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1 Introduction

Hyperbolic geometry has been useful in the study of knots since Thurston’s groundbreaking
research in 1979 [1]. For example, his work implies that there are three types of knots: torus
knots, satellite knots, and hyperbolic knots. For the purposes of this paper, we are inter-
ested in the properties of two classes of hyperbolic links: Fully Augmented Links (FALs)
and Nested Links.

Adams proved that FALs are always hyperbolic [2]. An FAL is a link in which each
twist of two strands and has been augmented. The notion of augmenting a twist region was
formalized by Adams in [2]. The process consists of embedding a trivial component called a
crossing circle around the region and removing all full twists. An illustration of this process
can be seen in Figure 1. One convenient feature of an FAL is that each crossing disk is a
thrice punctured sphere where the punctures are the intersections of two knot circles with
the crossing disk and the boundary of the crossing disk.

Figure 1: Fully augmenting yields the Borromean Rings

A Generalized Fully Augmented Link (GFAL) is a Fully Augmented Link that can have
more than two strands per twist region. While GFALs are defined similarly to FALs, they
have notable differences. For example, the crossing circles bound n-punctured spheres which
may not be geodesic. This project focuses on a class of GFAL called nested links because
they share convenient properties with FALs. In particular, in each augmented twist region
of a nested link, each crossing circle is still a thrice punctured sphere. Figure 2 shows a

1



nesting with one crossing disk inside of the other, and both are thrice punctured spheres.

Figure 2: Nested Link

Both FALs and GFALs can be complicated in nature and thus difficult to study. Due to
the work of Adams, FALs can be broken down into simpler components using the notion of
Belted Sum Decomposition [2]. Morgan et al proved that every FAL can be broken down
into prime FALs, or FALs that are not belted sums [3]. This paper extends results of [4] to
the class of nested links.

2 Cell Decomposition

To see the geometry of an FAL, one can start with a cell decomposition. Cell decomposition
is a process which takes an FAL to its circle packing. The process begins by defining 0-cells,
1-cells, 2-cells, and 3-cells. In an FAL, there are no 0-cells. 1-cells are the intersections of
the plane of projection and crossing disks. The 2-cells in an FAL are the crossing disks and
the plane of projection. Finally, the 3-cells are B3

+ and B3
−, which are the regions above and

below the plane of projection respectively.

The next step in cell decomposition is to cut along the planar 2-cells, which will divide
the manifold into a top half and a bottom half. Then, slice along the crossing 2-cells and
shrink each crossing circle arcs to a point. Finally, shrink the knot circle arcs. The unshaded
regions will be circles in the circle packing and the shaded regions will remain traingles. An
example of this process can be seen in Figure 3.
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Figure 3: Standard Cell Decomposition of the Borromean Rings

3 The Nerve and the Dual

In various instances, it can be easier to study FALs by looking at their nerves. In order
to do this, it is important to understand how to find the nerve corresponding to an FAL.
Given an FAL, use the process of cell decomposition to find its corresponding circle packing.
Then, place a vertex in the center of each circle. Finally, connect adjacent circles with edges
through points of tangency. An edge is painted if it goes through a point of tangency that
corresponds to a crossing circle (See Figure 4. The nerve of an FAL is a triangulation of S3

[5], thus it follows that the dual to the nerve of an FAL will always be trivalent.

A

A

BB

Figure 4: The circle packing of the Borromean Rings and Its Nerve

This project focused on studying links using the dual to the nerve. The dual to the nerve
of an FAL will always be a trivalent, planar, connected graph. Conversely, given a perfect
matching on a trivalent, planar graph, one can construct a corresponding FAL. A perfect
matching is a graph in which each vertex is paired with exactly one adjacent vertex. The
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pairing is represented by painting the edge between them. Note that each vertex in a perfect
matching has exactly one painte edge.

A nested link is associated to each edge-symmetric spanning tree in a given dual. The
edge of symmetry corresponds to the outermost crossing circle in a nesting. An example
of a nested link an its dual can be seen in Figure 5. Both Nested Links and FALs can be
descibed using painted duals.

Figure 5: Left: A dual with an edge-symmetric spanning forest, Rigth: Corresponding
Nested Link

4 Thrice-Punctured Spheres

Our main interest is in belted sum decompositions of Nested Links. It will be seen that
thrice-punctured spheres are used in belted sum decompositions, so thrice-puncutred spheres
prove important in finding the results in this project. Thus, it was necessary to recognize
a thrice-punctured sphere in a link based on its dual. Due to [3], we know that a 3-cut in
a dual corresponds to a thrice-punctured sphere in an FAL. These facts led to the result in
Lemma 1.

Lemma 1. In a perfect matching of a graph G, every 3 cut has an odd number of painted
edges.

Proof. We know that every trivalent, connected graph has an even number of vertices. We
can separate G into a left-hand side and a right-hand side using the 3-cut. Consider reducing
the right-hand side to a single vertex. This gives a trivalent, planar, connected graph. Since
the right-hand side is reduced to one vertex, this shows that the left-hand side has an odd
number of vertices. A similar argument shows that the right-hand side must have an odd
number of vertices.

Assume that no edges in the 3-cut are painted. Then, without loss of generality, con-
sider the left-hand side. Since G is a perfect matching, the left-hand side must be a perfect
matching. However, a perfect matching requires an even number of vertices. Thus, at least
one edge in the 3-cut must be painted.

Now, assume 2 edges in the 3-cut are painted. Without loss of generality, consider the
left-hand side. Since we know there is an odd number of vertices in the left-hand side and 2
are now painted, there is an odd number of unpainted vertices. Since every perfect matching
of the remaining vertices will require an even number of vertices, this is only possible if the
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third edge in the 3-cut is also painted. Therefore, in a perfect matching of a dual, every
three-cut is either once-painted or thrice-painted.

Studying belted sum decompositions also led to interest in prime links and their duals.
[3] showed that in the nerve of a prime FAL, every 3-cycle must be thrice-painted. Thus, it
follows that in the dual of a prime FAL, every 3-cut must be thrice-painted.

Lemma 2. If a trivalent graph has multiple 3-cuts with incident edges, it does not have a
prime coloring.

Proof. By definition, a prime coloring is a perfect matching of the graph in which the
edges in all 3-cuts are painted. If a graph has 3-cuts with incident edges, then at least two
of the edges share a vertex. Therefore, they cannot both be painted in a perfect matching
graph. Thus, the graph does not have a prime coloring.

5 Belted Sum Decompositions

In order to study prime FALs, it is necessary to know how to recognize when an FAL is a
belted sum. A belted sum in an FAL is characterized by its buckle. A buckle is a once-painted
3-cycle in the nerve of an FAL, which corresponds to a once-painted 3-cut in the dual. Once
the buckle is identified, you can think of enclosing the portion of the FAL bordered by the
thrice punctured sphere with a second thrice-punctured sphere, which we call a sock. In
order to decompose the link, we slice along the two thrice-punctured spheres making up the
belted sum to get an inside link and outside link. Then, in each case the punctures in one
thrice-punctured sphere will be glued to the punctures in the other thrice-punctured sphere
without adding crossings. See Figure 6 for an example. This process can be repeated until
the components are prime FALs.

Figure 6: Belted Sum Decomposition of an FAL into two copies of the Borromean Rings

The sum of two perfectly matched graphs Γ and Γ′, denoted Γ⊕ Γ′, can be found in the
following way. Consider two perfectly matched, n-regular graphs Γ,Γ′. Remove an arbitrary
vertex from each. Since Γ is n-regular, there are n edges that were connected to the vertex
removed. Call these edges {e0, ..., en}. Further, each edge in this set is connected to another
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vertex in Γ. Call these vertices {v0, ..., vn}. Similarly in Γ′, call these edges {e′0, ..., e′n} and
the vertices {v′0, ..., v′n}. Since both Γ,Γ′ were well painted, we know that exactly one edge in
the set {e0, ..., en} is painted and exactly one edge in the set {e′0, ..., e′n} is painted. Without
loss of generality, choose e0 and e′0 to be the painted edges. Then, glue Γ and Γ′ such that
e0 ∼ e′0, ... , and en ∼ e′n (See Figure 7).

Figure 7: The sum of two perfectly matched graphs

Lemma 3. Let Γ and Γ′ be two perfectly matched, n-regular graphs. Then, Γ⊕ Γ′ will be
a perfectly matched, n-regular graph.

Proof. Trivially, we can see that all vertices in Γ that are not in {v0, ..., vn} remain well
painted. Similarly, all vertices in Γ′ that are not in {v′0, ..., v′n} remain well painted.

Then, since e0 ∼ e′0, we know that no painted edges were added to v0 or v′0, thus these
vertices remain perfect matching. Finally, since ek ∼ e′k for all 0 < k ≤ n, we know that
no painted edges were added to or removed from vk or v′k, so they remain perfect matching.
Thus, the Γ⊕ Γ′ is perfect matching.

Theorem 4. Let Γ,Γ′ be two trivalent, perfectly matched graphs. Then, Γ⊕Γ′ is the belted
sum of the FALs corresponding to Γ,Γ′.

Proof. Consider two trivalent, perfect matching graphs Γ,Γ′. We know that Γ⊕Γ′ will be
a trivalent, perfectly matched graph.

To see that the corresponding fully augmented link is a belted sum, recall that a once-
painted 3-cut in the dual of a fully augmented link corresponds to a buckle in the fully
augmented link. Then, note that when the two trivalent graphs are glued along the loose
edges, this creates a nontrivial “inner” graph and a nontrivial “outer” graph that are con-
nected by those three edges. This, by definition, introduces a 3-cut in the resulting graph
and thus, the corresponding fully augmented link will be have a buckle. This shows that the
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FAL will be a belted sum.

6 Belted Sums in Nested Links

This project’s main focus was to fully classify belted sum decompositions in nested links.
We used the duals of these links to study and understand them. Similar to FALs, when we
are looking for a belted sum in the dual of a nested link, we are looking for 3-cuts. Since the
duals of nested links can have more complicated paintings than those of FALs, there are more
ways to paint a 3-cut. From this, we were able to organize these duals into cases in a natural
way. We divided them into belted sum decompositions corresponding to once-painted 3-cuts,
twice-painted 3-cuts, and thrice-painted 3-cuts. The following lemma was useful in proving
results in all cases.

Lemma 5. Let S1, S2 be socks corresponding to a belted sum decomposition. Then each
crossing circle puncture in S1 must also be a puncture in S2.

Proof. Consider a Nested Link L. Suppose there exists a belted sum decomposition of
L that includes a sock with the boundary of a crossing disk as a puncture. For sake of
contradiction, assume that the sock is neither paired with the crossing disk or another sock
sharing the boundary of the crossing disk. Then, slice along the thrice punctured spheres in
the belted sum decomposition. Since we know the crossing disk is a thrice punctured sphere
itself, there are at least two knot arcs that do not get severed in this operation. Thus, the
manifold does not completely separate and this is not a belted sum decomposition, leading
to a contradiction.

6.1 Once-painted 3-cuts

Theorem 6. Let S1, S2 be socks corresponding to two once-painted 3-cuts that share a
painted edge in a planar, trivalent graph. Then, there is a valid belted sum decomposition
in the associated Nested Link.

Proof. Consider a trivalent planar graph G where two 3-cuts share exactly one painted
edge.

GR GQ

GS

GT

E1 E3

E2 E4

Figure 8: The Graph G
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Then, consider the link corresponding to this graph. We know that the painted edge
corresponds to a crossing disk that is a thrice punctured sphere. Note that the punctures
of this crossing disk could be knot circles or nested crossing disks. Then, consider a sock
found by starting at the crossing disk and enveloping tangle R. Note that this is a thrice
punctured sphere, its punctures being the boundary of the crossing disk and the knot arcs
K1 and K2. Similarly, consider a sock found by starting at the crossing disk and enclosing
tangle Q. This is also a thrice punctured sphere, with its punctures being the boundary of
the crossing disk and the knot arcs K3 and K4.

R Q

S

T

K1 K3

K4K2

R Q

S

T

K1 K3

K4K2

Figure 9: Left: The Nested Link, Right: The Nested Link With S1 and S2

Finally, we slice along S1 and S2 to get an inside piece and an outside piece. In both
cases, we glue the punctures from S1 to the punctures in S2. We can see that knot arc
punctures will glue to knot arc punctures, and crossing circle punctures will glue to crossing
circle puncture. Now we can see our manifold is separated into two pieces. Thus, this is a
valid belted sum decomposition (see Figure 10 and Figure 11).

R Q

S

T

Figure 10: Left: Inside Link After Gluing, Right: Outside Link After Gluing

Figure 11: Example of Theorem 5
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Theorem 7. Let S1, S2 be socks corresponding to two once-painted 3-cuts in a planar triva-
lent graph whose painted edges get glued. Then, there is a valid belted sum decomposition
in the associated Nested Link.

Proof. Consider a trivalent, planar graph with two once-painted 3-cuts whose painted edges
get glued (See Figure 12). We know the painted edges correspond to one nested crossing
disk which is a thrice punctured sphere. Note that the punctures in this crossing disk could
be knot arcs or nested crossing disks. Also note that we know the painted edges are part of
an edge symmetric spanning forest where the edge of symmetry lies in GR.

GQ GSGR

E1 E3
E2 E4

Figure 12: The graph G

Then, consider the link corresponding to this graph (see Figure 13). Note that knot arc
K1 in the link corresponds to edge E1 in the dual and so on. From here, we can find socks
S1, S2 whose punctures correspond to the edges in the 3-cuts in the dual.

R
Q S

K3
K4

K1
K2

R
Q S

K1
K2

K3
K4

Figure 13: Left: Nested Link, Right: Nested Link with S1 and S2

Finally, we slice along S1 and S2 to get an inside piece and an outside piece. In both
cases, we glue the punctures from S1 to the punctures in S2. We can see that knot arc
punctures will glue to knot arc punctures, and crossing circle punctures will glue to crossing
circle puncture. Now we can see our manifold is separated into two pieces. Thus, this is a
valid belted sum decomposition (see Figure 14 and Figure 15).

Q S

R

Figure 14: Left: Inside Link After Gluing, Right: Outside Link After Gluing

9



Figure 15: Example of Theorem 6

6.2 Twice-Painted 3-Cuts

When considering twice-painted 3-cuts, there were a few cases to consider. We first consid-
ered a twice-painted 3-cut where the painted edges correspond to the same crossing disk in
the corresponding augmented nested link. We realized that this case could not occur, which
is shown below.

Theorem 8. Let G be a trivalent, planar graph with a twice-painted 3-cut. Then, the
painted edges cannot correspond to the same crossing circle in the nested link.

Proof. Let G have a twice-painted 3-cut. We can arrange G so that the 3-cut divides the
graph into a left portion and a right portion.

g1 g2

Figure 16: The graph G

Since G is trivalent, we know that it contains an even number of vertices. As in the proof
of Lemma 1, reduce the right-hand side to a single vertex. This is still trivalent. This shows
that the left-hand side has an odd number of vertices. A similar argument shows that the
right-hand side has an odd number of vertices.

Suppose that the two painted edges in the three cut correspond to the same crossing
circle in the link and let the edge of symmetry of their edge-symmetric spanning tree be in
the left-hand side. Then, consider separating the left-hand side into an independent graph.
The tree containing the painted edges is still an edge symmetric spanning tree, and thus
contains an even number of vertices. Since there is an odd number of total vertices, this
shows that there is an odd number of vertices not spanned by this tree. Therefore, there is
no edge-symmetric spanning forest in the left-hand side, which implies that the third edge
in the 3-cut must also be painted.
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After showing that this case was not possible, we looked at cases where the painted edges
in a twice-punctured 3-cut do not represent the same crossing circle, which lead to the fol-
lowing results.

Theorem 9. Let S1, S2 be socks corresponding to two twice-painted 3-cuts in a trivalent,
planar graph where the painted edges in distinct 3-cuts represent the same crossing circles.
Then, there is a valid belted sum decomposition in the associated Nested Link.

Proof. Consider a trivalent, planar graph G with two twice-painted 3-cuts whose painted
edges represent the same crossing circles (see Figure 17). C1,0 and C1,1 may be the same edge
or glue to be the same crossing circle in the nested link. This is also the case for C2,0 and C2,1.

GR GS GT

E1 E2

C1,0 C1,1

C2,0 C2,1

Figure 17: The Graph G

Then, consider the link corresponding to G (See Figure 18). Note that the edge E1 in G
corresponds to the knot arc K1 in the link and so forth. Now we can find socks S1, S2 whose
punctures correspond to the edges in the 3-cuts in the dual.

R

S

T
U

K1 K2
C1

C2

R

S

T
U

K1
K2

C1

C2

Figure 18: Left: Nested Link, Right: Nested Link with S1 and S2

Finally, we slice along S1 and S2 to get an inside link and an outside link. Now, in each
case glue the punctures from S1 to the punctures in S2. Note that in the outside link, the
knot circles that go through C1 and C2 are no longer present. It is easy to see that the
severed knot arcs can glue through either C1 or C2. Then, in order to preserve the property
that each crossing circle bounds a thrice punctured sphere, either C1 or C2 must become a
knot circle. Without loss of generality, choose C2 and stretch its boundary so that C2,0 and
C2,1 glue together through C1. The link obtained by gluing C1,0 to C1,1 through C2 would
be equivalent up to homeomorphism.
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Now, we can see that our manifold separated into two pieces. Thus, this is a valid belted
sum decomposition (See Figure 19 and Figure 20).

R UC2

C1 S

T

C1

C2

Figure 19: Left: Inside Link After Gluing, Right: Outside Link After Gluing

Figure 20: Example of Theorem 8

7 Open Questions

• Can these ideas be extended to classify belted sum decompositions in thrice-painted
3-cuts?
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