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Abstract

Algebraic curvature tensors are tools in differential geometry which we use to
determine the curvature of a manifold. Some of these curvature tensors can be
constructed from antisymmetric bilinear forms. The number of algebraic curvature
tensors built from antisymmetric forms in a vector space of dimension n is denoted
η(n). In this paper we improve the upper bound on η(n) when n ≥ 5.

1 Introduction

1.1 The Algebraic Curvature Tensor

Let V be a real vector space such that dim(V ) = n and a basis for V is given by
{e1, e2, . . . , em, en}, where m = n− 1. Let A(V ) denote the set of algebraic curvature
tensors on V . For any R ∈ A(V ) and vectors x, y, z, w ∈ V , R : V × V × V × V → R has
the following properties:

1. R is multilinear.

2. R(x, y, z, w) = −R(y, x, z, w)

3. R(x, y, z, w) = R(z, w, x, y)

4. R(x, y, z, w) +R(x,w, y, z) +R(x, z, w, y) = 0

The last of these properties is called the Bianchi identity.

Since algebraic curvature tensors are multilinear, an algebraic curvature tensor is
completely determined by how it acts on a basis. For ease of notation, we will denote
R(ei, ej, ek, el) with Rijkl, indicies not necessarily distinct.

From the properties of algebraic curvature tensors , we know that Riiii = Riiij = 0. In fact,
due to the three defining properties of an algebraic curvature tensor , the only nonzero
entries of R are those of the form Rijji, Rijki, or Rijkl, with distinct letters denoting
distinct indicies.
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It is known that if the dim(V ) = n, then dim(A(V )) = n2(n2−1)
12

. In fact, the independent
entries of R can be organized in a column vector like so:

R :=



R1221

R1331
...

Rmnnm

−−−−
R3123

R4124
...

Rn12n

R2132
...

Rimni

−−−−
R1234

R1423
...

Rklmn

Rknml



,

The column has length dim(A(V )). This specific arrangement for the entries of R is
incredibly useful for their study and is worth detailing.
The first section, above the first dotted line, contains the Rijji entries of the algebraic
curvature tensor R, and are arranged with i < j, and j cycles through all the other indicies
that are not i, and then incrementing i and continuing the process. Note that by the
second defining property of algebraic curvature tensors , Rijji = Rjiij = −Rijij, so it is
redundant to list all of them.
The next section, between the two dotted lines, contains the Rijki entries of R, where
j < k. Since Rijki = Rikji, we need not list both in our list. These entries are organized in
“clumps” of n− 2 sorted by entries of the form Riabi, where a and b are fixed and i cycles
through the indicies that are not a or b. Once the cycle is complete, we increment the fixed
indices j, k and repeat the process.
The last section, below the second dotted line, contains the Rijkl entries, those with four
distinct vectors input into the algebraic curvature tensor R. Note that by the Bianchi
identity,

Riklj = −Rijkl −Riljk, (1)

which then implies that Rijlj is dependent upon the first two listed in that equality, and as
such is not needed in the column vector.
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1.2 Antisymmetric Forms and Curvature Tensors

An antisymmetric form, ψ, is a bilinear mapping V × V → R such that for any vectors
x, y ∈ V ,

ψ(x, y) = −ψ(y, x).

Conveniently, these forms can be represented by antisymmetric matricies whose (i, j) entry
is ψ(ei, ej). That is, if an antisymmetric bilinear form is represented by a matrix, ψ, then
ψT = −ψ. It is known that antisymmetric forms like these can be used to construct
algebraic curvature tensors. Any desired entry of an algebraic curvature tensor R can be
determined like so:

(Rψ)ijkl = ψ(ei, el)ψ(ej, ek)− ψ(ei, ek)ψ(ej, el)− 2ψ(ek, el) (2)

⇔ (Rψ)ijkl = ψil ψjk − ψik ψjl − 2 ψij ψkl.

We denote as AΛ(V ) the set of algebraic curvature tensors constructed in this way.

Similarly, if φ is a symmetric bilinear form on V , symbolically denoted φ ∈ S2(V ), then φ
can be used to create another algebraic curvature tensor using the following formula:

(Rφ)ijkl = φ(ei, el)φ(ej, ek)− φ(ei, ek)φ(ej, el)

⇔ (Rφ)ijkl = φil φjk − φik φjl.
We say that algebraic curvature tensors constructed in this way belong to the set AS(V ).
The following theorem is a result from Gilkey [1].

Theorem 1. span{AΛ(V )} = span{AS(V )} = A(V ).

Since this theorem tells us that the algebraic curvature tensors on antisymmetric forms
span A(V ), the question arises as to how many of these algebraic curvature tensors from
AΛ(V ) are necessary to linearly combine into a desired algebraic curvature tensor R.

Definition. The minimum number of algebraic curvature tensors from AΛ(V ) needed to
linearly combine into a given algebraic curvature tensor R is denoted η(R).
The minimum number of algebraic curvature tensors from AΛ(V ) needed to linearly
combine into any arbitrary algebraic curvature tensor in a vector space of dimension n is
denoted η(n).

Using this language, we can phrase our question like so: What is η(n)? An analogous
question is asked for algebraic curvature tensors constructed from symmetric bilinear forms
and has been studied much more than its antisymmetric counterpart.
In fact, very little is known about η(n). Other authors have shown that η(3) = 3 and
η(4) ≤ 11[3][4]. However, the only upper bound that was known up to now for the general
n dimensional case was that

η(n) ≤ dim(A(V )) =
n2(n2 − 1)

12
.

In this paper we aim to improve on this upper bound.
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2 Methods

We will introduce some background that lays the foundation for an algorithm which will
construct any desired algebraic curvature tensor as a linear combination of algebraic
curvature tensors from AΛ(V ).

2.1 The Ricci Decomposition

The following theorem gives us a useful way to decompose an arbitrary algebraic curvature
tensor into simpler parts [2].

Theorem 2 (The Ricci Decomposition). If R ∈ A(V ), then

R = S + E + C,

where S is the scalar part, E is the semi-traceless part, and C is the traceless Weyl tensor.

These tensors are defined below.

2.1.1 The Scalar Curvature Component

Choose 〈·, ·〉 to be a positive definite metric on our vector space V , and let the scalar
curvature of V be denoted by τ . Then the scalar part of the Ricci decomposition above can
be expressed as

S =
τ

n(n− 1)
R〈·,·〉

Theorem 3. If 〈·, ·〉 is a positive definite metric on a vector space V and φ ∈ S2(V ), then
there exists some orthonormal basis B = {b1, b2, . . . , bn} such that

φ(bi, bj) =

{
λi , i = j

0 , i 6= j

Lemma 1. Let S be the scalar part of a Ricci decomposed algebraic curvature tensor. Then
the only nonzero entries of S are of the form Sijji.

Proof. Since the metric 〈·, ·〉 belongs to the set S2(V ), converting to the basis which is
guaranteed by Theorem 3, gives us that

Sijkl =
τ

n(n− 1)
(〈ei, el〉〈ej, ek〉 − 〈ei, ek〉〈ej, el〉) 6= 0⇒ i = l and j = k OR i = k and j = l.
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2.1.2 The Semi-Traceless Component

The semitraceless component of the Ricci decomposition, E, is defined as a multiple of the
Kulkarni-Nomizu product of the inner product of a vector space and the Ricci tensor of an
algebraic curvature tensor. As such, the entries of E are given as follows:

Eijkl = [〈ei, ek〉ρ(ej, el)

+ 〈ej, ek〉ρ(ei, ek)

− 〈ei, el〉ρ(ej, ek)

− 〈ej, ek〉ρ(ei, el)]

Using similar logic to the reasoning behind 1, we arrive at the following result:

Lemma 2. Let E be the scalar part of a Ricci decomposed algebraic curvature tensor.
Then the only nonzero entries of E are of the form Eijji on a certain basis.

Proof. Let V be a real vector space, R be an algebraic curvature tensor on V , and E be
the semi-traceless part of the Ricci decomposed R. Choose the basis guaranteed by
Theorem 3 to be the basis for V .
If an entry of E, say Eijkl, with indicies not necessarily distinct, was nonzero, then at least
one term from

Eijkl = [〈ei, ek〉ρ(ej, el)

+ 〈ej, ek〉ρ(ei, ek)

− 〈ei, el〉ρ(ej, ek)

− 〈ej, ek〉ρ(ei, el)]

must be nonzero. Without loss of generality, assume the first term,

〈ei, ek〉ρ(ej, el) 6= 0

⇒ 〈ei, ek〉 6= 0 and ρ(ej, el) 6= 0

i = kandj = l

.
Choosing other terms to be nonzero gives similar results. Thus, if an entry of E is nonzero,
it must take only two distinct inputs, meaning the nonzero entries must all be of the form
Eijji.
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2.1.3 The Weyl Tensor Component

Following directly from 1 and 2, we arrive at the following result:

Lemma 3. Let R be an algebraic curvature tensor with Ricci decomposed parts S, E, and
C, and let the vector space they reside in be diagonalized with respect to a positive definite
inner product on V . Then the only nonzero entries of R of the form Rijki or Rijkl are those
contributed by the Weyl component C.

Proof. Let V be a vector space and R be an algebraic curvature tensor on V with Ricci
decomposition R = S + E + C. Also, let the orthonormal basis described in Theorem 3 be
our basis for V .
By Lemma 1 and Lemma 2, we know that the only nonzero entries of S and E are of the
form Rijji. Thus, if the original tensor has nonzero entries of th form Rijki or Rijkl, then
they must be from the Weyl component, C.

Apart from being the only component of R that contributes nonzero Rijki and Rijkl entries
upon diagonalization with respect to an inner product, the Weyl tensor C also has the
useful property of being Ricci flat. That is, for all vectors x, y ∈ V ,

ρC(x, y) =
n∑
i=1

C(ei, x, y, ei) = 0.

Choosing x and y to be basis vectors, ea, eb (a < b), we get:

ρC(ea, eb) =
n∑
i=1

C(ei, ea, eb, ei) = 0.

Expanded out, this sum looks like

C1ab1 + C2ab2 + · · ·+ (Caaba) + · · ·+ Cnabn = 0 (3)

From equation 3, we may extract the following dependence relation among the Cijki entries.

Cnabn = −C1ab1 − C2ab2 − ...

Note that while the Caaba and Cbabb terms are present in the sum, they will always be equal
to zero by the defining properties of an algebraic curvature tensor and may thus be ignored.

The terms on the left side of 3 give us a special set of entries that we will discuss in the
next section.

2.2 MAD Families

Equation 3 gives us a set of curvature entries that sum to zero, and thus a dependence
relation between them. Their mutually destructive nature has earned them the following
characterization.
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Definition. Let basis vectors ea, eb be fixed, with a < b, and let R be an algebraic curvature
tensor . We define the abMAD family to be the set of curvature entries {Riabi | a 6= i 6= b}.

Note. If we are working in a vector space of dimension n and on an algebraic curvature
tensor R, then the following properties regarding MAD families hold:

• All the Rijki entries are partitioned into MAD families.

• There are
(
n
2

)
such MAD families.

• Each MAD family consists of n− 2 entries of R.

As an example, consider the entries of an algebraic curvature tensor in dimension 4 sorted
by MAD family. 

Rijji

−−−−
R3123

R4124

R2132

R4134

R2142

R3143

R1231

R4234

R1241

R3243

R1341

R2342

−−−−
Rijkl


As seen above, there are

(
4
2

)
= 6 MAD families, each with 4− 2 = 2 entries.

We are now ready to begin the algorithm for linearly combining algebraic curvature tensors
from AΛ(V ) into any arbitrary algebraic curvature tensor R.

3 The Algorithm

We will now describe an algorithm that will construct any arbitrary algebraic curvature
tensor as a linear combination of algebraic curvature tensors from AΛ(V ) using less than
dim(A(V )) algebraic curvature tensors from AΛ(V ) to do so. The algorithm starts with a
“blank slate” zero tensor which we call R̄. We aim to fix the entries of R̄ by using a
strategic choice of antisymmetric forms and scalars to match the entries of R and R̄.

The outline of the process is as follows:
Step 0) Define R̄ to be the zero tensor. We will append algebraic curvature tensors from
AΛ(V ) to R̄ as we move forward.
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Step 1) Fix the entries of each abMAD family where neither a or b is n. This will create
extraneous values in the inMAD family for some other index i.
Step 2) Fix the extraneous entries in the inMAD family one at a time with one algebraic
curvature tensor from AΛ(v).
Step 3) Fix the remaining entries of the form Rijkl.
Step 4) Fix the remaining entries of the form Rijji.

3.1 Step 0

We begin by setting R̄ to be the zero tensor.

R̄ =



R̄ijji

−−−

R̄ijki

−−−
R̄ijkl



=



0
...

−−−
...
0
0
0
0
0
0
0
0
0
0
...

−−−
...
0


3.2 Step 1

We proceed by appending algebraic curvature tensors to R̄ in such a way that a single
MAD family can be targeted and fixed, but that creates an unwanted byproduct in the
process. We do so by providing an antisymmetric form A that produces an algebraic
curvature tensor with an entry that can be scaled to match, say, the Rpabp entry, along with
its negative in the Rnabn entry, as desired by Lemma 3. For these to be true, we must have
the following be true:

(RA)pabp = A(p, p)A(a, b)− A(p, b)A(a, p)− 2A(p, a)A(b, p) = 3A(p, a)A(p, b). (4)

Now is a good time to note that the section to the right of the second equal sign is a
simpler computation when calculating Rijki entries of an algebraic curvature tensor built
from an antisymmetric form. Similarly,
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(RA)nabn = 3A(n, a)A(n, b). (5)

The simplest way to achieve the desired results from equations 4 and 5 is to build a tensor
from an antisymmetric form with the entries Apa = 1, Apb = 1, Ana = 1, and Anb = −1,
along with the corresponding entries needed to ensure that A is antisymmetric. The
antisymmetric form that produces this tensor looks like this:

0 · · · 0 · · · 0
...

. . .
...

0 · · · Apa · · · Apb · · · 0
...

... 0
...

0 Aap 0 Aan
...

... 0
...

Abp 0 Abn
...

...
. . .

...
0 · · · 0 · · · Ana · · · Anb · · · 0



=



0 · · · 0 · · · 0
...

. . .
...

0 · · · 1 · · · 1 · · · 0
...

... 0
...

0 −1 0 −1
...

... 0
...

−1 0 1
...

...
. . .

...
0 · · · 0 · · · 1 · · · −1 · · · 0


With antisymmetric forms constructed in this way, we will achieve the desired result that
Rpabp = 3 = −Rnabn. Cycling p through the elements of {1, 2, . . . ,m}, putting the outputs
into a column vector, and choosing the right coefficients, we also get the following linear
combination:

R̄1ab1

R̄2ab2

R̄3ab3
...

R̄mabm

R̄nabn


=
R1ab1

3



3
0
0
...
0
−3


+
R2ab2

3



0
3
0
...
0
−3


+· · ·+Rmabm

3



0
0
0
...
3
−3


=



R1ab1

R2ab2

R3ab3
...

Rmabm

−R1ab1 −R2ab2 − · · · −Rmabm


At first, it may seem that we have up to now linearly combined m = n− 1 algebraic
curvature tensors to fix all but one of the members of the abMAD family. However, recall
that Raaba and Rbaba are always zero and thus not listed in the MAD family. Since those
entries are excluded, we see that there are only n− 3 entries in this part of the
combination. Also, by the dependence relation derived from equation 3, we see that the
last entry is in fact Rnabn, thus making the entries of R̄ equal to those of an arbitrary
algebraic curvature tensor R in the abMAD family. Thus, we have successfully used n− 3
algebraic curvature tensors built from antisymmetric forms to fix the n− 2 entries in all
the abMAD families where neither a nor b is equal to n, of which there are

(
n−1

2

)
, saving us

a grand total of
(
n−1

2

)
algebraic curvature tensors on antisymmetric forms needed to

linearly combine into any arbitrary algebraic curvature tensor R.

The next steps show how to fix the remaining entries of R̄.
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3.3 Step 2

However, the antisymmetric forms that we use to build these tensors produce some extra,
less desirable entries outside the abMAD families. There are extra nonzero entries that
could be generated of the form Rijji and Rijkl, but those will be addressed in Step 3 and
Step 4. The extraneous entries that we must fix next are of the form Rijki. Specifically, if
we construct an antisymmetric form to fix Rpabp and Rnabn, the pnMAD family will be
disrupted.
Fortunately, for any member of the pnMAD family, say Rqpnq (or any MAD family, for that
matter), there exists an antisymmetric form that will produce a nonzero Rqpnq entry that
can be scaled to match any arbitrary curvature entry one could desire while leaving all
other MAD families unperturbed. In particular, since (RA)qpnq = 3AqpAqn, choosing A such
that Aqp = Aqn = 1 = −Apq = −Anq, else zero, achieves this. In the column vector
representation, this looks like this:

R̄1pn1

R̄2pn2

R̄3pn3
...

R̄mpnm

 = αc


3
0
0
...
0

+ αc+1


0
3
0
...
0

+ αc+2


0
0
3
...
0

+ · · ·+ αc+n−2


0
0
0
...
3

 .

We can choose the scalars α to produce whatever value we desire for each respective entry
of the algebraic curvature tensor R.
With all the MAD families now fixed, we have now fixed all entries of R̄ of the form Rijki.

3.4 Step 3

In Step 3 we will fix the entries of the form Rijkl. In an algebraic curvature tensor from a
vector space of dimension n, there are 2

(
n
4

)
entries of this form. This comes from the fact

that out of the n total basis vectors of V , we must choose 4 distinct vectors, are for each
choice of 4 vectors, there are 2 independent entries using those four by the dependence
relation described in Equation 1. We will colloquially refer to the entries which take the
same four basis vectors as entries as Bianchi surrogates. We proceed by producing
algebraic curvature tensors that do not disturb any Rijki entries but form a linearly
independent spanning set in the Rijkl entries.

We begin by using 2 algebraic curvature tensors on antisymmetric forms for each pair of
Bianchi surrogates. For this pair, say Rabcd and Radbc, we will produce tensors that can
linearly combined to make those desired entries whatever we desire, while simultaneously
leaving all the other Rijkl entries and all of the Rijki entries undisturbed. Some byproducts
will be produced in the Rijji entries, but those will be taken care of in Step 4.

From Equation 2, we see that if A is some antisymmetric form represented by matrix, then

(RA)abcd = AadAbc − AacAbd − 2AabAcd, and
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(RA)adbc = AacAdb − AabAdc − 2AadAbc.

For the first antisymmetric form, say ψ, we may construct ψ such that ψab = 1 and
ψcd = −1. For the second antisymmetric form, say ψ∗, we may construct ψ∗ such that
ψ∗ac = 1 and ψ∗bd = −1. In both of these, we always add the extra entries needed to ensure
that ψ and ψ∗ are antisymmetric.
Returning to our vector representation of the algebraic curvature tensors these
antisymmetric forms produce, we get the following result:[

R̄abcd

R̄adbc

]
= αx

[
2
−1

]
+ αx+1

[
−1
−1

]
Since the 2× 2 matrix comprised of those two “columns” has nonzero determinant, we
know that these columns span all of R2, so we may choose the scalars so that even though
they were tampered with in Step 1 and Step 2, we may achieve any desired value in each
respective entry.

Repeating this process for all
(
n
4

)
pairs of Bianchi surrogates will allow us to ensure that

thee entries may be linearly combined into any arbitrary value.

3.5 Step 4

At this point, all entries of our linear combination of algebraic curvature tensors , R̄ of the
form R̄ijki and R̄ijkl have been made to match the corresponding entry of an arbitrary
algebraic curvature tensor R. In Step 4, we will finish matching the remaining entries of R̄,
all of which are of the for R̄ijji.

In any algebraic curvature tensor , we know that there are always
(
n
2

)
entries of the form

Rijji. That being said, we will use the same number of algebraic curvature tensors on
antisymmetric forms to fix these entries. We do so by individually targeting each entry,
much akin to the process from Step 2.

The antisymmetric forms that we will use to target the Rijji entries are simpler than those
in previous steps. In order to fix a given entry, say Rabba, we can use an antisymmetric
form ψ such that ψab = 1 = −ψba. The algebraic curvature tensor that ψ produces a single
nonzero entry, (Rψ)abba. This entry can be scaled to achieve any arbitrary value, despite
the entries of this form being tampered with in every preceding step of the algorithm. In
vector form, this step looks like:

R̄1221

R̄1331

R̄1441
...

R̄1nn1

R̄2332
...

R̄mnnm


= αy



3
0
0
...
0
0
...
0


+ αy+1



0
3
0
...
0
0
...
0


+ αy+2



0
0
3
...
0
0
...
0


+ · · ·+ αy+(n

2)−1



0
0
0
...
0
0
...
3


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This step finishes off the last unfixed entries of R̂, and thus the algorithm is complete.

4 Conclusion

4.1 Results

The question remains as to what η(n) is for any dimension n. The previous upper bound

was the dimension of the entire space of algebraic curvature tensors , which is n2(n2−1)
12

.
What we have done in this paper is describe an algorithm that will linearly combine
algebraic curvature tensors built on antisymmetric forms using less than dim(A(V )) of
them, therefore improving the upper bound. This leaves us with the following result.

Theorem 4. Let V be a real vector space such that dim(V ) = n. Then:

η(n) ≤ n2(n2 − 1)

12
−
(
n− 1

2

)
=

(n− 1)(n3 + n2 − 6n+ 12)

12

The table below shows some of the previous bounds versus the bounds given by the
algorithm presented here.

Dimension Previous Upper Bound New Upper Bound Savings

3 3* 5 -2
4 11 17 -6
5 50 44 6
6 105 95 10
7 196 181 15
8 336 315 21
9 540 512 28

4.2 Future Work

Further study of this subject could focus on the following open problems.

• Can we improve the upper bounds for η(n)?

• Can we find a meaningful lower bound for η(n)?

• Can we find better bounds (or the exact value) of η(n) for specific values of n?

Improvement upon this new upper bound is likely, since better results are known for
dimension 3 and 4.
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