonormal basis {v2, w1, . . . , wn−3} that
spans the (n− 2)-dimensional E2. Now, set f1 = v1, f2 = v2, f3 = w1, . . . , fk =
wk−2, fk+1 = u. Extend this to an orthonormal basis for all of V . Then for the
k-plane L = span{f1, . . . , fk},

K(AθL) = K(Aθf1, . . . , Aθfk)

= K(v1, v2, w1, . . . , wk−3, cos θwk−2 + sin θu)

= R(v1, cos θwk−2 + sin θu, cos θwk−2 + sin θu, v1) (since v2, . . . , wk−3 ∈ E2)

= R(v1, sin θu, sin θu, v1) (since wk−2 ∈ E2)

= sin2 θR(v1, u, u, v1)

= sin2 θ

since span{v1, u} = E1 which has sectional curvature 1. If a = 0, then v ∈ E2.
So E1 = span{e1, e2}. Set f1 = e1 and fk+1 = e2, and keep all other fi the
same. Extend this to an orthonormal basis for V . Then, as before, K(AθL) =
R(e1, sin θe2, sin θe2, e1) = sin2 θR1221 = sin2 θ.

If b = 0, then v ∈ E1. So V1 = span{e3, . . . , en}. Now, set f2 = e3, . . . , fk = ek+1

and keep all other fi the same. Extend this to an orthonormal basis for V . Then,
as before, K(AθL) = R(v1, sin θu, sin θu, v1) = sin2 θ.

Note K(A0L) = 0 and K(Aπ
2
L) = 1. Further, L 7→ K(L) is continuous, and

the Grassmannian Grk,n is connected, where Grk,n is the space that parametrizes
all k-dimensional linear subspaces of the n-dimensional vector space. Hence by the
Intermediate Value Theorem, for all ε ∈ [0, 1], there is some θ such thatK(AθL) = ε,
where L contains an arbitrary v ∈ V . Further, we explicitly determine this θ to be



18 MAXINE CALLE

arcsin(
√
ε). Let ε ∈ [0, 1], and set θ = arcsin(

√
ε). Then

K(AθL) = sin2 θ

= sin2(arcsin(
√
ε))

=
√
ε
2

= ε.

�

6. k-Plane Constant Vector Curvature: General Results

Based on the work done in these examples, we get results that apply more generally
to model spaces with canonical curvature tensors. First, we show that we can
construct model spaces with a compact interval of k-cvc values out of two other
model spaces.

Theorem 6.1. For any compact interval [a, b] in R, there exists M = (V, 〈 , 〉, R)
such that M has k-cvc([a, b]) for k ≥ 3.

Proof. Let [a, b] ∈ R be compact. Let M1 = (V, 〈 , 〉, R1) have k-csc(a), and
let M2 = (V, 〈 , 〉, R2) where R2 = (b − a)Rφ for Rφ as in Example 5.1. So by
Proposition 2.3 and Example 5.1 (a), M2 has k-cvc((b− a)[0, 1]), in other words, it
has k-cvc([0, b− a]). Construct M = (V, 〈 , 〉, R) such that R = R1 +R2. Then by
Proposition 2.2,M has k-cvc(a+ [0, b− a]), that is to say,M has k-cvc([a, b]). �

Note that we say M has “at least” k-cvc([a, b]). While we can prove that for any
ε ∈ [a, b], there is some L containing arbitrary v such that K(L) = ε, the proof
does not establish that M is not k-cvc(δ) for some δ /∈ [a, b]. An important next
step is developing a method to show that M has only k-cvc([a, b]). Additionally,
this proof only works for k ≥ 3 in a model space of arbitrary n dimension. Since
ker(R2) 6= 0, by Lemma 2.6 M2 has only 2-cvc(0), and not the interval [0, 1].

It seems the range of possible values for ε would be determined by the dimensions
of the various eigenspaces. We can establish very loose bounds for ε based on
extremal products of eigenvalues of φ.

Theorem 6.2. Suppose a model space M = (V, 〈 , 〉, Rφ) has k-cvc(ε) for some
ε ∈ R. Then (

k

2

)
min{λiλj |i 6= j} ≤ ε ≤

(
k

2

)
max{λiλj |i 6= j}.

Proof. LetM has k-cvc(ε) for some ε ∈ R. By [7], we know the sectional curvatures
are bounded by products of eigenvalues of φ. Since calculating the k-plane scalar
curvature amounts to summing over

(
k
2

)
sectional curvatures, we know we could

sum at least
(
k
2

)
minimal sectional curvatures and at most

(
k
2

)
maximal sectional

curvatures. �

Clearly for model spaces with a canonical ACT there is some relationship be-
tween the eigenvalues of φ and the possible k-cvc values. We conjecture that the
multiplicity of eigenvalues can determine whether a model space has k-cvc(ε) for
some ε ∈ R.

Conjecture 6.2.1. For M = (V, 〈 , 〉, Rφ), if there are no more than k distinct
eigenvalues, then M has k-cvc(ε) for some ε ∈ R.
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In wrapping up our investigation of the k-cvc condition, we see that model spaces
with this property are not as easily characterized as model spaces with the k-csc
property. The variety of k-cvc values we can get in a given model space exemplifies
how this condition can generate representative numbers that help to characterize
model spaces.

7. Conclusions

In this paper, we seek to understand k-plane curvature, and specifically the condi-
tions defined as k-plane constant sectional curvature and k-plane constant vector
curvature. Working in Riemannian model spaces, we are able to generalize some re-
sults previously known from the 2-plane constant curvature conditions. By showing
that every model space with k-csc(0) for some k ≤ n−2 must have R = 0, we prove
there is a unique ACT with k-csc(ε). This ACT coincides with the 2-csc tensor.
Additionally, we show that a complete collection of curvature equations uniquely
determines R, and a model space that has k-plane constant sectional curvature for
some k ≤ n− 2 also has j-plane constant sectional curvature.

In order to study k-plane constant vector curvature, we give two examples. The
first example demonstrates a method for determining possible k-plane constant
vector curvature values. These values can be found in terms of products of the
eigenvalues of the symmetric, bilinear form used to define our canonical tensor
in these examples. In the second example, we bound ε based on the sectional
curvatures of the model space. We rotate basis vectors to show that our model space
has a connected set of k-cvc values. This result implies that for any compact interval
of real numbers, there is a model space that has at least k-cvc for that interval. In a
model space with a canonical tensor, we give loose bounds on possible k-cvc values
and conjecture some sufficient conditions for the k-cvc condition. Further study
of this constant curvature condition should investigate a method for determining
when a model space does or does not have k-cvc(ε) for some ε ∈ R.

8. Open Questions

(1) What is a method for determining possible k-cvc values, given your model
space? See [10] for methods for determining possible 2-cvc values in 3-
dimensional model spaces. Difficulties arise when k becomes small relative
to n, as v ∈ L could potentially have many non-zero components relative to
an orthonormal basis. Perhaps it would be easiest to first consider canon-
ical ACTs, and (n − 1)-planes, so that the non-zero entries of v can be
accounted for individually in the basis vectors of L. Or, is it possible to
neatly construct an L that has v as its first basis vector? It seems a helpful
tactic could be decomposing v into its components in the eigenspaces. So
then if we could construct a basis for L such that each basis vector is in one
eigenspace, it seems each Rijji would be independent from the coefficients
xi’s in v. This gives us K(L) = ε of the type we are looking for.

(2) Similarly, develop some method for showing that a model space does not
have k-cvc(ε), for some 2 ≤ k ≤ n − 1 and ε ∈ R. The examples given do
not quite answer this question, as we instead try to find bounds on possible
k-cvc values. Our approach relies on bounding sectional curvatures, and
gives estimates that are clearly too loose. Is there some way to prove that,
given some ei /∈ ker(R), there are some restrictions on how ei could appear
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in the fi basis for L? That is to say, is there some bound on how much a
basis vector can contribute to the curvature?

(3) IfM has k-cvc(ε) and k-cvc(δ), doesM have k-cvc([ε, δ])? It seems possible
using the linear transformation Aθ as in Example 4.4 (perhaps multiple
times for various fi), so we could change the basis vectors of L to create
such a set of connected values. The trick is doing so in such a way that we
are guaranteed v ∈ L. It seems that decomposing v into components in the
eigenspaces would again be a helpful approach.

(4) Does every model space have k-cvc(ε) for some ε and some k? If not, does
it for a particular k < n?

(5) As shown in [6], it is possible to completely characterize R by 2-plane cur-
vatures. It is possible to characterize R in terms of some k-plane curvature
equations? For a particular k relative to n?

(6) It is known that the Ricci tensor completely determines R for 3-dimensional
model spaces, however it is possible to have different higher dimensional
curvature tensors with the same Ricci tensor. There is a method to deter-
mine an ACT given a Ricci tensor, but this answer is non-unique. It seems
that, after answering (7), the K(L) equations could determine τ

2 restricted
to L, which could determine R. Is this true? Or is there some other kind
of k-Ricci entity that could characterize R.

(7) Generalizing the property of extremal constant vector curvature as dis-
cussed in [8, 10], and : It seems that this condition could easily generalize
for k-planes:

Definition 8.1. A model spaceM has k-plane extremal constant vec-
tor curvature ε if M has k-cvc(ε) and ε is a bound on possible k-plane
curvature values.

Investigate this condition further. It is obvious that every model with
k-csc(ε) would also have k-ecvc(ε). For some model spaces, would we get
k-ecvc for only certain values of k?

(8) We say a model space is Einstein if ρ = c〈 , 〉 for some c ∈ R. On page 34
of [1], Chen references a property he calls k-Einsteinian. We can roughly
describe this property as follows:

Definition 8.2. Let M = (V, 〈 , 〉, R) with V ⊆ Rn and a positive definite
inner product. Let Vl be an l-plane section of V , and let L be a k-plane
section of Vl. Let ρL = ρ|L. Let v ∈ L be a unit vector, and extend v to
an orthonormal basis for L, {v, e2, . . . , ek}. We say VL is k-Einsteinian if,

for all k-planes L,
∑k
j=2 ρL(ej , ej) = ε for some ε ∈ R.

A model space M is k-Einsteinian when Vl = V . Investigate this prop-
erty further. It seems a model space is k-Einsteinian if and only if it has
k-csc(ε). Which known results regarding Einsteinian model spaces general-
ize for k-Einsteinian model space? How could we generalize the condition
known as weakly Einsteinian to some k-weakly Einstein condition?

(9) This research assumed a positive definite inner product. What happens
when the inner product is non-degenerate?
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