
Systole Length and Preservation Under Belt-Sums of
the Borromean Rings

Amanda Cowell

August 17, 2018

Abstract

Through the use of Mobius transformations, we establish gluing maps for the fun-
damental polyhedron of the complement of the Borromean rings Ω. We then use these
transformations to describe curves with base point x0 belonging to the fundamental
group of Ω, denoted π1(Ω, x0). Taking the quotient space (reducing the set of curves
to the equivalence classes) we locate which curves have systolic length of ` = 2.12255.
From here, we identify relevant thrice-punctured spheres S and determine the existence
of a systole living in Ω\S for each of case of these thrice-punctured spheres. Finally, we
uncover why a particular type of manifold with no curve of length ` must not include
the Borromean rings belt-summand.

1 Borromean Rings

A knot is a closed curve in three dimensions, whereas a link is a collection of knots that can
be intertwined. One way to study a link L is through the link complement S3 \L, where S3

is the unit sphere in R4. Alternatively, this can be thought of as R3 ∪ {∞}. A hyperbolic
link is a link such that the complement can be described as a complete hyperbolic manifold.

The Borromean rings is a type of Brunnian link, meaning if any one of the three curves
that make up the link are removed then the other two components are left disjoint. It is
typically depicted with symmetry as in Figure 1, but can be isotoped to form Figure 2. The
isotoped version will be the form of the Borromean rings we will use throughout this paper.
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Figure 2: Borromean Rings Isotopy

In order to study the Borromean rings, we will first introduce the process of cell decom-
position into the fundamental polyhedron. Begin by placing the Borromean rings on a plane
such that the crossing discs A and B are perpendicular to that plane, as in Step 1 of Figure
3, where the dotted lines indicate the intersection of A,B with the plane. Let the portion
above the plane be called P+ and the portion below the plane be P−. For a moment, consider
only P+, where we are dealing with the top half of the crossing discs, as pictured in Step 2
of Figure 3.
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Figure 3: Decomposition Steps

Slice along the bottom of the semi-disc and open it up (similar to spreading a pita bread
apart) in order to have a region representing the front and back of each disc. In Step 3
of Figure 3, we separate the front and back by stretching the straight edge apart, making
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the crossing discs planar. The two link strands will still be attached to the edge, and the
crossing circle strand will shrink, see Step 3 Figure 3. Isotopically make a triangle out of the
three points by shrinking the crossing circle arc to a point and deforming the deforming the
crossing disc regions, illustrated by Step 4 of Figure 3. Next, shrink the other link strands
to points by deforming the crossing disc regions until they touch at these link points, Step
5 of Figure 3.

Now comes the circle packing, Step 6 of Figure 3, where we identify the regions between
the crossing discs and deform them to a circle. The circles created will preserve tangencies
to the other regions, including the outer circle corresponding to the infinite region outside of
the link. The circle packing is a cell decomposition of the boundary of P+, and we will have
a reflection of this to represent the region below the plane in P−. Since the nerve of the circle
packing is K4 (aka placing a dot in the center of each unshaded region and connecting said
dots produces a structure where each vertex has three edges), we can see that the structure is
octahedral, with P+ and P− as the two tetrahedrons that together make up the octahedron.

Once the steps are complete for the crossing discs, we can then take the circle packing
and put it in hyperbolic 3-space, using the upper-half space model. In this model, as points
get closer to the xy-plane, called the ideal plane, they actually become infinitely far away.
Any point actually on the ideal plane is a point at infinity. We will also note that the shortest
distance between any two points in hyperbolic geometry is a semi-circle. For purposes of
studying the complement of the Borromean rings, we will put the link itself at infinity. By
doing this, we take all of the points that make up the link in the circle packing from Figure
3 and place them at infinity. We will denote the complement of the Borromean rings by
Ω, and since it is a hyperbolic structure, we can study it through hyperbolic geometry and
the upper-half space model. Through this, we are able to study Ω and consequently, gain
information about the hyperbolic structure on the Borromean rings.

At this point we have choices for which type of infinity we would like to utilize for the
components of the Borromean rings, which correspond to the points of tangency in the circle
packing. We will use the circle packing, Step 6 Figure 3, and choose the point σ in Figure 4
to be the point sent up to infinity, while all other points will be placed on the ideal plane.
By symmetry of the Borromean rings, we can pick any point to be sent to infinity and get a
similar structure. As σ is sent to infinity, the region Y opens up and B,B′ become vertical
faces, as depicted in Figure 4 Step 7, where the image on the left is a view looking down onto
the ideal plane and the image on the right is an equivalent side view to give perspective. The
next step in the process is to “shrinkwrap” Ω into hyperbolic space by keeping the points
fixed and lifting the edges of the shaded regions so that these edges form semi-circles, which
are lines in hyperbolic space. The shaded regions, A and A′, then “balloon” up until they
conform to a hemispheric shape. Step 8 of Figure 4 depicts a top-down view on the left
and the perspective view on the right is shown with the vertical faces B,B′ removed. The
view looking down onto the floor provides a two-dimensional template for P+ which we will
combine with P−, shown in Step 9, to learn more about Ω. Notice that P− is a reflection
of P+ glued along Y . We will use the subscripts of + and − to indicate which part of the
fundamental polyhedron each region belongs to.
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Figure 4: Fundamental Region steps

In order to explore the belt-sum operation (which we will introduce later), we first need
to identify the possible thrice-punctured spheres in Ω that can be used during belt-summing.
A thrice-punctured sphere is a sphere with three points removed. More information on thrice-
punctured spheres can be found in Thrice-Punctured Spheres in Hyperbolic 3-Manifolds by
Adams [1].

In Ω, there are only four cases of a thrice-punctured sphere that need to be considered [5].
By symmetry, we choose B to be one of the punctures to cover all possibilities. Moreover,
the crossing circle B is at {∞}, so any thrice-punctured sphere touching B appears as a
plane in the fundamental region.
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Case 1: The thrice-punctured sphere S1 is punctured once by the longitude of the crossing
circle B and twice by the link strands that run through the crossing disc B.
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Figure 5: Case 1

Case 2: The thrice-punctured sphere S2 is punctured once by the longitude of the crossing
circle B and twice by the meridians of the crossing circle A.
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Figure 6: Case 2

5



Case 3: The thrice-punctured sphere S3 is punctured twice by meridians of the crossing
circle B and once by the longitude of the crossing circle A. Note that the shape of S3 is
“hollow” on the inside.
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Figure 7: Case 3

Case 4: The thrice-punctured sphere S4 is planar and punctured twice by meridians of the
crossing circle B and once by the knot circle boundary U ∪ V .
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Figure 8: Case 4

2 The Fundamental Group of Ω

Consider a point x0 placed anywhere in Ω as the base of a closed curve. Such a curve would
begin at x0, travel through the space and loop back to x0. In this way, there are infinitely
many ways such a loop could be drawn. Consider a curve such as α from Figure 9 which
begins at x0, wanders through Ω, and perhaps crossing itself a few times but never going
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around any components of the Borromean rings. Despite any self-crossings or intertwining
with another loop that also does not go around the Borromean rings, a curve such as α is
considered homotopic to x0, or null-homotopic, since there is no part of the actual link that
prevents it from shrinking to a point. Notice that this type of loop differs from the other
ones pictured in Figure 9. Curves that are NOT homotopic to a point are called essential,
such as δ, β, and ε. It is important to note that these curves are strictly in the complement
of the Borromean rings and are not an additional component of the link. Instead, these lines
represent curves in Ω. Essential curves can be as simple as one loop around a strand such
as β, or more complicated loops such as ε.
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Figure 9: Curves in Ω

We will use λ to denote the set of all curves in Ω based at x0. The set of curves based at
x0 in the quotient space λ

/
homotopy is called the fundamental group of Ω and denoted

π1(Ω, x0). Since many curves are homotopic, it should be noted that the quotient space
considers equivalence classes of curves in Ω. The fundamental group is useful as a tool to
study the geometry behind this topological space by relating it to an algebraic structure.
Given two curves δ, β ∈ π1(Ω, x0), we can be multiply them to form a concatenation δ ◦ β.
Multiplication in this group is not commutative so δ ◦β and β ◦δ will not give the same path
once the operation is complete. Pictorially, multiplication can be completed by traveling
along the first curve δ, then along the second curve β before going back to the initial point
x0, as seen in Figure 10.

Another important feature of the fundamental group is the fact that x0 can be placed at
any arbitrary point in Ω since every point is homotopic to every other point. The idea of
fixing the base point is good convention for relaying information consistently, but the fixed
base point can be removed to form free homotopy classes of Ω.

Simply describing these loops through pictures does not provide quite enough rigor to
be super useful. Stating that curves can be “multiplied” appears questionable at this point,
so we will introduce the notion of Möbius transformations as a way to describe these paths,
and their multiplication, more precisely.

The fundamental polyhedron of the Borromean rings provides a convenient template to
establish these curves through gluing maps. Beginning with the fundamental polyhedron,
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Figure 10: Multiplication of two curves δ ◦ β

we can work backward to say which regions will be glued back together to form the origi-
nal shape. By placing the fundamental polyhedron on the complex plane, we can identify
coordinates for each face and use a Möbius transformation to provide these gluing maps.

The general procedure begins with three points q, r, s on the target face and three corre-
sponding points q̃, r̃, s̃ on the another face. By using the formula:

(z − q)(r − s)
(z − s)(r − q)

=
(w − q̃)(r̃ − s̃)
(z − s̃)(r̃ − q̃)

,

where z, w are variables coinciding to the input and output respectively, we can solve for w
to obtain the transformation. The result will be of the form

w =
az + b

cz + d

whose complex coefficients can be put in a matrix,

M =

[
a b
c d

]
.

Let’s make this idea a bit more concrete with an example. Say we want the map that
glues A and A′ in P+ in Figure 11. We begin by placing the fundamental polyhedron on the
complex plane and choose for the origin to be directly in the middle. Scale it so that it is
2 units wide and, consequently, 4 units in height (scaling preserves ratios). Then the region
will have the coordinates as presented in Figure 11. By convention, we want A′ to be glued
to A making A′ our target face, so we will first choose three points on A′. Namely let

q = −1 + 2i, r = i, and s = 1 + 2i.
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Keeping in mind where these points get glued back up to on A, we must find the three points
on A that are identified with q, r, and s. Thus the corresponding points on A become

q̃ = −1, r̃ = i, and s̃ = 1.

Plugging these points into the formula, we obtain

(z + 1− 2i)(−1− i)
(z − 1− 2i)(1− i)

=
(w + 1)(−1 + i)

(w − 1)(1 + i)
.

Solving for w produces

w =
1

z − 2i
,

where the matrix coefficients are a = 0, b = 1, c = 1, and d = −2i. Placing these in the
matrix we get

M =

[
0 1
1 −2i

]
.

In order for this matrix to be useful, the determinant must be equal to 1. Currently, it is
not equal to 1 so we must normalize it by dividing by the square root of the determinant.
Since det(M) = −1, we divide each entry by i to get

M ′ =

[
0 −i
−i −2

]
.

Notice that det(M ′) = 1 and we are good to go! For clarity, we will name M ′ = ϕA+ to
indicate which faces are begin glued together. Repeating this process for each region being
glued back together we obtain Table 1, which contains a consistent set of gluing maps for
the Borromean rings.
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Table 1: Table of Gluing Maps for the Borromean Rings

Map Picture Map Picture

ϕA+ : A+ → A
′
+

ϕA+ =

[
0 −i
−i −2

] V

A

U

B

Y

X

x0

ϕ−1
A+

: A
′
+ → A+

ϕ−1
A+

=

[
−2 i
i 0

] V

A

U

B

Y

X

x0

ϕA− : A− → A
′
−

ϕA− =

[
−2 −i
−i 0

] V

A

U

B

Y

X

x0

ϕ−1
A−

: A
′
− → A−

ϕ−1
A−

=

[
0 i
i −2

] V

A

U

B

Y

X

x0

ϕB : B → B′

ϕB =

[
1 2
0 1

] V

A

U

B

Y

X

x0

ϕ−1
B : B′ → B

ϕ−1
B =

[
1 −2
0 1

] V

A

U

B

Y

X

x0

ϕU : U+ → U−

ϕU =

[
1− i −i
i 1 + i

] V

A

U

B

Y

X

x0

ϕ−1
U : U− → U+

ϕ−1
U =

[
1 + i i
−i 1− i

] V

A

U

B

Y

X

x0

ϕV : V+ → V−

ϕV =

[
i+ 1 −i
i 1− i

] V

A

U

B

Y

X

x0

ϕ−1
V : V− → V+

ϕ−1
V =

[
1− i i
−i 1 + i

] V

A

U

B

Y

X

x0

ϕX : X+ → X−

ϕX =

[
1 4i
0 1

] V

A

U

B

Y

X

x0

ϕ−1
X : X− → X+

ϕ−1
X =

[
1 −4i
0 1

] V

A

U

B

Y

X

x0

Note: ϕB : B → B′ = ϕB : B+ → B
′
+ = ϕB : B− 7→ B

′
−.
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Since all of these curves live in Ω (a hyperbolic manifold) we can compute the hyperbolic
length. First, we must find the trace of the matrix of the gluing map, then using the
hyperbolic length formula, ` = 2arc cosh

(±trace
2

)
, we can compute the complex length of

each curve.
For example, to find the length of the curve given by ϕA+ : A+ → A′+ we first find the trace

of the matrix, trace(ϕA+) = −2. Then the complex length becomes `1 = 2arc cosh
(
±(−2)

2

)
=

0. This is expected as it is the length of a curve around a link strand, which can be shrunk
as small as we like.

Let us consider a different curve that may seem a little less trivial. Suppose we want
the length of a more interesting curve such as the one generated by ϕA+ ◦ ϕB. We begin by
multiplying the matrices,

ϕA+ ◦ ϕB =

[
0 −i
−i −2

] [
1 2
0 1

]
=

[
0 −i
−i −2− 2i

]
.

Next, we take trace(ϕA+ ◦ ϕB) = −2 − 2i and use the hyperbolic length formula to get
`2 = 2.12255 + 1.80911i. Notice that the result is a complex number where the real part is
the real length and the imaginary part corresponds to the angle of rotation.

Using SnapPy, we found the length spectum of Ω, which are the lengths of all the curves,
including multiplicity. The curves of most interest are the ones of shortest (real) length,
called the systole. SnapPy found the systolic length, which was in fact ` = 2.12255, meaning
the curve ϕA+ ◦ ϕB must be one of our systoles.

By multiplying all possible combinations of matrices from Table 1 above, we found many
curves of systolic length. We also determined many of these combinations actually correspond
to the same curve. Using this information, we noticed the following:

Lemma 2.1. If S ⊂ Ω is a thrice-punctured sphere, then there exists a systole in Ω \ S.

Proof. Let S be a thrice-punctured sphere in Ω. By symmetry, we can assume the crossing
circle B is where one of the punctures occur. By Ransom [5], there are four possible cases;
these are illustrated in Figures 5-8.

In Case 1, an example of a systole that does not intersect the corresponding thrice-
punctured sphere S1 from Figure 5 can be described by the composition of Möbius transfor-
mations ϕA+ ◦ ϕV , as seen in Figure 12a. This sphere S1 is punctured once by the crossing
circle B and twice by the strands that go through the middle of the crossing disc B. The
systole ϕA+ ◦ ϕV starts at the point x0, first traveling through the backside of the crossing
disc A+ to the front, next through the bottom of the region V , coming out the top of V ,
then finally back to the point x0. This geodesic representative which lives in Ω \ S1 has the
systole length of ` = 2.12255 and does not intersect S1, thus exists in Ω \ S1.
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Figure 12: Thrice-punctured spheres and the corresponding disjoint systole.

An example of a systole that does not intersect the thrice-punctured sphere S2 from
Case 2, Figure 6, can be described by the composition of Möbius transformations ϕA+ ◦ ϕU .
Together, these can be in Figure 12b. Here, the sphere S3 has three punctures given by
meridians of the crossing circle A in P+ and P−, as well as longitude around the outside of
the crossing disc B. A systole that misses the manifold S2 is described by ϕA+ ◦ ϕU . This
simple closed geodesic begins at x0, travels through the backside of A+ then through the
bottom of U , through P− to P+, and back to x0. By going through the part of the crossing
disc A+ that is not contained in the thrice-punctured sphere, and through the region U
(which does not intersect S2) this curve never intersects the thrice-punctured sphere S2.
This geodesic representative has the systole length of ` = 2.12255 and is a systole existing
in Ω \ S2.

It should be noted that the thrice-punctured sphere that is the vertical reflection of S2

has the same punctures and is symmetric to the case shown here. In this situation, the
sphere would surround the region U and the systole will go through the region V instead of
U , using the Möbius transformation ϕA+ ◦ ϕV .

The third instance of a thrice-punctured sphere comes from Case 3, Figure 7, where the
systole of interest can be described by the composition of Möbius transformations ϕU ◦ ϕB,
pictured in Figure 12c. The sphere S3 is “empty” on the inside; that is, its shape is more
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like a sock with a couple of toe holes, and the parts of the Borromean rings that appear to
be covered by the sphere S3 are actually in the hollow of the manifold. The systole in this
instance is described by ϕU ◦ ϕB, which is also in the vacant space. This geodesic begins at
x0, moves through the bottom of the region U to the top of U , through the front of B+, and
back to x0. This geodesic representative has the systole length of ` = 2.12255 and does not
intersect the thrice-punctured sphere, thus exists entirely in Ω \ S3.

In Case 4, Figure 8, an example of a systole that does not intersect the corresponding
thrice-punctured sphere can be described by the composition of Möbius transformations
ϕA+ ◦ ϕB, as seen in Figure 12d. The thrice-punctured sphere S4 is the union of the regions
X and Y , and thus is planar. The crossing discs A and B are perpendicular to the plane, and
each only intersects X ∪Y in a line. Hence the simple closed geodesic described by ϕA+ ◦ϕB

is entirely above the plane in P+ and does not intersect the thrice-punctured sphere at any
point. This geodesic representative has complex length of ` = 2.12255 and thus is a systole
existing in Ω \ S4.

Therefore, no matter which thrice-punctured sphere S ⊂ Ω, there exists a a systole that
is entirely within Ω \ S.

3 Belt Sums

The belt-sum operation has been studied for its ability to retain volume when dealing with
specific types of hyperbolic 3-manifolds. The belt-sum method begins by cutting particular
orientable finite volume hyperbolic 3-manifolds along totally geodesic incompressible thrice-
punctured spheres, then regluing two copies of each thrice-punctured sphere by a particular
isometry [1]. A cusp is topologically a tubular neighborhood of the link intersected with the
link complement [2].

It is remarkable that once a belt-sum is done properly, the volume stays the same. An-
other extraordinary fact that follows is the preservation of certain curves in the complement.
Since the operation only requires slicing along the thrice-punctured sphere, curves disjoint
from said sphere get carried along and retain certain properties. From this, we deduce the
following theorem.

Theorem 3.1. If M is a hyperbolic 3-manifold with cusps whose length spectrum does not
include a curve of length ` = 2.12255 then M does not include a Borromean rings belt-
summand.

Proof. Consider the complement of the Borromean rings Ω and some other hyperbolic man-
ifold M ′. In order to create a belt sum, begin by locating a thrice-punctured sphere SΩ ⊂ Ω
and a thrice-punctured sphere SM ′ ⊂ M ′. Slice along each of the spheres and glue corre-
sponding components of them, being sure to join the copies of SΩ to those of SM ′ . Any
curves in Ω that do not intersect SΩ will be preserved once the belt sum is complete, as well
as any curves in M ′ that do not intersect SM ′ . By Lemma 2.1, it is clear that there exists a
curve of length ` = 2.12255 that does not get cut no matter which thrice-punctured sphere
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in Ω is sliced during belt summing. Therefore, any belt-summand that includes at least one
copy of the Borromean rings will result in at least one curve with length ` = 2.12255.

4 Open Questions

• How does the length spectrum behave under belt-sums?

• Can a similar process be extended to other classes of links?

• Which curves live on totally geodesic surfaces?

• Is there a relationship between the length spectrum of the Whitehead link and the
Borromean rings?
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