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Abstract

This paper focuses on generalizing the cell decompositions of various nested Lorenz links to determine
types of hyperbolic and octahedral links. By utilizing a class of generalized fully augmented links called
nested links, we are able to determine various types of nested Lorenz links that are hyperbolic based
on their generalized cell decompositions. We are also able to determine subsets of these hyperbolic
nested Lorenz links that are octahedral. With the information gathered from several generalized cell
decompositions, we are able to determine whether or not a subset of nested Lorenz links are hyperbolic
based on the position of two specific strands on the Lorenz template.

1 Preliminaries

In this paper, we use topology and hyperbolic geometry explore the geometries of Lorenz links. In topology,
a knot is a closed curve in three dimensions and a link is a collection of multiple knots that can be intercon-
nected. We specifically investigate Lorenz links, which are defined as all links on the Lorenz template [1].
We often refer to a link on the Lorenz template as a (P,Q) Lorenz link, where P is the number of vertices
on the left upper half of the template and Q is the number of vertices on the right upper half. There are
several properties the Lorenz template has that are essential to follow when constructing Lorenz links. The
first property of the Lorenz template is that each overcrossing strand must have negative slope and each
undercrossing strand must have positive slope. Furthermore, two overcrossing (resp. undercrossing) strands
never intersect. The other main property is that for each overcrossing strand, the position of the endpoint
will be bigger than the position of the start point [1]. We define the strands on the Lorenz template to be
one of three types. A L.L. strand (”left-left”) occurs when an upper P vertex maps to a lower P vertex. A
L.R. strand (”left-right”) occurs when an upper P vertex maps to a lower Q vertex. A R.R. strand (”right-
right”) occurs when an upper Q vertex maps to a lower Q vertex. When forming the Lorenz link from the
Lorenz template, each P vertex joins itself and each Q vertex joins itself, forming the left and right lobes
respectively. An example of a link on the Lorenz template with lobes omitted is shown in figure 1.

Figure 1: A (5,3) Link on the Lorenz Template

A hyperbolic link is a link such that its link compliment forms a complete hyperbolic manifold. One effective
way to study hyperbolic links is to augment the links. To create a fully augmented link, we encircle each
twist region with an unknotted region called a crossing disk [6]. In a fully augmented link, each twist region
contains only two strands and thus each crossing disk is always twice punctured. This is beneficial when
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finding the link compliment, since twice punctured crossing disks form triangles in the cell decomposition.
Triangles whose vertices are ideal are totally geodesic and are all isometric to each other in hyperbolic space
[5]. This is helpful when creating a hyperbolic manifold.

In a generalized fully augmented link, we allow crossing disks to encircle more than two strands in a given
twist region[6]. This causes our crossing disks to potentially be punctured more than twice, which does
not guarantee totally geodesic shapes in the cell decomposition. As a result, this causes difficulty when
attempting to create a hyperbolic manifold.

Since Lorenz links frequently have more than two strands, we utilize a subclass of generalized fully aug-
mented links called nested links. In a nested Lorenz link, we do not limit ourselves to encircling only twisted
regions, but rather allow for any given region of the link to be encircled by crossing disks. We also allow
for our crossing disks to encircle more than two strands. To ensure our crossing disks are still only twice
punctured, we make the crossing disks coplanar such that the innermost crossing disk is twice punctured by
two strands, while all other crossing disks are twice punctured once by a strand and once by another crossing
disk. To simplify our figures, we only show the top half of the crossing disk.

This paper focuses on two types of nested Lorenz links: left nested Lorenz links and complete nested Lorenz
links. Left nested Lorenz links have crossing disks that encircle the strands that form the left lobe of the
Lorenz link. These left nested Lorenz links are denoted N(L(P,Q)), where P is the number of left vertices
and Q is the number of right vertices on the upper half of the Lorenz template. Complete nested Lorenz
links have crossing disks encircled around the overcrossing and undercrossing strands found in the middle of
the Lorenz link. These complete nested Lorenz Links are denoted C(L(P,Q)) where P is the number of left
vertices and Q is the number of right vertices on the upper half of the Lorenz template. An example of a
left nested Lorenz link and a complete nested Lorenz link are shown in figures 2 and 3 respectively.

Figure 2: A left nested Lorenz Link

When determining whether or not a nested link is hyperbolic, we utilize two important theorems. The Circle
Packing Theorem states that any simple, connected, planar graph G is isomorphic to the nerve of a circle
packing [7]. This circle packing gives us the polyhedra necessary for the creation of our hyperbolic manifold.
We then invoke Theorem 3.2 to state that the manifold obtained by gluing these polyhedra according to an
admissible gluing pattern is a complete hyperbolic manifold [3]. Therefore, if we show a cell decomposition’s
nerve is simple, connected, and planar, then the link corresponding to that cell decomposition is hyperbolic.

When studying hyperbolic links, Purcell suggests that we study octahedral links. According to Purcell,
the geometry of fully augmented links (and nested links) is completely determined by the circle packing,
which can be computed from the nerve [6]. It can be hard to obtain a circle packing from an extremely
complicated nerve, and can also make geometric estimates, such as volume, harder to obtain exactly. To
overcome this when investigating nested Lorenz links, we can restrict ourselves to studying the octahedral
subclass of links. Octahedral links are links whose polyhedra are a union of regular ideal octahedra [6]. These
octahedral links have simpler geometries than that of other links. We identify several types of octahedral
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Figure 3: A Complete Nested Lorenz Link

nested Lorenz links to aid in the further geometric exploration of nested Lorenz links. To determine whether
or not a link is octahedral, we use Proposition 3.8 [6]. This states that our link is octahedral if and only if
the nerve is obtained by centrally subdividing K4.

2 Left Nested Lorenz Links

As described in the preliminary section, we can left nest various Lorenz links and determine if the nested
links are hyperbolic, octahedral, or both. To begin, we topologically manipulate the cell decompositions of
these links to create more straightforward and beneficial cell decompositions that are isotopic to the originals.
Figures 4 and 5 show an example of this process.

After shrinking the crossing disk arcs in our link, the resulting image is a curved spine with standard
lettered triangles (representing the back of our crossing disks) on the top half of the spine and prime lettered
triangles (representing the front of our crossing disks) on the bottom half. Each triangle’s vertex either has
a L.L. strand (colored green) or a L.R. strand (colored red). These strands are connected to another vertex
determined by the Lorenz template. An example is shown in figure 4.

We proceed by topologically flattening out the spine of our cell decomposition as shown in figure 4. Af-
ter flattening the spine, we pull the self-intersecting L.R. strands below the spine as shown in 5. We then
rotate each triangle that is connected to a L.R. strand 180 degrees to make our cell decomposition planar.
The resulting cell decomposition is shown in figure 5. We label the regions created by the L.L. strands Xj

and the regions created by the L.R. strands Yi. The region of the plane Ĉ is denoted by W.

This cell decomposition is isotopic to the original, and has some noticeable properties that can be use-
ful. Because of our Lorenz template requirement that there are no R.R. strands, there will always be P −Q
regions of type Xj and Q regions of type Yi for any N(L(P,Q)) link. Furthermore, due to left nesting our
Lorenz link there will always be 2(P − 1) triangles in our cell decomposition. This method of topologically
manipulating the cell decomposition holds for any N(L(P,Q)) link that has no R.R. strands. We will utilize
this method for the remainder of the left nested section.

For left nested Lorenz links, if Q = 1 then there is only one mapping for P + 1 that does not violate the
requirements of the Lorenz template. This mapping is actually the π∗(i) permutation that is used to define
torus knots [2]. The only reason this definition did not extend to torus links is due to a restriction that
(P,Q) must be coprime. We do not use this restriction, so the definition extends to torus links.
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Figure 4: Topologically Manipulating the Cell Decomposition (1)
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Figure 5: Topologically Manipulating the Cell Decomposition (2)
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Lemma 2.1. L(P,1) is a (P,1) torus link.

Proof:

If we map P + 1 7→1, then our (P,1) Lorenz link will follow the π∗(i) mapping and will be a Torus link
by definition. If we map P + 1 to any vertex i (where 2 ≤ i ≤ P ) then vertices 1 through i− 1 are forced to
map to themselves as shown in figure 6. This violates the Lorenz template requirement that the endpoint of
each overcrossing strand must always be bigger than that of the initial point [1]. Therefore L(P,1) is a Torus
link. �

1 2

1 2

i P-1 P P+1

P+1Pi+1i

Figure 6: The L(P,1) Template

For N(L(P,Q)) that have no R.R. strands, there are four cases of generalized cell decompositions. These cases
are determined by the two rightmost vertices in the lower P-section of the Lorenz template. Furthermore, only
one of these cases yields non-hyperbolic left nested Lorenz links. The three hyperbolic cases for N(L(P,Q))
are shown in figures 7 and 8. The non-hyperbolic case is shown in figure 9. To simplify the images, we
omitted the lobes and crossing disks of each case.

1 P-Q P P+1 P+Q

1 P P+1 P+QP-1

P-Q+1

( Left Nested Case 1)

1 P-Q P P+1 P+Q

1 P P+1 P+QP-1

P-Q+1P-Q-1

(Left Nested Case 2)

Figure 7: Left Nested Lorenz Links Case 1 and 2

Theorem 2.2 (The Lorenz Hyperbolicity Theorem). Let N(L(P,Q)) be a left nested Lorenz link satis-
fying the following:
a) The Lorenz template contains no R.R. strands
b) P 6= Q
c) Q ≥ 2
Then the two rightmost vertices in the lower P-section of the Lorenz template determine if N(L(P,Q)) is
hyperbolic. More precisely, N(L(P,Q)) is not hyperbolic if and only if P +Q− 1 7→P − 1, P +Q 7→P.
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1 P-Q P P+1 P+Q

1 P P+1 P+QP-1

P-Q+1

Figure 8: Left Nested Case 3

Proof:

To show that cases 1, 2, and 3 are hyperbolic, we will prove that their nerves are simple, connected, and
planar. To show case 4 is not hyperbolic, we will prove that this type of left nested Lorenz link always
bounds an annulus.

Case 4: P +Q− 1 7→P − 1, P +Q 7→P

Case 4 N(L(P,Q)) links always result in a Lorenz template as shown in figure 9. These links always bound
an annulus (denoted by the red strands) and are therefore not hyperbolic [7].

1 2 P-1 P

1 2 P-1
P

P+Q-1
P+Q

P+Q-1 P+Q

Figure 9: Case 4 Bounded Annulus

Case 1: P −Q 7→P − 1, P +Q 7→P

Case 1 N(L(P,Q)) links always result in a cell decomposition shown in figure 10.
Strands 1, 2, and 3 in figure 10 represent a fixed connection that exists in all case 1 links regardless of
triangle arrangement (with respect to the case 1 limitations). Strand 1 results from the P+Q 7→P mapping.
Similarly, strand 3 results from the P-Q 7→P-1 mapping. Strand 2 results from the requirement of Lorenz
links that on each overcrossing strand the position of the endpoint must always be bigger than that of the
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Figure 10: Case 1 N(L(P,Q)) General Cell Decomposition

initial point [1]. Since we do not allow R.R. strands in our Lorenz template, the P+1 7→1 mapping will
always occur; resulting in strand 2.

In the arbitrary region (denoted by ’?’ in figure 10) there can be any arrangement of vertex up and vertex
down triangles (with respect to the case 1 limitations).

W

X1

Y1

Y2

YQ-1

YQ

X2

XP-Q
3

?

Figure 11: Case 1 N(L(P,Q)) Adjacencies

Simple: We will use figure 11 to show that the case 1 N(L(P,Q)) nerve will be simple. In figure 11, the Y1
region is adjacent to all Xj regions as well as the Y2, and W regions denoted by the red lines. Y1 clearly
does not have multiple adjacencies with a single region as shown.

Each Yi region (where 2 ≤ i ≤ Q− 1) is adjacent to the Yi+1, Yi−1, W, and some number of X1 through Xj

(where j ≤ P −Q) regions based on the formation of the arbitrary region. These adjacencies are denoted by
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the orange lines. Recall that Y2’s adjacency to the Y1 region is denoted by the red line, and any Yi region
adjacent to the X1 region is denoted by the green line. Each Yi does not have multiple adjacencies to the
Yi+1, Yi−1, and W regions as shown.

The YQ region is adjacent to the YQ−1 region denoted by the orange line. YQ is also adjacent to the
W region, and some number of the X1 through Xj (j ≤ P − Q) regions based on the formation of the
arbitrary region. These adjacencies are denoted by the yellow lines. YQ does not have multiple adjacencies
to YQ−1 and W as shown.

The X1 region is adjacent to the Y1 region denoted by the red line. X1 is also adjacent to the X2 re-
gion, and some number of Y2 through Yk (where k ≤ Q) based on the formation of the arbitrary region.
These adjacencies are denoted by the green lines. X1 does not have multiple adjacencies with X2 or Y1.

Each Xr region (2 ≤ r ≤ P −Q− 1) is adjacent to the Y1 region denoted by the red line, and some number
of the Y2 through Yk (k ≤ Q) regions denoted by the orange and yellow lines. The adjacency between X2

and X1 is denoted by the green line. Each Xr region is adjacent to the Xr+1 and Xr−1 regions denoted
by the blue line. As shown, each Xr does not have multiple adjacencies with the Y1, Xr+1, and Xr−1 regions.

The XP−Q region is adjacent to the Y1 region denoted by the red line, and the XP−Q−1 region denoted by
the blue line. XP−Q is also adjacent to the W region denoted by the pink line, and some number of Y2
through Yk (k ≤ Q) regions based on the formation of the arbitrary region denoted by the orange and yellow
lines. XP−Q does not have multiple adjacencies with the Y1, XP−Q−1, and W regions as shown.

W does not have multiple adjacencies to a single region as shown.

It remains to be shown that there are no multiple adjacencies between regions bordering the arbitrary
region. Given a vertex up triangle, the strand connecting to its vertex creates two Xj regions. Thus the
corresponding Yi region is adjacent to both Xj regions exactly once through the ideal points located at the
other two vertices of the vertex up triangle. Similarly, a vertex down triangle creates two Yi regions such
that the corresponding Xj region is adjacent to each Yi region exactly once through the ideal points located
at the other two vertices of the vertex down triangle. Therefore, if there are multiple adjacencies between
regions bordering the arbitrary region, there must be a triangle that does not have a strand connected to
its vertex. By construction, all of the triangle vertices are either ideal points or connected to a strand.
Therefore, there are no multiple adjacencies between regions bordering the arbitrary region.

We have shown that there are no multiple adjacencies between two regions in our generalized cell decompo-
sition for case 1. Therefore, the nerve for a case 1 N(LP,Q)) link will always be simple.

Connected: To prove the nerve is connected, we must find a Hamiltonian cycle in our case 1 N(L(P,Q))
general cell decomposition. A Hamiltonian cycle for case 1 is shown in figure 12. Therefore, the nerve for a
case 1 N(L(P,Q)) link will always be connected.

Planar: Since our general cell decomposition lies on a plane, the nerve for a case 1 N(L(P,Q)) link will
always be planar.

We have shown that our case 1 nerve is always simple, connected, and planar. Therefore, by the Circle
Packing Theorem and Theorem 3.2, case 1 N(L(P,Q)) links are hyperbolic [7][3].

Case 2: P −Q− 1 7→P − 1, P −Q 7→P

There are some important facts for case 2 N(L(P,Q)) links. Since we need at least two L.L. strands, case 2
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?

Figure 12: Case 1 N(L(P,Q)) Hamiltonian Cycle

requires P −Q ≥ 2. Furthermore, if P −Q = 2, due to having no R.R. strands the N(L(P,Q)) link is forced
to follow the π∗(i) mapping and is octahedral [4]. Thus, we restrict case 2 to N(L(P,Q)) such that P −Q > 2.

Case 2 N(L(P,Q)) links always result in a cell decomposition shown in figure 13. Similar to those in figure
10, the numbered strands in figure 13 represent a fixed connection that exists in all case 2 links regardless
of triangle arrangement (with respect to the case 2 limitations). Strands 1,3, and 4 result from the case 2
P-Q-1 7→P-1, P-Q 7→P mapping. Strand 2 results from the same Lorenz template requirement as in figure
10. The arbitrary region for case 2 is denoted by ’?’ in figure 13.

Simple: Figure 13 is very similar to figure 10 from case 1. Comparing the general cell decomposition
of case 2 to that of case 1, we note that changing the connections of fixed strands 1, 3, and 4 does not
introduce any multiple adjacencies between the affected regions. Furthermore, the reasoning for no multiple
adjacencies between regions bordering the arbitrary region used in case 1 holds for case 2. Therefore, using
the same method that was used in case 1, we conclude that the case 2 N(L(P,Q)) nerve is simple.

Connected: Figure 14 shows a Hamiltonian cycle in the case 2 general cell decomposition. Therefore,
the case 2 N(L(P,Q)) nerve is connected.

Planar: The case 2 general cell decomposition lies on a plane, thus the case 2 N(L(P,Q)) nerve is pla-
nar.

We have shown that our case 2 nerve is always simple, connected, and planar. Therefore, by the Circle
Packing Theorem and Theorem 3.2, case 2 N(L(P,Q)) links are hyperbolic [7][3].
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Figure 13: Case 2 N(L(P,Q)) General Cell Decomposition

XP-Q

Y1

Y2
YQ-1
YQ

X1
X2

Xn

Xn+1

XP-Q-1

W

?

Figure 14: Case 2 N(L(P,Q)) Hamiltonian Cycle

Case 3: P −Q 7→P, P +Q 7→P − 1

If P − Q = 1 then N(L(P,Q)) follows the π∗(i) mapping and is octahedral [4]. Therefore, we restrict
case 3 to N(L(P,Q)) such that P −Q > 1.
Case 3 N(L(P,Q)) links always result in a cell decomposition shown in figure 15. Similar to those in figure
10, the numbered strands in figure 15 represent a fixed connection that exists in all case 3 links regardless
of triangle arrangement (with respect to the case 3 limitations). Strands 1 and 3 result from the case 3
mapping. Strand 2 results from the same Lorenz template requirement as in figure 10. The arbitrary region
for case 3 is denoted by ’?’ in figure 15.

Simple: Figure 15 is very similar to figure 10 from case 1. Comparing the general cell decomposition
of case 3 to that of case 1, we note that the only difference is the position of the rightmost triangle’s vertex.
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Figure 15: Case 3 N(L(P,Q)) General Cell Decomposition

In case 3, the rightmost triangle’s vertex is pointing down instead of up. This change does not introduce
any multiple adjacencies between affected regions. Furthermore, the reasoning for no multiple adjacencies
between regions bordering the arbitrary region used in case 1 holds for case 3. Therefore, using the same
method that was used in case 1, we conclude that the case 3 N(L(P,Q)) nerve is simple.

Connected: Figure 16 shows a Hamiltonian cycle in the case 3 general cell decomposition. Therefore,
the case 3 N(L(P,Q)) nerve is connected.

Planar: The case 3 general cell decomposition lies on a plane, thus the case 3 N(L(P,Q)) nerve is pla-
nar.

We have shown that our case 3 nerve is always simple, connected, and planar. Therefore, by the Circle
Packing Theorem and Theorem 3.2, case 3 N(L(P,Q)) links are hyperbolic [7][3].
Therefore, N(L(P,Q)) is not hyperbolic if and only if P +Q− 1 7→P − 1, P +Q 7→P. �

After identifying a set of N(L(P,Q)) that are hyperbolic, we proceed by identifying a subset of these links
that are octahedral. As mentioned in the preliminary section, octahedral links have more simpler geometries
that allow for calculations such as volume estimation to be done more easily and accurately.

Corollary 2.3. Let N(L(P,2)) be a left nested Lorenz link satisfying the following:
a) The Lorenz template contains no R.R. strands.
b) P 6= Q
If N(L(P,2)) is hyperbolic, then N(L(P,2)) is octahedral.

Proof:
Case 1: P − 2 7→P − 1, P + 2 7→P

From the case 1 general cell decomposition found in figure 10, we obtain the general cell decomposition
for case 1 N(L(P,2)) links shown in figure 17. The nerve of this cell decomposition is shown in figure 18. If
we delete the vertex X1, X2 will then have degree 3. By repeating this pattern and consecutively deleting
vertices X2 through XP−3, the remaining vertices form K4. Thus, the case 1 N(L(P,2)) nerve is obtained by
centrally subdividing K4. Therefore, case 1 N(L(P,2)) links are octahedral [6].

11



W

X1

Y1

Y2

YQ-1

YQ

X2

XP-Q

?

Figure 16: Case 3 N(L(P,Q)) Hamiltonian Cycle

Y1

Y2

X1
X2

XP-2W

Figure 17: Case 1 N(L(P,2)) General Cell Decomposition

W

Y1 Y2
X1

X2

XP-2

Figure 18: Case 1 N(L(P,2)) Nerve
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Case 2: P − 3 7→P − 1, P − 2 7→P
From the case 2 general cell decomposition found in figure 13, we obtain the general cell decomposition for
case 2 N(L(P,2)) links shown in figure 19. The nerve of this cell decomposition is shown in figure 20. By
consecutively deleting vertices X1 through Xn−1 and XP−2 through Xn+1, the remaining vertices form K4.
Thus, the case 2 N(L(P,2)) nerve is obtained by centrally subdividing K4. Therefore, case 2 N(L(P,2)) left
nested Lorenz links are octahedral [6].

X1
X2 Xn-1

Xn

Xn+1

XP-3

XP-2

Y1 Y2

W

Figure 19: Case 2 N(L(P,2)) General Cell Decomposition

Case 3: P − 2 7→P, P + 2 7→P − 1
From the case 3 general cell decomposition found in figure 15, we obtain the general cell decomposition for
case 3 N(L(P,2)) links shown in figure 21. The nerve of this cell decomposition is shown in figure 22. By
consecutively deleting vertices X1 through XP−3, the remaining vertices form K4. Thus, the case 3 N(L(P,2))
nerve is obtained by centrally subdividing K4. Therefore, case 3 N(L(P,2)) links are octahedral [6]. �

Within the case 1 N(L(P,Q)) links, there exists a subset of hyperbolic links that are never octahedral. If a
case 1 link satisfies the following:
a) Q > 2
b) P −Q ≥ 2
c) P + i 7→i (where i ≤ P +Q− 1)
then the link has a general cell decomposition shown in figure 23. This cell decomposition is very similar
to the (P,Q) left nested torus links mentioned in [4]. The only difference is that the YQ region is adjacent
to every Xj region (where j ≤ P − Q) as opposed to only being adjacent to X1. This slight change in
the mapping of strands on the Lorenz template generates a subset of case 1 N(L(P,Q)) links that are never
octahedral.

Corollary 2.4. If a case 1 N(L(P,Q)) link satisfies the following:
a) Q > 2
b) P −Q ≥ 2
c) P + i 7→i (where i ≤ P +Q− 1)
then N(L(P,Q)) is not octahedral.

Proof:

From the general cell decomposition found in figure 23, we obtain the nerve for the subset of case 1 N(L(P,Q))
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Figure 20: Case 2 N(L(P,2)) Nerve

W

Y1 Y2

X1

X2

XP-3

XP-2

Figure 21: Case 3 N(L(P,2)) General Cell Decomposition

hyperbolic links as shown in figure 24. The vertices of our nerve have the following adjacencies:
Y2 through YQ−1 are adjacent to W , X1, Yi+1, and Yi−1 (where 2 ≤ i ≤ Q− 1).
X2 through XP−Q are adjacent to Y1, YQ, Xj−1, and Xj+1 (or W if j = P −Q) (where 2 ≤ j ≤ P −Q).
X1 is adjacent to Y1 through YQ, and X2.
Y1 is adjacent to X1 through XP−Q, W , and Y2.
YQ is adjacent to X1 through XP−Q, W , and YQ−1.
W is adjacent to Y1 through YQ and XP−Q.
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Y1 Y2
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X2

XP-3

XP-2

Figure 22: Case 3 N(L(P,2)) Nerve

Y1

Y2
YQ-1

YQ

X1

X2
XP-Q

W

Figure 23: Case 1 N(L(P,Q)) Subset General Cell Decomposition

Since Q > 2 and P − Q ≥ 2, the minimum degree possible for our nerve is 4. Thus, the nerve is not
obtained by centrally subdividing K4. Therefore, N(L(P,Q)) is not octahedral [6]. �

Although this proves that there is a fairly large subset of case 1 links that are not octahedral, there is also
a subset of links that have the same cell decomposition as shown in figure 23 that are octahedral.

Corollary 2.5. Case 1 N(L(P,Q)) links such that P −Q = 1 (where Q ≥ 2) are octahedral.

Proof:

On the Lorenz template for this link, the rightmost Q vertices in the upper P-section map to all of the
vertices in the lower Q section. Since P − Q = 1, only the leftmost vertex in the upper P-section remains
to be mapped. Furthermore, since N(L(P,Q)) is a case 1 link, 1 7→P − 1 and P + Q 7→P . As a result, the

15



Y1

Y2 YQ-1 YQ

W

X1

X2

XP-Q

Figure 24: Case 1 N(L(P,Q)) Subset Nerve

remaining vertices in the upper Q-section follow the π∗(i) mapping. The cell decomposition for this type
of link is similar to that of figure 23, the only difference being that there is only one X region in the cell
decomposition when P −Q = 1. The nerve for this cell decomposition is shown in figure 25. Since YQ has
degree 3 and YQ−1 through Y3 have degree 4, we can consecutively delete these vertices. The resulting graph
is K4. Therefore, our nerve is obtained by centrally subdividing K4 and N(L(P,Q)) is octahedral [6]. �

Y1

Y2 YQ-1 YQ

X1

W

Figure 25: General Nerve for Case 1 N(L(P,Q)) when P −Q = 1

3 Complete Nested Lorenz Links

As we have done with left nested Lorenz links, we can also topologically manipulate the cell decomposi-
tion of a complete nested Lorenz link. In doing so, we create an isotopic cell decomposition that is more
straightforward and beneficial. We begin with a complete nested cell decomposition as shown in figure 26.
Proceeding topologically, we straighten out the spine into a horizontal line. Then, we rotate all the triangles
that are connected to the left lobe strands 180 degrees. We label the regions created by the left lobe strands
Yi and the regions created by the right lobe strands Xj . The region of the plane Ĉ is denoted by W. The
resulting cell decomposition is shown in figure 27.
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This cell decomposition is isotopic to the original and has some noticeable properties that can be use-
ful. Because of the location of our nesting, there will always be a P number of Yi regions and a Q number
of Xj regions. Furthermore, there are always 2(P +Q− 1) triangles in our cell decomposition. This method
for topologically manipulating the cell decomposition holds for any C(L(P,Q)) link and will be used for the
remainder of the section.

G F E D C B A

A'
B'

C'
D'

E'F'
G'

Figure 26: A C(L(P,Q)) Link with Crossing Disk Triangles

G F

E
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Figure 27: Flattened Spine and Rotating Left Lobe Triangles

Theorem 3.1. All C(L(P,Q)) are hyperbolic.

Proof:

There are two cases for the general cell decomposition of complete nested Lorenz links. For both cases
of complete nested cell decompositions, by the Lorenz template restrictions P 7→P + Q always occurs [1].
Because of this fact and the positioning of our crossing disks for complete nesting, the strand puncturing
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crossing disk A will always be the outermost strand of the left lobe. Similarly, the strand puncturing crossing
disk A’ will always be the innermost strand of the right lobe. As a result, triangle A will always be vertex
down and triangle A’ will always be vertex up. Furthermore, by the Lorenz template restrictions P + 1
7→1 will always occur [1]. Thus, the left strand puncturing the innermost crossing disk will always be the
outermost strand on the right lobe. As a result, the leftmost vertex in the cell decomposition will always
have a strand connecting to the rightmost vertex up triangle. Since P + 1 7→1 always occurs, the two cases
for complete nesting cell decompositions result from the strand that connects to 2 in the lower P-section of
the Lorenz template. Either P + 2 7→2, or 1 7→2.

Case 1: P + 2 7→2

The case 1 general cell decomposition is shown in figure 28. Like the Lorenz Mapping Theorem, we must
prove that the case 1 nerve is simple, connected, and planar.

Simple: Each region’s adjacency information for case 1 is shown in figure 29. It is clear that the re-
gions unaffected by the arbitrary region do not have multiple adjacencies with another region. It remains
to be proven that the regions bordering the arbitrary region do not have multiple adjacencies. If there is
a region bordering the arbitrary region that has multiple adjacencies, there must be at least one triangle
that does not have a strand connected to its vertex. By construction, all of the triangle vertices are either
ideal points or connected to a strand. Thus, there are no multiple adjacencies between regions bordering the
arbitrary region. Therefore, our case 1 C(L(P,Q)) nerve is simple.

W

Y1

Y2
YP-1
YP

X1
X2

XQ-1

XQ

?

A
A'

Figure 28: Case 1 C(L(P,Q)) General Cell Decomposition

Connected: A Hamiltonian cycle for the case 1 general cell decomposition is shown in figure 30. Therefore,
our case 1 C(L(P,Q)) nerve is connected.

Planar: Since our cell decomposition lies on a plane, our case 1 C(L(P,Q)) nerve is planar. Therefore,
by the Circle Packing Theorem and Theorem 3.2, case 1 C(L(P,Q)) links are hyperbolic [7][3].

Case 2: 1 7→2

The case 2 C(L(P,Q)) general cell decomposition is shown in figure 31.

Simple: Each region’s adjacency information for case 2 is shown in figure 32. Proceeding in the same
manner as in case 1, it is clear that there are no multiple adjacencies in our cell decomposition. Therefore,
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Figure 29: Case 1 C(L(P,Q)) Adjacent Regions
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Figure 30: Case 1 C(L(P,Q)) Hamiltonian Cycle

our case 2 C(L(P,Q)) nerve is simple.

Connected: A Hamiltonian Cycle for the case 2 general cell decomposition is shown in figure 33. Therefore,
our case 2 C(L(P,Q)) nerve is connected.

Planar: Since our cell decomposition lies on a plane, our case 2 C(L(P,Q)) nerve is planar. Therefore,
by the Circle Packing Theorem and Theorem 3.2, case 2 C(L(P,Q)) links are hyperbolic [7][3]. �

Corollary 3.2. All (P,Q) complete nested torus links are octahedral.

Proof:

A general (P,Q) Torus link is shown in figure 34. After complete nesting our torus link, we proceed to
topologically manipulate the cell decomposition. The result is a general cell decomposition for complete
nested (P,Q) torus links as shown in figure 35. The nerve of this general cell decomposition is shown in
36. Consecutively deleting XQ through X2 and YP through Y3 results in the graph K4. Thus, our nerve is
obtained by centrally subdividing K4. Therefore, all (P,Q) complete nested torus links are octahedral. �
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Figure 31: Case 2 C(L(P,Q)) General Cell Decomposition
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Figure 32: Case 2 C(L(P,Q)) Adjacent Regions
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Figure 33: Case 2 Hamiltonian Cycle
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Figure 34: General Torus Link on the Lorenz Template
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Figure 35: General Cell Decomposition of (P,Q) Torus Links
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Figure 36: Complete Nested Torus Link Nerve
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