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Abstract

This research finds new families of pseudo-Riemannian manifolds that are curvature homogeneous
and not locally homogeneous. The examples demonstrated look specifically at the mapping of the Levi-
Civita connection of the coordinate vector fields. The coordinate vector fields in the examples covariantly
differentiate to coordinate vector fields of a higher level. This is done in a way that creates path lengths
larger than any previously studied curvature homogenous manifolds. We exhibit a four-dimensional
manifold with a path length of four and a five-dimensional generalized plane wave manifold with a path
length of four in the covariant derivative of the coordinate vector fields.

Introduction

The main purpose of this research is to explore new examples of curvature homogeneous manifolds
satisfying certain structural requirements. This paper will define two families of curvature homogeneous
manifolds with covariant derivative lengths of four on the coordinate vector fields. More specifically, it will
look at the sequential structure to the Levi-Civita connection of these manifolds and how it takes certain
coordinate vector fields and covariantly differentiates them to other groups of coordinate vector fields. The
inspiration for the manifolds of this structure arose from previous examples of generalized plane wave
manifolds. In observation of the generalized plane wave manifolds, it became clear that manifolds of this
type have limited lengths in the mappings of the covariant derivative of the coordinate vector fields.

While we will be more spacific later, generalized plane wave manifolds with balanced signatures of
(p, p) (p ≥ 2) demonstrated path lengths of only two in the covariant derivative of the coordinate vector
fields. They are constructed in a way that takes one group of vector fields and differentiates them to the
other group of vector fields.

Generalized plane wave manifolds with unbalanced signatures of (2s, s) and (k+ 1 + a, k+ 1 + b), such
that a+ b = k, had path lengths of three: these manifolds have three groups of coordinate vector fields
covariantly differentiating to each other. The construction takes the first group of vector fields,
differentiates them to the second group of vector fields, and then the second group differentiates to the
third group of vector fields.

Within the examples constructed in this paper, there were set objectives that I worked to obtain. The
main goal was for the manifolds to have a path of length four in the covariant derivatives, meaning that
there needed to be four groups of vector fields differentiating to each other. Other aspects I aimed to
include were for the manifolds to be generalized plane wave curvature homogeneous manifolds, not locally
homogeneous, and to be of smaller dimensions relative to the intended lengths. The last characteristic we
attempted to include is an unbalancing of the signature. We produce a family of four-dimensional manifolds
that have a path length of four, are curvature homogeneous, and not locally homogeneous. We also
produce a family of five-dimensional manifolds that have a path length of four, are curvature homogeneous,
and not locally homogeneous, has an unbalanced signature, and is a generalized plane wave manifold.
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Preliminaries

Definition 0.1. A Euclidean n-space, Rn, is the set of all n-tuples p = (p1, . . . , pn) of real numbers
where p is a point.

A manifold, M, is Hausdorff topological space that is covered by coordinate systems and locally
resembles a Euclidean space. Knowing specific information about the manifold allows us to classify surfaces
and curvature according to the local properties [5].

Manifolds carry the structure of a metric space. A metric, g, allows us to work to grasp what a
manifold looks like in a specified dimension. It is a way of measuring lengths of tangent vectors at any
given point on the manifold. More simply, it is an inner product on each tangent space of M and is
described as [2]:

gij = g(∂xi , ∂xj ).

As an example, note that the inner product of Rn is just the dot product X · Y =
∑
xiyj with

|X| =
√
X ·X [5].

Having information on both the metric and the manifold makes it possible to be able to examine
certain properties within the manifold. Specifically, this paper will use the information of the manifold and
metric to examine the coordinate vector fields and their specific paths. They will also allow us to look at
the curvature tensor R to determine curvature homogeneity and local homogeneity. It is useful to look at
certain properties at a specific point on the manifold. To do this, let M be a manifold and let p ∈M. We
can then describe gp as the metric at p, Rp as the curvature tensor at p, and TpM as the tangent space of
M at p.

Theorem 0.1. If (x1, . . . , xn) is a coordinate system in M, then {∂x1
, . . . , ∂xn

} are local coordinate vector
fields and form a basis for TpM [5] .

Define ∂xi as coordinate vector fields, where ∂xi(f) = ∂f
∂xi

and each ∂xi sends functions on M to

functions on M.

Using a certain object, ∇, called the Levi-Civita connection, one can compute the covariant derivatives
of the vector fields. This will demonstrate the path length while also allowing for future calculation of the
curvature tensor.

Definition 0.2. On a pseudo-Riemannian manifold M there is a unique connection ∇ such that

[X,Y ] = ∇XY −∇YX and,
X(g(Y,Z)) = g(∇XY, Z) + g(Y,∇XZ).

For all X,Y, Z ∈M, ∇ is called the Levi-Civita connection of M and is charaterized by the Koszul
formula

2g(∇XY, Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]).

Using the Koszul formula, we can compute the Christoffel symbols of the connection.

Definition 0.3. Let (x1, . . . , xn) be a coordinate system on M, then the Christoffel symbols of the
first kind are as follows:

∇∂xi
∂xj

=

n∑
k=1

Γkij∂xk
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Definition 0.4. The Christoffel symobls of the second kind are as follows:

Γijk = g(∇xi
∂xj

, ∂xk
) =

1

2
(gjk/i + gik/j − gij/k)

where gij/k =
∂

∂xk

(gij).

Using the Levi-Civita connection and Christoffel symbols, one can compute the Riemannian curvature
tensor R on the coordinate vector fields as follows [2]:

R(∂xi , ∂xj , ∂xk
, ∂xl

) = g(∇∂xi
∇∂xj

∂xk
−∇∂xj

∇∂xi
∂xk

, ∂xl
).

With the above information on the curvature tensor R , we can then also calculate the covariant derivative
of the curvature tensor ∇R :

∇R(∂xi, ∂xj , ∂xk, ∂xl; ∂xm) = ∇∂xm
R(∂xi, ∂xj , ∂xk, ∂xl)−R(∇∂xm

∂xi, ∂xj , ∂xk, ∂xl)−R(∂xi,∇∂xm
∂xj , ∂xk, ∂xl)

−R(∂xi, ∂xj ,∇∂xm
∂xk, ∂xl)−R(∂xi, ∂xj , ∂xk,∇∂xm

∂xl).

It then follows that the second covariant derivative of the curvature tensor ∇2R is as follows:
∇2R(∂xi, ∂xj , ∂xk, ∂xl; ∂xm, ∂xn) = ∇∂xn

R(∂xi, ∂xj , ∂xk, ∂xl; ∂xm)−R(∇∂xn
∂xi, ∂xj , ∂xk, ∂xl; ∂xm)

−R(∂xi,∇∂xn
∂xj , ∂xk, ∂xl; ∂xm)−R(∂xi, ∂xj ,∇∂xn

∂xk, ∂xl; ∂xm)−R(∂xi, ∂xj , ∂xk,∇∂xn
∂xl; ∂xm)

−R(∂xi, ∂xj , ∂xk, ∂xl;∇∂xn
∂xm).

Definition 0.5. An algebraic curvature tensor (ACT) R over a vector space V with dimension n is a
function R : V × V × V × V → R satisfying [3] :

R(x, y, z, w) = −R(y, x, z, w) = R(z, w, x, y), and
R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0.

Definition 0.6. Let x = (x1, . . ., xm) be the usual coordinates on Rm. A pseudo-Riemannian manifold
M := (Rm, g) is said to be a generalized plane wave manifold if its Levi-Civita connection is of the
form [4]

∇∂xi
∂xj

=
∑

k>max(i,j)

Γkij(x1, . . . , xk−1)∂xk
.

Definition 0.7. (M, g) is said to be curvature homogeneous if given any two points P,Q ∈M , there
exists a linear isomorphism ψ : TPM → TQM such that ψ∗RQ(ψ∗x, ψ∗y, ψ∗z, ψ∗w) = RP (x, y, z, w). More
simply, if there exists a change of basis of the tangent space that makes the metric values some specified
constant and curvature entries some specified constants, then M is said to curvature homogenous.

Definition 0.8. (M,g) is said to be locally homogeneous if given any two points P and Q, there are
neighborhoods UP and UQ of P and Q respectively, and an isometry ψ : UP → UQ such that ψP = Q.
Taking ψ := ψ∗ shows that locally homogeneous manifolds are curvature homogeneous manifolds, but the
converse of this fails.

Definition 0.9. A model space M is defined by a collection of a vector space, a metric, and an ACT:

(V, 〈·, ·〉, R).
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It is common to search for a nonconstant isometry invariant to determine when a curvature
homogeneous manifold is not locally homogeneous. In previous studies, the Weyl scalar invariants usually
provided such an invariant, but in the Riemannian setting, if they do not, the manifold is locally
homogeneous. In the case of the manifolds exhibited in this paper, the Weyl invariants are zero and we
needed to look further. This made the computation of the structure group important.

Let α1, . . . , αs be a collection of contravariant tensors on V . Consider the tuple M = (V, α1, . . . , αs).
There is a natural action of the general linear group Gl(V ) on any contravariant tensor:

(A∗α)(x1, . . . , xs) = α(Ax1
, . . . , Axs

).

We can then define a structure group GM of a model space M as

GM = {A ∈ Gl(V )|A∗αi = αi for i = 1, . . . , n}.
On curvature homogeneous manifolds, models Mp, defined (TpM, gp, Rp), are all isomorphic to some given
M , the structure group of a curvature homogeneous manifold is the structure group of any of the models
Mp. In this paper, we will be able to compute covariant derivatives of R on a specialized basis for each
tangent space and produce a quantity that is invariant under the action of the group [5] . In calculation of
the structure group, it will also be important to understand the kernel.

Definition 0.10. Define the kernel of R as follows [3] :

kerR := {v ∈ V |R(v, v1, v2, v3) = 0,∀v1, v2, v3 ∈ V } 6= 0.

This will then allow us to prove the manifolds are not locally homogeneous. Outside of curvature
homogeneity, we will want to study whether or not the manifolds are generalized plane wave manifolds. We
will determine this based on the following definition.
The following is a brief outline of the paper. Section 1 will begin by defining a four-dimensional family of
manifolds. It will describe the covariant derivative length four of the coordinate vector fields and then
prove the manifold is curvature homogeneous. Lastly, we will show that the manifold is not locally
homogeneous. Section 2 will begin by defining a family of five-dimensional generalized plane wave
manifolds. Similar to the four-dimensional manifold, it will describe the covariant derivative length four of
the coordinate vector fields and prove the manifold is curvature homogeneous. Lastly, we will show that
the manifold is not locally homogeneous.

1 Four-Dimensional Manifold

This section will explore a four-dimensional manifold of signature (2, 2) that is curvature homogeneous and
not locally homogenous. The most interesting aspect of the manifold is the path length of four of the
covariant derivative of the coordinate vector fields (see Theorem 1.1).

Definition 1.1. Define the model space M to be: V = span{X,Y, Z,W}, 〈X,W 〉 = 〈Y,Z〉 = 1, and
R(X,Y, Y,X) = R(X,Y, Z,X) = 1.

1.1 Curvature Homogeneity

Definition 1.2. Put coordinates (x, y, z, w) on Euclidean space M := R4 and let {∂x, ∂y, ∂z, ∂w} be
coordinate vector fields on M . Define the function p = p(y) such that p′(y) 6= 0 , f = f(x), and all
nonzero entries of metric, g, are as follows:

g(∂x, ∂x) = −2zp(y), g(∂y, ∂y) = −2f(x), g(∂y, ∂z) = 1,

g(∂x, ∂z) = −2f(x), g(∂x, ∂w) = 1.

If M := (R4, g) , then M is a pseudo-Riemannian manifold with signature (2,2).
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Theorem 1.1. The nonzero covariant derivatives of the coordinate vector fields are as follows:

∇∂x∂x = −2(f ′(x) + p(y))∂y +(zp′(y)f(x))∂z +(xzp′(y)f(x)− 8f ′(x)(f(x))2 + 4f(x)p(y))∂w,
∇∂x∂y = (−f ′(x))∂z −(2f(x)f ′(x) + zp′(y))∂w
∇∂x∂z = −p(y)∂w,
∇∂y∂y = f ′(x)∂w.

Proof. The nonzero Christoffel symbols of the second kind are

Γxxy = g(∇∂x∂x, ∂y) =
1

2
(2∂xg(∂x, ∂y)− ∂yg(∂x, ∂x))

=
1

2
(2zp′(y)) = zp′(y),

Γxxz = g(∇∂x∂x, ∂z) =
1

2
(2∂xg(∂x, ∂z) + ∂zg(∂x, ∂x))

=
1

2
(−2f ′(x)− 2f ′(x) + 2p′(y)) = −2f ′(x) + p(y),

Γxyx = g(∇∂x∂y, ∂x) =
1

2
(∂yg(∂x, ∂x))

=
1

2
(−2zp′(y)) = −zp′(y),

Γxyy = g(∇∂x∂y, ∂y) =
1

2
(∂xg(∂y, ∂y))

=
1

2
(−2f ′(x)) = −f ′(x),

Γxzx = g(∇∂x∂z, ∂x) =
1

2
∂zg(∂x, ∂x)

=
1

2
(−2p(y)) = −p(y),

Γyyx = g(∇∂y∂y, ∂x) =
1

2
(2∂yg(∂y, ∂x)− ∂xg(∂y, ∂y)

=
1

2
(2f ′(x)) = f ′(x).

Note: Any covariant derivatives with ∂w will be zero since all metric entries containing ∂w will always
differentiate to zero.

The construction of the metric creates a mapping of length four in which coordinate vector fields are
covariently differentiating to coordinate vector fields of strictly higher levels. More explicitly, in this
example, it creates a path that can be best described as ∇ : ∂x → ∂y → ∂z → ∂w → 0 . Meaning that any
covariant derivative involving ∂x can only differentiate to ∂y, ∂z, ∂w . Similarly, any covariant derivative
involving ∂y can only differentiate to ∂z, ∂w. Anything with ∂z can only differentiate to ∂w. Since ∂w is in
the last link of the chain, any combination involving it must differentiate to zero. Looking at just the
covariant derivative of the coordinate vector fields, it is clear that this metric follows the conditions for
specified mapping.

While it may be possible M is a generalized plane wave manifold, the ∇∂x∂x entry prevents us from being
able to characterize this manifold as a generalized plane wave manifold.

Theorem 1.2. The nonzero entries of the curvature tensor R (up to usual symmetries) are:

R(∂x, ∂y, ∂y, ∂x) = f ′′(x) + zp′′(y),
R(∂x, ∂y, ∂z, ∂y) = p′(y).

5



Proof. We may use the above calculations of the covariant derivatives to see that

R(∂x, ∂y, ∂y, ∂x) = g(∇∂x∇∂y∂y, ∂x)− g(∇∂y∇∂x∂y, ∂x)

= g(∇∂x(f ′(x)∂w)−∇∂y (−f ′(x)∂z − 2f(x)f ′(x)− zp′(y)∂w), ∂x)

= g(f ′′(x)∂w + zp′′(y)∂w, ∂x)

= f ′′(x) + zp′′(y),

R(∂x, ∂y, ∂z, ∂x) = g(∇∂x∇∂y∂z, ∂x)− g(∇∂y∇∂x∂z, ∂x)

= g(−∇∂y (−p(y)∂w), ∂x)

= g(−(−p′(y))∂w, ∂x) = p′(y).

Theorem 1.3. The nonzero entries of the covariant derivative tensor ∇R (up to the usual symmetries)
are:
∇R(∂x, ∂y, ∂y, ∂x; ∂x) = 2f ′(x)p′(y) + f ′′′(x),
∇R(∂x, ∂y, ∂y, ∂x; ∂y) = zp′′′(y),
∇R(∂x, ∂y, ∂y, ∂x; ∂z) = p′′(y),
∇R(∂x, ∂y, ∂z, ∂x; ∂y) = p′′(y).

Proof. Note: If X,Y, Z, T are any coordinate vector fields, then ∇R(X,Y, Y,X;T ) =
∇TR(X,Y, Y,X)− 2R(∇TX,Y, Y,X)− 2R(X,∇TY, Y,X).

Using this and the result from the curvature tensor, the covariant derivative of R is given by:

∇R(∂x, ∂y, ∂y, ∂x; ∂x) = ∇∂xR(∂x, ∂y, ∂y, ∂x)− 2R(∇∂x∂x, ∂y, ∂y, ∂x)− 2R(∂x,∇∂x∂y, ∂y, ∂x)

= ∇∂y(f ′′(x) + zp′′(y))− 2R(∂x, (−f ′(x)∂z), ∂y, ∂x)

= f ′′′(x) + 2f ′(x)p′(y),

∇R(∂x, ∂y, ∂y, ∂x; ∂y) = ∇∂yR(∂x, ∂y, ∂y, ∂x)− 2R(∇∂y∂x, ∂y, ∂y, ∂x)− 2R(∂x,∇∂y∂y, ∂y, ∂x)

= ∇∂x(f ′′(x) + zp′′(y))

= zp′′′(y),

∇R(∂x, ∂y, ∂y, ∂x; ∂z) = ∇∂zR(∂x, ∂y, ∂y, ∂x)− 2R(∇∂z∂x, ∂y, ∂y, ∂x)− 2R(∂x,∇∂z∂y, ∂y, ∂x)

= ∇∂z(f ′′ + zp′′(y))

= p′′(y),

∇R(∂x, ∂y, ∂z, ∂x; ∂y) = ∇∂yR(∂x, ∂y, ∂z, ∂x)− 2R(∇∂y∂x, ∂y, ∂z, ∂x)−R(∂x,∇∂y∂y, ∂z, ∂x)

−R(∂x, ∂y,∇∂y∂z, ∂x)

= ∇∂y(p′(y))

= p′′(y).

This information will be important in calculation the isometry invariant to prove M is not locally
homogeneous.

Theorem 1.4. M is curvature homogeneous with the model in definition 1.1.

Proof. Begin by defining the basis on each tangent space to be the following:

X =
√
α(∂x + zp(y)∂w),
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Y =
√
λ(∂y + f(x)∂z + 2f(x)2∂w),

Z = 1√
λ

(∂z + 2f(x)∂w),

W = 1√
α
∂w.

where α and λ will be defined presently and the nonzero inner products that follow are
〈X,W 〉 = 〈Y,Z〉 = 1.

The potentially nonzero curvature entries are :

R(X,Y, Y,X) = αλR(∂x, ∂y + f(x)∂z, ∂y + f(x)∂z, ∂x)

= αλ[R(∂x, ∂y, ∂y, ∂x) + 2f(x)R(∂x, ∂y, ∂z, ∂x)]

= αλ(f ′′(x) + zp′′(y) + 2f(x)p′(y)),

R(X,Y, Z,X) = α(R(∂x, ∂y + f(x)∂z, ∂z, ∂x)

= α(R(∂x, ∂y, ∂z, ∂x) + f(x)R(∂x, ∂z, ∂z, ∂x))

= α(p′(y)).

To complete the proof, we must set
α = 1

p′(y)

λ = 1
f ′′(x)+zp′′(y)+2f(x)p′(y) .

By assumption upon the metric, p′(y) 6= 0. We also know f ′′(x) + zp′′(y) + 2f(x)p′(y) 6= 0. Thus, α and λ
are certain to be nonzero, defined functions. We then obtain the constant curvature entries
R(X,Y, Y,X) = 1 and R(X,Y, Z,X) = 1, and thus M is curvature homogeneous.

Theorem 1.5. The nonzero entries of the covariant derivative of R on {X,Y, Z,W} are as follows:

∇R(X,Y, Y,X;X) = αλ
√
α(2f ′(y)p′(y) + f ′′(x)),

∇R(X,Y, Y,X;Y ) = αλ
√
λ(zp′′′(y)) + 3αλ

√
λ(f(x)p′′(y)),

∇R(X,Y, Y,X;Z) = α
√
λ(p′′(y)),

∇R(X,Y, Z,X;Y ) = α
√
λ(p′′(y)).

Proof.

∇R(X,Y, Y,X;X) = ∇R(
√
α∂x,

√
λ∂y +

√
λf(x)∂z,

√
λ∂y +

√
λf(x)∂z,

√
α∂x;

√
α∂x)

= αλ
√
λ(∇R(∂x, ∂y, ∂y∂x; ∂x) + 2∇R(∂x, ∂y, ∂z, ∂x; ∂x))

= αλ
√
λ∇R(∂x, ∂y, ∂y∂x; ∂x)

= αλ
√
λ(2f ′(x)p′(y) + f ′′(x)),

∇R(X,Y, Y,X;Y ) = ∇R(
√
α∂x,

√
λ∂y +

√
λf(x)∂z,

√
λ∂y +

√
λf(x)∂z,

√
α∂x;

√
λ∂y +

√
λf(x)∂z)

= αλ
√
λ∇R(∂x, ∂y, ∂y, ∂x; ∂y) + αλ

√
λf(x)R(∂x, ∂y, ∂y, ∂x; ∂z)

+ 2αλ
√
λf(x)∇R(∂x, ∂y, ∂z, ∂x; ∂y) + 2αλ

√
λf(x)∇R(∂x, ∂y, ∂z, ∂x; ∂z)

= αλ
√
λ(zp′′′(y)) + αλ

√
λf(x)(p′′(y)) + 2αλ

√
λ(f(x)p′′(y)),

∇R(X,Y, Y,X;Z) = ∇R(
√
α∂x,

√
λ∂y +

√
λf(x)∂z,

√
λ∂y +

√
λf(x)∂z,

√
α∂x;

1√
λ
∂z)

= α
√
λ∇R(∂x, ∂y, ∂y, ∂x; ∂z)

= α
√
λ(p′′(y)),
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∇R(X,Y, Z,X;Y ) = ∇R(
√
α∂x,

√
λ∂y +

√
λf(x)∂z,

1√
λ
∂z,
√
α∂x;

√
λ∂y)

= α
√
λ∇R(∂x, ∂y, ∂z, ∂x; ∂y)

= α
√
λ(p′′(y)).

These calculations will be needed for the computation the isometry invariant.

1.2 Not Locally Homogeneous

Theorem 1.6. For any aij, A is a structure group on M and is defined as the following:

AX = X = ε1X +a12Y +a13Z +a14W,
AY = Y = ε2Y +a24W,
AZ = Z = ε2Z +a34W,
AW = W = ε1W,

where ε1 = ±1 and ε2 = ±1.

Proof. We must have 〈X,W 〉 = 〈Y , Z〉 = 1 as the only nonzero inner products. Suppose A statisfies:

AX = X = a11X + a12Y + a13Z + a14W,

AY = Y = a21X + a22Y + a23Z + a24W,

AZ = Z = a31X + a32Y + a33Z + a34W,

AW = W = a41X + a42Y + a43Z + a44W.

Claim (1): kerR= spanW
Proof of Claim (1).
Assume kerR = {v ∈ V : R(v, v1, v2, v3) = 0, (∀v1, v2, v3 ∈ V )}
(⊇) LetβW ∈ spanW
Then R(βW, v1, v2, v3) = βR(W, v1, v2, v3) = 0
(⊆) Let v ∈ kerR, to show v ∈ spanW
Suppose v = aX + bY + cZ + dW , to show a = b = c = 0
R(v, Y, Y,X) = R((aX + bY + cZ + dW ), Y, Y,X) = 0
⇒ aR(X,Y, Y,X) = 0⇒ a = 0
R(X, v, Z,X) = R(X, (bY + cZ + dW ), Z,X)
⇒ bR(X,Y, Z,X) = 0⇒ b = 0
R(X,Y, v,X) = R(X,Y, cZ,X) = 0⇒ c = 0
and thus kerR = spanW.

Claim (2): If A ∈ GM, then A : kerR→ kerR
Proof of Claim (2).
Let W ∈ kerR , to show AW ∈ kerR
Let v1, v2, v3 ∈ V
R(AW, v1, v2, v3) = R(AW,AA−1v1, AA

−1v2, AA
−1v3)

= (A∗R)(W,A−1v1, A
−1v2, A

−1v3) = R(W,A−1v1, A
−1v2, A

−1v3) = 0
And thus A : kerR→ kerR. [3]

Since kerR = spanW and A : kerR→ kerR, it follows that a41, a42, a43 = 0.

Other simplifications on A can be made through the following steps:
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(1) 〈W,Z〉 = 0⇒ a31 = 0
〈W,Y 〉 = 0⇒ a21 = 0
〈W,X〉 = 1⇒ a44a11 = 1 and a44, a11 6= 0.

(2) 〈Z,Z〉 = 〈a32Y + a33Z, a32Y + a33Z〉 = 0⇒ 2a33a32 = 0.

(3) R(X,Z,Z,X) = 0⇒ a11
2(a32

2 + 2a32a33) = 0
⇒ a32 = 0. by (2)

(4) 〈Y , Z〉 = 〈a22Y + a23Z, a33Z〉 = 1
⇒ a22a23 = 1.

(5) 〈Y , Y 〉 = 0⇒ 2a22a23 = 0⇒ a23 = 0 by (4).

(6) R(X,Y , Y ,X) = 1⇒ R(a11X, a32Y, a32Y, a11X) = 1
⇒ 1 = a11

2a22
2.

(7) R(X,Y , Y ,X) = 1⇒ a11
2a22a23 = 1

Since a22a33 = 1 by (4)⇒ a11
2 = 1⇒ a11 = ±1 = ε1

By (1) a44a11 = 1⇒ a44 = ε1

By (6) a11
2a22

2 = 1⇒ a22
2 = ±1 = ε2

By (4) ε2a33 = 1⇒ a33 = ε2.

And thus by items 1-7 we can define our basis as

AX = X = ε1X +a12Y +a13Z +a14W,
AY = Y = ε2Y +a24W,
AZ = Z = ε2Z +a34W,
AW = W = ε1W.

Definition 1.3. For simplification of computations to follow, redefine the covariant derivatives of R on the
basis {X, Y, Z, W} to be the following:

j = ∇R(X,Y, Y,X;X) = αλ
√
α(2f ′(y)p′(y) + f ′′(x)),

k = ∇R(X,Y, Y,X;Y ) = αλ
√
λ(zp′′′(y)) + 3αλ

√
λ(f(x)p′′(y)),

l = ∇R(X,Y, Y,X;Z) = α
√
λ(p′′(y)),

m = ∇R(X,Y, Z,X;Y ) = α
√
λ(p′′(y)).

Theorem 1.7. The nonzero covariant derivatives of R on A (up to the symmetries) are as follows:

∇R(X,Y , Y ,X;X) = ε1j + a13k + a13l,
∇R(X,Y , Y ,X;Y ) = ε2k,
∇R(X,Y , Y ,X;Z) = ε2l,
∇R(X,Y , Z,X;Y ) = ε2m,
∇R(X,Y , Z,X;X) = a12m.

Proof.

∇R(X,Y , Y ,X;X) = ∇R(ε1X + a12Y + a13Z, ε2Y, ε2Y, ε1X + a12Y, )

= ∇R(ε1X, ε2Y, ε2Y, ε1X; ε1X) +∇R(ε1X, ε2Y, ε2Y, ε1X; a12Y ) +∇R(ε1X, ε2Y, ε2Y, ε1X; a12Z)

= ε1
3ε2

2j + ε1
2ε2

2a13k + ε1
2ε2

2a13l

= ε1j + a13k + a13l,
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∇R(X,Y , Y ,X;Y ) = ∇R(ε1X + a12Y + a13Z, ε2Y, ε2Y, ε1X + a12Y + a13Z; ε2Y )

= ∇R(ε1X, ε2Y, ε2Y, ε1X; ε2Y )

= ε1
2ε2

3k = ε2k,

∇R(X,Y , Y ,X;Z) = ∇R(ε1X, ε2Y, ε2Y, ε1X; ε2Z)

= ε1
2ε2

3l = ε2l,

∇R(X,Y , Z,X;Y ) = ∇R(ε1X, ε2Y, ε2Z, ε1X; ε2Y + a24)

= ε1
2ε2

3m = ε2m,

∇R(X,Y , Z,X;X) = ∇R(ε1X, ε2Y, ε2Z, ε1X; ε1X + a12Y + a13Z + a14W )

= ∇R(ε1X, ε2Y, ε2Z, ε1X; a12Y )

= ε1
2ε2

2a12m = a12m.

Theorem 1.8. Under changes to the covariant derivative of the curvature tensor, ∇R, there exists a
nonconstant quantity that is invariant under the action of the structure group, and hence M is not locally
homogeneous.

Proof.

(∇R(X,Y , Y ,X;Z))2 = (∇R(X,Y, Y,X;Z))2 = l2

= α2λ(p′′(y))
2

=
p(y)p′′(y)

p′(y)(f ′′(x) + zp′′(y) + 2f(x)p′(y))
.

Since, in general, this quantity is nonconstant, M is not a locally homogenous.

2 Section 2

This section will explore a five-dimensional generalized plane wave manifold of signature (2, 3) that is
curvature homogeneous and not locally homogenous. The most interesting aspect of the manifold is the
path length of four of the covariant derivative of the coordinate vector fields (see theorem 2.1).

Definition 2.1. Define the model space M to be:
V = span{X,Y, Z,W1,W2}, 〈X,W1〉 = 〈Y,W2〉 = 〈Z,Z〉 = 1, and R(X,Y, Y,X) = 1, R(X,Y, Z,X) = −1.

2.1 Curvature Homogeneity

Definition 2.2. Put coordinates (x, y, z, w1, w2) on Euclidean space M := R5 and let {∂x, ∂y, ∂z, ∂w1 , ∂w2}
be coordinate vector fields on M . Define b = b(y) such that b′′′(y) 6= 0 and c = c(x) such that c′′(x) 6= 0.
Define all nonzero entries of the metric g as follows:

g(∂x, ∂x) = −2zy, g(∂x, ∂y) = −2z, g(∂x, ∂w1) = 1,

g(∂x, ∂w2) = −2c(x), g(∂y, ∂w2) = 1,

g(∂y, ∂y) = −2b(y), g(∂z, ∂z) = 1.

If M := (R5, g) , then M is a pseudo-Riemannian manifold with signature (2,3).

10



Theorem 2.1. The nonzero covariant derivatives of the coordinate vector fields are as follows:

∇∂x∂x = −2c′(x)∂y +y∂z −(8c(x)c′(x)b(y) + 4c′(x)z − 2zc(x))∂w1
−(4b(y)c′(x)− z)∂w2

∇∂x∂y = ∂z −z∂w1

∇∂x∂z = (−y − 2c(x))∂w1
−∂w2

∇∂y∂y = −2c(x)b′(y)∂w1
−b′(y)∂w2

∇∂y∂z = −∂w1

Proof. The nonzero Christoffel symbols of the second kind are

Γxxy = g(∇∂x∂x, ∂y) =
1

2
(2∂xg(∂x, ∂y)− ∂yg(∂x, ∂x))

=
1

2
(∂yg(∂x, ∂x)) =

1

2
(2z) = z,

Γxxz = g(∇∂x∂x, ∂z) =
1

2
(2∂xg(∂x, ∂z)− ∂zg(∂x, ∂x))

=
1

2
(−∂zg(∂x, ∂x)) =

1

2
(2y) = y,

Γxxw2
= g(∇∂x∂x, ∂w2

) =
1

2
(2∂xg(∂x, ∂w2

)− ∂w2
g(∂x, ∂x))

=
1

2
(2∂xg(∂x, ∂w2

)) = −2c′(x),

Γxyx = g(∇∂x∂x, ∂x) =
1

2
(∂yg(∂x, ∂x) + ∂xg(∂y, ∂x)− ∂xg(∂y, ∂x))

=
1

2
(∂yg(∂x, ∂x)) =

1

2
(−2z) = −z,

Γxyz = g(∇∂x∂y, ∂z) =
1

2
(∂yg(∂x, ∂z) + ∂xg(∂y, ∂z)− ∂zg(∂x, ∂y))

= 1
2 (−∂xg(∂x∂y)) = 1

2 (2) = 1,

Γxzx = g(∇∂x∂z, ∂x) =
1

2
(∂zg(∂x, ∂x) + ∂xg(∂x, ∂z)− ∂xg(∂x, ∂z))

= 1
2 (∂zg(∂x, ∂x)) = 1

2 (−2y) = −y,

Γxzy = g(∇∂x∂z, ∂y) =
1

2
(∂zg(∂x, ∂y) + ∂xg(∂z, ∂y)− ∂yg(∂x, ∂z))

= 1
2 (∂zg(∂x, ∂y)) = 1

2 (−2) = −1,

Γyyy = g(∇∂y∂y, ∂y) =
1

2
(∂yg(∂y, ∂y) + ∂yg(∂y, ∂y)− ∂yg(∂y, ∂y))

= 1
2 (∂yg(∂y, ∂y)) = 1

2 (−2b′(y)) = −b′(y),

Γyzx = g(∇∂y∂z, ∂x) =
1

2
(∂zg(∂x, ∂y) + ∂yg(∂z, ∂x)− ∂xg(∂y, ∂z))

= 1
2 (∂zg(∂x, ∂y)) = 1

2 (−2) = −1.

Similar to the four-dimensional manifold, this arrangement demonstrates a mapping of length four in which
coordinate vector fields are covariantly differentiating to coordinate vector fields of strictly higher levels. It
can be seen explicity as : ∇ : ∂x → ∂y → ∂z → {∂w1

, ∂w2
} → 0. In observation of the covariant derivative of

the coordinate vector fields, it can be seen that they follow the specified mapping. It can also be seen in
the covariant derivative of the coordinate vector fields that M is a generalized plane wave manifold.

Theorem 2.2. The nonzero entries of the curvature tensor R (up to usual symmetries) are:
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R(∂x, ∂y, ∂y, ∂x) = −2c′(x)b′(y) + 1,
R(∂x, ∂y, ∂z, ∂x) = −1.

Proof. We may use the calculations of the covariant derivatives to see that

R(∂x, ∂y, ∂y, ∂x) = g(∇∂x∇∂y∂y, ∂x)− g(∇∂y∇∂x∂y, ∂x),

= g(∇∂x(−2c(x)b′∂w1
− b′(y)∂w2

)−∇∂y (∂z − z∂w1
), ∂x)

= g(−2c′(x)b′(y)∂w1
+ ∂w1

, ∂x)

= −2c′(x)b′(y) + 1,

R(∂x, ∂y, ∂z, ∂x) = g(∇∂x∇∂y∂z, ∂x)− g(∇∂y∇∂x∂z, ∂x)

= g(∇∂x(−∂w1
)−∇py((−y − 2c(x))∂w1

− ∂w2
), ∂x)

= g(−∂w1
− ∂w2

, ∂x) = −1.

Theorem 2.3. The nonzero entries of the covariant derivative tensor ∇R (up to the usual symmetries)
are:

∇R(∂x, ∂y, ∂y, ∂x; ∂x) = −2c′′(x)b′(y)− 2,
∇R(∂x, ∂y, ∂y, ∂x; ∂y) = −2c′(x)b′′(y).

Proof. Note: If X,Y, Z, T are any coordinate vector fields, then ∇R(X,Y, Y,X;T ) =
∇TR(X,Y, Y,X)− 2R(∇TX,Y, Y,X)− 2R(X,∇TY, Y,X).

Using this and the results from the curvature tensor, the covariant derivative of R is given by:

∇R(∂x, ∂y, ∂y, ∂x; ∂x) = ∇∂xR(∂x, ∂y, ∂y, ∂x)− 2R(∇∂x∂x, ∂y, ∂y, ∂x)− 2R(∂x,∇∂x∂y, ∂y, ∂x)

= ∇∂x(−2c′(x)b′(y) + 1)− 2R(∂x, ∂z, ∂y, ∂x)

= −2c′′(x)b′(y)− 2,

∇R(∂x, ∂y, ∂y, ∂x; ∂y) = ∇∂yR(∂x, ∂y, ∂y, ∂x)− 2R(∇∂y∂x, ∂y, ∂y, ∂x)− 2R(∂x,∇∂y∂y, ∂y, ∂x)

= ∇∂y (−2c′b′(y) + 1)

= −2c′(x)b′′(y).

Theorem 2.4. The nonzero entries of the second covariant derivative tensor ∇2R (up to the usual
symmetries) are:
∇2R(∂x, ∂y, ∂y, ∂x; ∂x, ∂x) = −4c′(x)2b′′(y)− 2c′′′(x)b′(y),
∇2R(∂x, ∂y, ∂y, ∂x; ∂x, ∂y) = −2c′′(x)b′′(y),
∇2R(∂x, ∂y, ∂y, ∂x; ∂y, ∂y) = −2c′(x)b′′′(y).

Proof.

∇2R(∂x, ∂y, ∂y, ∂x; ∂x, ∂x) = ∇∂xR(∂x, ∂y, ∂y, ∂x; ∂x)− 2R(∇∂x∂x, ∂y, ∂y, ∂x; ∂x)− 2R(∂x,∇∂x∂y, ∂y, ∂x; ∂x)

−R(∂x, ∂y, ∂y, ∂x;∇∂x∂x)

= ∇∂x(−2c′′(x)b′(y)− 2)−R(∂x, ∂y, ∂y, ∂x; (−2c′(x)∂y + y∂z))

= −2c′′′(x)b′(y)− (−2c′(x))(−2c′(x)b′′(y))

= −2c′′′(x)b′(y)− 4c′(x)2b′′(y)
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∇2R(∂x, ∂y, ∂y, ∂x; ∂x, ∂y) = ∇∂yR(∂x, ∂y, ∂y, ∂x; ∂x)− 2R(∇∂y∂x, ∂y, ∂y, ∂x; ∂x)− 2R(∂x,∇∂y∂y, ∂y, ∂x; ∂x)

−R(∂x, ∂y, ∂y, ∂x;∇∂y∂x)

= ∇∂yR(∂x, ∂y, ∂y, ∂x; ∂x, ∂y) = ∇∂y (−2c′′(x)b′(y)− 2)

= −2c′′(x)b′′(y)

∇2R(∂x, ∂y, ∂y, ∂x; ∂y, ∂y) = ∇∂yR(∂x, ∂y, ∂y, ∂x; ∂y)− 2R(∇∂y∂x, ∂y, ∂y, ∂x; ∂y)− 2R(∂x,∇∂y∂y, ∂y, ∂x; ∂y)

−R(∂x, ∂y, ∂y, ∂x;∇∂y∂y)

= ∇∂yR(∂x, ∂y, ∂y, ∂x; ∂y) = ∇∂y (−2c′(x)b′′(y))

= −2c′(x)b′′′(y)

Calculations of the first and second covariant derivatives of the curvature tensor will be important in the
calculation of the isometry invariant for proving the manifold is not locally homogeneous.

Theorem 2.5. M is curvature homogeneous.

Proof. Begin by defining a basis, {X,Y, Z,W1,W2}, on each tangent space such that

X = 1√
α

(∂x + zy∂w1
),

Y = α(∂y + (2z + 2b(y)c(x))∂w1
+ b(y)∂w2

,
Z = ∂z,
W1 =

√
α∂w1 ,

W2 = 1
α (2c(x)∂w1

+ ∂w2
).

where α will be defined presently and the nonzero inner products that follow are
〈X,W1〉 = 〈Y,W2〉 = 〈Z,Z〉 = 1.

The potentially nonzero curvature entries are as follows:

R(X,Y, Y,X) =R

(
1√
α
∂x, α∂y, α∂y,

1√
α
∂x

)
= αR(∂x, ∂y, ∂y, ∂x)

= α(−2c′(x)b′(y) + 1),

R(X,Y, Z,X) =R

(
1√
α
∂x, α∂y, ∂z,

1√
α
∂x

)
= R(X,Y, Z,X) = −1.

To complete the proof, set α = 1
−2c′(x)b′(y)+1 .

By assumption upon the metric, b′′′(y) 6= 0 and c′′(x) 6= 0. Also assume, 1
−2c′(x)b′(y)+1 6= 0 and thus we

obtain that α is defined. We then obtain the nonzero, constant curvature entries R(X,Y, Y,X) = 1 and
R(X,Y, Z,X) = −1 proving that M is curvature homogeneous.

Theorem 2.6. The nonzero entries of the covariant derivative on {X,Y, Z,W1,W2} of R are as follows:

∇R(X,Y, Y,X;X) =
√
α(−2c′′(x)b′(y)− 2)),

∇R(X,Y, Y,X;Y ) = α2(−2c′(x)b′′(y)).
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Proof.

∇R(X,Y, Y,X;X) = ∇R
(

1√
α
∂x, α∂y, α∂y,

1√
α

;
1√
α
∂x

)
=
√
α∇R(∂x, ∂y, ∂y, ∂x; ∂x)

=
√
α(−2c′′(x)b′(y)− 2)),

∇R(X,Y, Y,X;Y ) = ∇R
(

1√
α
∂x, α∂y, α∂y,

1√
α

;
√
α∂x

)
= α2∇R(∂x, ∂y, ∂y, ∂x; ∂y)

= α2(−2c′(x)b′′(y)).

Theorem 2.7. The nonzero entries of the second covariant derivative of R on {X,Y, Z,W1,W2} of R are
as follows:

∇2R(X,Y, Y,X;X,X) = −4c′(x)
2
b′′(y)− 2c′′′(x)b′(y),

∇2R(X,Y Y,X;X,Y ) = α
√
α(−2c′′(x)b′′(y),

∇2R(X,Y Y,X;Y, Y ) = α3(−2c′(x)b′′′(y)).

Proof.

∇2R(X,Y, Y,X;X,X) = ∇2R

(
1√
λ
∂x, α∂y, α,

1√
λ

;
1√
λ
∂x,

1√
λ
∂x

)
= ∇2R(∂x, ∂y, ∂y, ∂y; ∂x, ∂x) = −4c′(x)

2
b′′(y)− 2c′′′(x)b′(y),

∇2R(X,Y, Y,X;X,Y ) = ∇2R

(
1√
λ
∂x, α∂y, α,

1√
λ

;
1√
λ
∂x, α∂y

)
= α
√
α∇2R(∂x, ∂y, ∂y, ∂y; ∂x, ∂y) = α

√
α(−2c′′(x)b′′(y),

∇2R(X,Y, Y,X;Y, Y ) = ∇2R

(
1√
λ
∂x, α∂y, α,

1√
λ

;α∂y, α∂y

)
= α3∇2R(∂x, ∂y, ∂y, ∂y; ∂y, ∂y) = α3(−2c′(x)b′′′(y)).

Calculations of the covariant derivatives of R will be useful in proving M is not locally homogeneous.

2.2 Not Locally Homogeneous

Theorem 2.8. For any aij , A is a structure group on M and is as follows:

AX = X = a11X +a12Y +a13Z +a14W1 +a15W2

AY = Y = a22Y +a23Z +a24W1 +a25W2

AZ = Z = ε3Z +a34W1 +a35W2

AW1 = W 1 = a44W1

AW2 = W 2 = a54W1 +a55W2

Proof. Claim (1): kerR = span{W1,W2}
Proof of Claim (1).
(⊇){βW1 + µW2} ∈ span{W1,W2}
Then R(βW1 + µW2, v1, v2, v3) = βR(W1, v1, v2, v3) + µR(W2, v1, v2, v3) = 0
(⊆) Let v ∈ kerR, to show v ∈ span{W1,W2}
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Suppose v = aX + bY + cZ + dW1,+eW2, to show a = b = c = 0
R(v, Y, Y,X) = R(aX,+bY + cZ + dW1,+eW2, Y, Y,X) = 0
⇒ R(aX, Y, Y,X) = 0⇒ a = 0
R(aX, Y, Y,X) = R(X, bY + cZ + dW1 + eW2, ZX) = 0
⇒ R(X, bY, Z,X) = 0⇒ b = 0
R(X,V, Y,X) = R(X, cZ + dW1 + eW2, Y,X) = 0
⇒ R(X, cZ, Y,X) = 0⇒ c = 0
Thus kerR = span{W1,W2}

Claim (2): If A ∈ GM, then A : kerR→ kerR .
Proof of Claim (2).
Let {W1,W2} ∈ kerR, to show {AW1, AW2} ∈ kerR
Let v1, v2, v3 ∈ V , then
R(aW1 + aW2, v1, v2, v3) = R(AW1, AA

−1v1, AA
−1v2, AA

−1v3) +R(AW2, AA
−1v1, AA

−1v2, AA
−1v3)

= (A∗R)(W1, A
−1v1, A

−1v2, A
−1v3) + (A∗R)(W2, A

−1v1, A
−1v2, A

−1v3)
= R(W1, A

−1v1, A
−1v2, A

−1v3) +R(W2, A
−1v1, A

−1v2, A
−1v3) = 0

Thus A : kerR→ kerR

By claims (1) and (2), a41 = a42 = a43 = 0 and a51 = a52 = a53 = 0

Claim (3): kerR⊥ = span{Z,W1,W2}
Proof of Claim (3).
(⊇) Let aZ, bW1, cW2 ∈ span{W1, Z,W2} and dW1, eW2 ∈ span{W1,W2}
Then 〈aZ + bW1 + cW2, dW1 + eW2〉 = 0
And span{Z,W1,W2} ∈ kerR⊥

(⊆) Let v = aX + bY + cZ + dW1 + eW2 ∈ kerR⊥

To show a = b = 0
〈v,W1〉 = 〈aX,W1〉 = 0⇒ a = 0
〈v,W2〉 = 〈bY,W2〉 = 0⇒ b = 0
Thus kerR⊥ = span{Z,W1,W2}

Claim (4): A : kerR⊥ → kerR⊥

Proof of Claim (4).
Let v ∈ kerR⊥, to show Av ∈ kerR⊥

To show 〈Av,w〉 = 0, (∀w ∈ kerR)
Define w̃ := A−1w ⇐⇒ Aw̃ = w
A ∈ GM⇒ A−1 ∈ GM, and A−1 : kerR→ kerR
w ∈ kerR⇒ w̃ ∈ kerR, A−1w ∈ kerR, A−1w = w̃ ∈ kerR
〈Av,w〉 = 〈Av,Aw̃〉 = 〈v, w̃〉 = 0 since v ∈ kerR and w̃ ∈ kerR⊥

Thus A : kerR⊥ → kerR⊥

By claims (3) and (4), a31 = a32 = 0.

Other simplifications on A can be made through the following steps:

(1) 〈Z,Z〉 = 1⇒ 〈a33Z, a33Z〉 = 1⇒ a33
2 and a33 = ±1 = ε3.

(2) R(X,Y , Z,X) = R(a11X + a22Y, a12X + a22Y, ε3Z, a11X + a12Y ) = 1
⇒ ε3a11R(a11X + a12Y, a21X + a22Y, Z,X) = 1
⇒ ε3a11(a11a22 − a12a21) = 1⇒ a11 6= 0.

(3)R(X,Y , Z, Y ) = R(a21X + a22Y + a23Z, a11X + a12Y + a13Z, ε3Z, a21X + a22Y + a23Z) = 0
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⇒ R(a12X, a12Y, ε3Z, a21X) +R(a22Y, a11X, ε3Z, a21X) = 0
⇒ a21(a21a12 −A11 −A22) = 0⇒ a21 = 0 by (2).

(4) ε3a11
2a22 = 1⇒ a11, a22 6= 0

⇒ ε3a
2
11a22 = 1 by (2, 3).

(5) 〈Y , W̄1〉 = 〈a22Y, a45W2〉 = 0
⇒ a22a45 = 0 and a45 = 0 by (4).

(6) 〈X, W̄1〉 = 1⇒ a11a44 = 1⇒ a44 6= 0.

(7) 〈Y , W̄2〉 = 1⇒ a22a55 = 1⇒ a55 6= 0.

And thus by items 1-7 we can define our basis as:

AX = X = a11X +a12Y +a13Z +a14W1 +a15W2,
AY = Y = a22Y +a23Z +a24W1 +a25W2,
AZ = Z = ε3Z +a34W1 +a35W2,

AW1 = W 1 = a44W1,
AW2 = W 2 = a54W1 +a55W2.

Definition 2.3. For simplification of computations to follow, redefine the covariant derivatives of R on the
basis {X,Y, Z,W1,W2} to be the following:

h = ∇R(X,Y, Y,X;X) =
√
α(−2c′′(x)b′(y)− 2)),

j = ∇R(X,Y, Y,X;Y ) = α2(−2c′(x)b′′(y)).

Theorem 2.9. The nonzero covariant derivatives of R on A (up to the symmetries) are as follows:

∇R(X,Y , Y ,X;X) = ε3a11a22h+ ε3a22
2j,

∇R(X,Y , Y ,X;Y ) = ε3a22
2j.

Proof.

∇R(X,Y , Y ,X;X) = ∇R(a11X, a22Y, a22Y, a11X; a11X + a12Y )

= ∇R(a11X, a22Y, a22Y, a11X; a11X) +∇R(a11X, a22Y, a22Y, a11X; a12)

= a11
3a22

2h+ a11
2a22

3j = ε3a11a22h+ ε3a22
2j,

∇R(X,Y , Y ,X;Y ) = ∇R(a11X, a22Y, a22Y, a11X; a22Y )

= a11
2a22

3j = ε3a22
2j.

Definition 2.4. For simplifications, also redefine the second covariant derivatives of R on the basis
{X,Y, Z,W1,W2} to be the following:

t = ∇2R(X,Y, Y,X;X,X) = −4c′(x)
2
b′′(y)− 2c′′′(x)b′(y),

v = ∇2R(X,Y Y,X;X,Y ) = α
√
α(−2c′′(x)b′′(y),

u = ∇2R(X,Y Y,X;Y, Y ) = α3(−2c′(x)b′′′(y)).

Theorem 2.10. The nonzero second covariant derivatives of R on A (up to the symmetries) are as follows:

∇2R(X,Y , Y ,X;X,X) = ε3t+ 2ε3a11a22a12v + a22a12
2u,

∇2R(X,Y , Y ,X;X,Y ) = ε3a11a22v + ε3a22
2a12u,

∇2R(X,Y , Y ,X;Y , Y ) = a11
2a22

4u.
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Proof.

∇2R(X,Y , Y ,X;X,X) = ∇2R(a11X, a22Y, a22Y, a11X; a11X + a12Y, a11X + a12Y )

= ∇2R(a11X, a22Y, a22Y, a11X; a11X, a11X) + 2∇2R(a11X, a22Y, a22Y, a11X; a11X, a12Y )

+∇2R(a11X, a22Y, a22Y, a11X; a12Y, a12Y )

= a11
4a22

2t+ 2a11
3a22

2a12V + a11
2a22

2a12
2u

= ε3t+ 2ε3a11a22a12v + a22a12
2u,

∇2R(X,Y , Y ,X;X,Y ) = ∇2R(a11X, a22Y, a22Y, a11X; a11X + a12Y, a22Y )

= ∇2R(a11X, a22Y, a22Y, a11X; a11X, a22Y ) +∇2R(a11X, a22Y, a22Y, a11X; a12Y, a22Y )

= a11
3a22

3v + a11
2a22

3a12u

= ε3a11a22v + ε3a22
2a12u,

∇2R(X,Y , Y ,X;Y , Y ) = ∇2R(a11X, a22Y, a22Y, a11X; a22Y, a22Y )

= a11
2a22

4u.

Theorem 2.11. Under changes to the covariant derivative of the curvature tensor, ∇R, there exists a
nonconstant quantity that is invariant under an action of the structure group, and hence M is not locally
homogeneous.

Proof. On the structure group we can compute:

∇R
(
X,Y , Y ,X;Y

)6
∇2R

(
X,Y , Y ,X;Y , Y

)4 =
(ε3a22

2j)6

(a112a224u)4
=
a22

8j6

a228u4
=
j6

u4
=

(
α2(2c′(x)b′′(y)

)6
(2c′(x)b′′′(y))

4 =
(2c′(x)b′′(y))

6

(2c′(x)b′(y)− 1)(2c′(x)b′′′(y))
4 .

Following the same computations, on the basis {X,Y, Z,W,W1,W2}, we obtain the following:

∇R (X,Y, Y,X;Y )
6

∇2R (X,Y, Y,X;Y, Y )
4 =

j6

u4
=

(
α2(2c′(x)b′′(y)

)6
(2c′(x)b′′′(y))

4 =
(2c′(x)b′′(y))

6

(2c′(x)b′(y)− 1)(2c′(x)b′′′(y))
4 .

Since this is generally nonconstant, M is not locally homogeneous.

Open Questions

1. This research on the manifolds was limited to curvature homogeneity. There are a lot of other
properties that have yet to be explored on these specific manifolds. What other properties exist
within these manifolds? For example, are they indecomposable or complete? Are they weak
curvature homogeneous and homothety curvature homogeneous?

2. These manifolds are similar in terms of the metric, curvature tensors, and formation of the structure
groups. Is it possible to continue finding examples of curvature homogeneous manifolds with these
specific conditions for the mapping of the covariant derivative and could you work to generalize the
results? What happens when you try to expand the path length beyond four?

3. Can you compute the structure groups of common model spaces arising from generalized plane wave
manifolds and compute invariants of these assumed curvature homogeneous manifolds?
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