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Abstract

This project studies the existence of embedded totally geodesic surfaces in a FAL
complement. To do so, we use a geodesic analogue of normal surface theory. In
particular, we study the structure of geodesic disks in a fundamental region. We then
analyse how they glue up to create embedded totally geodesic surfaces in the FAL.
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1 Introduction

In this paper, we study the complement of fully augmented links in S3. Decomposing fully
augmented link (FAL) complements into rectangular-cusped polyhedra in hyperbolic space
allows us to study their geometry. In particular, we study the existence of embedded totally
geodesic surfaces and the requirements for their existence in a FAL complement.
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Figure 1: A fully augmented link (the Borromean Rings) decomposed into its corresponding
ideal polyhedron

Futer and Purcell lay out a comprehensive description of a standard two cell decomposi-
tion and how to subdivide a FAL complement into two hyperbolic ideal polyhedra, P+ and
P− [2]. We now describe how different components of a FAL correspond to the vertices and
faces of P±. We analyse how components of the FAL lift to P+ (see Figure 1): The projec-
tion plane is divided into regions bounded by knot arcs and orthogonal crossing circle disks.
These regions will lift to planes that we will call unshaded faces. The crossing circles will
be sliced and flattened along the projection plane to create two halves of the crossing disk.
These halves of the disk will lift to ideal triangles in H3 that we refer to as shaded triangles.
The crossing circle of any crossing disk will become an ideal point, or puncture, between
the two shaded triangular regions of the flattened crossing disk. Knot arcs that lie between
regions of the projection plane will lift to the other ideal points in the polyhedron that we
will denote as knot punctures. (See Futer and Purcell’s introduction for more details).
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Figure 2: Two truncated ideal shaded triangle and their crossing puncture p under a Möbius
transformation

Ideal points in the polyhedra will be truncated by taking out horospheres centered at
the ideal points (see Figure 2). Four planes meet at each ideal point, so by removing a
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horospheres a rectangular region called a truncated boundary face will remain. Truncated
boundary faces are represented by rectangles connecting shaded triangles on opposite sides
and unshaded faces on the other. This is discussed further in Section 2. We use the
properties of the truncated ideal polyhedra in the fundamental region F = P+ ∪ P−, to
study the geometry of any surface that intersects it.

In this paper, we show how embedded totally geodesic surfaces lift to the polyhedron P±.
An embedded totally geodesic surface S in a FAL complement lifts to a union of disjoint
planes, call it S̃, in the universal cover [1]. Note that the lift S̃ of S intersects F = P+ ∪P−
in a union of disjoint geodesic disks. Let H be a plane in S̃ that intersects P+ , we say
D = H ∩ P+ is a geodesic disk with boundary curve γ = H ∩ ∂P+. Conversely, one can
begin with geodesic disks in F and consider if they glue up to form a geodesic surface.
Throughout this paper, we refer to γ = ∂D to denote that γ is the boundary of a geodesic
disk in P±.
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Figure 3: The projection of P+ and its mirrored copy, P− in the fundamental region

The boundaries of geodesic disks intersecting a polyhedral plane display convenient ge-
ometric properties that we can analyze through Möbius transformation. A Möbius trans-
formation is a mapping of a truncated boundary face p ∈ P+ to infinity and maps the
four planes intersecting p to vertical planes (see Figure 2). Other faces ∈ P+ remain as
hemispheres. Conveniently enough, these vertical planes and hemispheres adhere to the
geometry of Euclidean space. This geometry aids in uncovering geodesic disks that display
properties of orthogonality in P+. This is discussed in Section 3.1.

There are various manners to verify that a curve γ is the boundary of a geodesic disk.
The curve must be a simple closed curve, otherwise the disk is not the intersection of a plane
with P±. If S is a geodesic surface, we study curves γ ∈ P± to show finitely many geodesic
disks in P+. This dovetails nicely into showing that there are a finite amount of embedded
totally geodesic surfaces in a FAL complement. To do so, we discuss how multiple geodesic
disks under a gluing map ϕ may become an embedded totally geodesic surface.
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2 Classification of Interior and Boundary Segments

In this section, we study the structure of geodesic disks and how they intersect the fun-
damental region. An embedded totally geodesic surface S in a FAL complement lifts to
disjoint geodesic disks in F = P+ ∪ P−. By analyzing the boundary curves γ = ∂D in F ,
we can see what restrictions exist for γ.

Two cells in the standard cell decomposition of a FAL are comprised of crossing disks
and regions of the projection plane. Each component of a FAL has a solid torus neighbor-
hood which we call a cusp. Removing the interiors of the solid tori yield a manifold with
torus boundary components. The boundary components are decomposed into rectangles
by the standard cell decomposition. This process corresponds to truncating the vertices
using appropriate horospheres at every ideal point in the polyhedron. The boundary of
the truncated polyhedron inherits a cell decomposition consisting of unshaded faces, shaded
triangles, and the truncated rectangles we call punctures. Punctures lie at ideal points and
will also be called boundary faces.

Definition 2.1. Let γ be the boundary of a geodesic disk D in P+. Then, any segment γi
of γ can be one of the following:

1. Interior edge: a segment that lies on the intersection of a shaded triangle and an
unshaded face

2. Boundary segment: a segment that transverses a boundary face.

3. Unshaded segment: a segment that transverses an unshaded face

4. Shaded segment: a segment that transverses a shaded triangle

We can see that if a geodesic disk D intersects P+, it can intersect each face in a finite
number of ways. Then, γ = ∂D can transverse faces and pass through ideal points. The
first that we will look at is an interior edge. An interior edge is a segment of γ that lies on
the intersection of an unshaded face and a shaded triangle. The endpoints of this segment
lie on the corners of boundary faces, as seen in Figure 4(a).

(a) Interior Edge (b) Midpoint to Boundary Face

Figure 4: Segments of γ

We can see that γ can also transverse an unshaded face such as in Figure 4(b) from
the midpoint of an altitude to a truncated boundary face. We know that this is a possible
segment of γ because its endpoints are on a truncated boundary face and a midpoint of
an altitude. Additionally, γ is simple. Having an endpoint of a segment of γ the meridian
of a truncated boundary face signifies that γ can enter and exit a boundary face in two
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ways: either as a boundary face transversal (Figure 5(a)) or boundary face to an interior
edge segment (Figure 5(b)).

In Figure 5, we can see that γ enters the boundary face from an unshaded face and exits
into another unshaded face such as in Figure 5(a), or onto an interior edge such as in Figure
5(b). If we perform a Möbius transformation on the boundary face transversal, we can see
that γ = ∂D where D is a vertical plane that intersects both unshaded faces which become
vertical planes in H3. We study the properties of this transversal in Section 3.1.

(a) Boundary Face Transversal (b) Boundary Face to Interior Edge

Figure 5: More Segments of γ

Similarly, using a Möbius transformation on the boundary face in Figure 5(b), the bound-
ary face to interior edge segment, we can see that γ = ∂D where D is another vertical plane
that intersects the point at infinity and continues to the interior edge. The interior edge be-
comes the intersection between the vertical unshaded face and the adjacent vertical shaded
triangle.

Boundary segments can also exit into unshaded faces and enter other boundary faces
such as the boundary face to boundary face segment in Figure 6(a). The only requirement
for these segments is that the boundary faces that γ intersects do not share an interior edge,
otherwise γ becomes an interior edge segment.

(a) Boundary Face to Boundary Face (b) Altitude to Altitude

Figure 6: More Segments of γ

Additionally, γ can exit a shaded triangle from the midpoint of its altitude into another
midpoint of an altitude such as in Figure 6(b). This is possible only if the interior edges that
the midpoints lie on are not adjacent. That is, the interior edges containing the midpoints
of the altitudes do not share a boundary face. Morgan et al. [3] shows that this would give
you a surface with a self-intersection.

The altitude segment seen in Figure 7(a) displays some convenient properties. We know
that embedded totally geodesic surfaces must intersect crossing disks in simple geodesics
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[3]. It was proven that the altitude segment intersects the face of the shaded triangles
orthogonally. This is the only possible intersection of a curve γ in a shaded triangle and it
must enter and exit the crossing disks at the midpoint of the altitude [3].

(a) Altitude (b) Alternating Interior Edge

Figure 7: Even More Segments of γ

Another convenient section of γ is the alternating interior edge. This section, seen in
Figure 7(b), exits an interior edge by crossing through a puncture and continues along
another interior edge.

Some segments of γ are never the bondary of a geodesic disk. For example, Figure 8 will
never exist as a tile because any segment of a curve γ entering a truncated boundary face
through an interior face must intersect that interior face at an altitude. Using a Möbius
transformation on this puncture, we see that the shaded triangles become parallel vertical
faces in Euclidean space. Thus, any surface intersecting the unshaded triangle must continue
and eventually intersect the parallel vertical face. Thus, γ cannot enter an interior face and
exit a truncated puncture into an unshaded face.

Figure 8: This boundary segment will never occur in a curve γ
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3 Results on Embedded Totally Geodesic Disks

The following structures theorems classify how a geodesic disk D intersects the faces of
P± so that we may eventually study how the disks glue up to embedded totally geodesic
surfaces.

3.1 Results on Orthogonality

When we discuss the properties and restrictions on a curve γ = ∂D, we ignore the possibility
of γ = ∂A, where A is an unshaded face or a shaded triangle. This is an example of a standard
embedded totally geodesic surface. These are the projection planes and crossing disks in the
FAL complement that lift to unshaded faces and shaded triangles in P+. Throughout this
paper, when referring to geodesic disks and embedded totally geodesic surfaces, we refer to
the non-standard geodesic disks and surfaces.

Lemma 3.1. Each segment of γ intersects any shaded or unshaded faces of ∂P+ at most
once.

Proof. Two hyperbolic planes, e.g. a geodesic disk and any face of P+, intersect in at most
one geodesic line. This means that there is at most one interior edge or altitude in any
interior face and at most one boundary segment in any boundary face.

Lemma 3.2. Consecutive segments of γ that pass through unshaded faces of P+ are either
both orthogonal, or neither orthogonal.

Proof. Denote the puncture between the unshaded faces that contain the segments of γ as
p, see Figure 9. Using a Möbius transformation on p, we see that the unshaded faces on
either side of p become vertical faces in the polyhedron that are parallel in Euclidean space.
Because the unshaded faces are parallel, if D intersects one unshaded face orthogonally, it
must pass through the other unshaded face orthogonally. Similarly, if D is not orthogonal
to one of the unshaded faces, it cannot pass through the other unshaded face orthogonally.

γ

p

Figure 9: Curve γ entering puncture p and exiting through an unshaded face.

Corollary 3.3. If γ = ∂D contains an interior edge, then it is not orthogonal to any shaded
triangle or any unshaded face.

Proof. Let’s begin by assuming that D contain an interior edge and intersects an unshaded
face orthogonally. Then, Lemma 3.2 implies that when γ exits the unshaded face, it must
enter another unshaded face orthogonally as well.
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Theorem 3.4. If γ = ∂D contains an altitude, then D is orthogonal to every face it
intersects.

Proof. Let D be a geodesic disk in P+ with γ = ∂D. If D intersects the crossing disk B at
an altitude, then D ⊥ B,C where C is the adjacent unshaded face to B.

A B C

E1

E2

Figure 10: Possible paths of the curve γ

Knowing that D ⊥ C is crucial to understanding how D exits C into a new face. In
Figure 10 we can see that γ can exit C and enter into an altitude or a boundary face
transversal into another unshaded face.

Case 1: Enter into an altitude

If γ enters in an altitude, e.g. E1, then we know that D intersects the shaded triangle
orthogonally [3].

Case 2: Enter into an unshaded face

If γ exits the unshaded face C and enters the unshaded face E2 through a boundary
transversal, we know by Lemma 3.2 that D is orthogonal to both faces adjacent to
that boundary segment.

We eliminate the possibility of γ containing an interior edge. The only way that γ can
intersect an interior edge is from a boundary face to interior edge segment as seen in Figure
5. However, an interior edge is never orthogonal as proven in Corollary 3.3.

These are all possible segments that γ consists of and this, D is orthogonal to all faces
it intersects.

Now, we know the properties of γ if it contains an altitude and we can define the
following:

Definition 3.5. An altitude containing path is a path that contains an altitude and is
orthogonal to every face it intersects.

Corollary 3.6. There is at most one embedded totally geodesic surface that intersects an
altitude through a crossing disk.
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Proof. Given γ = ∂S containing an altitude segment a through puncture p, we know that
γ must pass through only the faces that are orthogonal to the shaded triangle containing
a. That is, γ has a unique path that it can travel to in order to be a simple, closed path in
∂P+ and still be orthogonal to all faces that γ intersects. We can see this easily by using a
Möbius transformation on the puncture in our altitude, p. When p is thrown to infinity, S
becomes a vertical plane intersecting a and P+. At most one vertical plane can intersect a
through p.

3.2 Results on Slopes

We discuss properties of the lifts of embedded totally geodesic surfaces to the universal cover
of a FAL complement. It was shown in [3] that any embedded totally geodesic surface is non
compact so, it is a punctured surface. Let S be a geodesic surface in a FAL cover and H a
plane in H3 that projects to S and contains the puncture p ∈ P+. Send p to infinity using a
Möbius transformation so that H becomes a vertical plane in P± as pictured in Figure 11.

In Figure 11, A and B are vertical shaded triangles and C and D are vertical unshaded
faces. The vertical geodesic plane H will be represented by a straight line β = H ∩ P+. In
some cases, the slope of our curve β is easier to analyse because β contains many restrictions
as shown in Section 3.1 and by the possible segments of any γ = ∂D in Section 2.

P−

P+

A

A

B

B

C

C

D

Figure 11: Fundamental Region F = P+ ∪ P− where A,B are vertical shaded triangles and
C,D are vertical unshaded faces.

We are interested in the curves β that does not intersect any crossing disk in P+ ∪ P−,
or at an altitude. Thus, β contains interior edges and intersects P+ ∪ P− at its unshaded
faces.

Definition 3.7. A slope path is a curve β = H∩P+ that contains interior edges, intersects
unshaded faces, and intersects the punctures between them.

We know that β must contain boundary segments in order to enter and exit the unshaded
faces of P+. Additionally, slope paths must contain at least one interior edge. So we can
use a Möbius transformation on the puncture p adjacent to the interior edge and see that
the interior edge will be vertical. This way, we can ensure that β appear as a straight line
in the universal cover that intersect the interior edge between a vertical shaded triangle and
a vertical unshaded face, called lattice points.

9



So, slope paths will always intersect lattice points of P+ ∪ P−, or the punctures that
represent the points of tangencies between the vertical shaded triangles and the vertical
unshaded faces. These lattice points are labeled as p1 and p2 in Figure 12 where A, B are
vertical shaded triangles and C, D are vertical unshaded faces. Thus, we analyse the slope
of a curve β = H ∩ P+ by how it may intersect the lattice points in a universal cover. The
slope can be understood by analyzing the longitudes and meridians of a fundamental region.
A longitude is the unit between two adjacent vertical lattice points and a meridian is the
unit between two adjacent horizontal lattice points (see Figure 12).

Lemma 3.8. The slope of any slope path β is

q longitudes

p meridian
, p, q 6= 0.

Proof. Any curve β must intersect the fundamental region at its lattice points (labeled p1,
p2, p3 and p4 in Figure 12. The slope path β may be the boundaries of vertical geodesic
surfaces that cover the entire fundamental region and continue in the universal cover.

P−

P+

A

A

B

B

C

C

D

p1

p2

p3

p4

meridian

longitude

Figure 12: Fundamental Region F = P+ ∪ P− where p1, p2, p3 and p4 are lattice points

Slope paths are not orthogonal to any face in P+ by Corollary 3.3 because they contain
an interior edge. It is possible that these slope paths contain only interior edges and do
not intersect any unshaded face. These slope paths are special and we refer to them as
alternating interior edge cycles. We study them later in Section 3.3. However, we are also
interested in the paths β = H ∩ P+ that do not contain altitudes or interior edges. They
only intersected unshaded faces in P+ ∪ P−.

Definition 3.9. An unshaded face path is a curve β = H∩P± that contains only unshaded
face segments.

These paths intersect the punctures along the unshaded faces C andD but never intersect
the vertical shaded triangles A or B. We do not consider unshaded face paths as a variety
of slope paths because slope paths must contain interior edges. In fact, unshaded face paths
are distinguishable from slope paths because an unshaded face path β is always orthogonal
to every face it intersects.
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Lemma 3.10. A plane H ∈ H3 that projects to S which does not intersect any crossing
disk is orthogonal to every unshaded face it intersects.

Proof. If β = ∂H and does not intersect any crossing disk, it does not contain an altitude
or an interior edge segment. Thus, it can only intersect P+ in unshaded faces and through
their punctures. The curve β is not able to intersect any vertical shaded triangle, such as A
or B in Figure 11. Similarly, β is unable to intersect any lattice point because that would
signify that the vertical plane H intersects the interior edge along a shaded triangle. This
implies that β must run vertically in P+∪P− to ensure that it avoids any copy of A,B ∈ F .

The curve β must intersect P± at punctures between unshaded faces. So, it can only
intersect the unshaded faces C and D at its punctures. Now, we show that β is orthogonal
to every face it intersects. It is known that if two circles are tangent, their centers and
shared point of tangency are collinear. We know that β will exit C or D vertically and thus
intersect the centers of all of the circles representing unshaded faces between them. Thus,
any β passing through a puncture, into an unshaded face, and leaves through a puncture into
another unshaded face will pass through their Euclidean centers and therefore be orthogonal
to both unshaded faces. By Lemma 3.2, we know that β is orthogonal to all unshaded faces
it passes through as long as it passes through at least one orthogonally.

3.3 Results on Cycles

We now study a curve γ = ∂D that contains only interior edge segments. We are not inter-
ested in curves that contain interior edges that enclose faces in P+ as they are the boundaries
of standard geodesic disks. Rather, we analyze the properties of interior edge paths whose
boundaries are non-standard embedded totally geodesic disks in the FAL complement. We
call these alternating interior edge cycles.

If we begin with an interior edge γ1, we know that γ1 connects two punctures, one of
which we denote as p. In an alternating interior edge cycle, as γ1 enters p, it can exit in
one of three ways: through an interior edge on a shared unshaded face, through an interior
edge on a shared shaded triangle, or on an interior edge γ2 that lies on a boundary of some
face that γ1 does not touch.

If we define the length of the alternating interior edge cycle, we use the following defini-
tion:

Definition 3.11. An n-cycle is an alternating interior edge path containing n interior edges.

Properties:

1. If an n-cycle γ contains only alternating interior edges, then n is even. We can see
this if we view γ as an oriented line, an unshaded face is either to the left or the right
γ. As we pass through punctures onto another interior edge, an unshaded surface will
be located on the opposite side. If we view each interior edge ∈ γ as a sequence of
left, right, left, right, ... , we can see that we need an even number of interior edges
to close γ back to the original interior edge.

2. A 2-cycle is not possible. There are no faces in the polyhedron with only 2 sides, so γ
cannot be a closed curve.

Now we analyse when interior edge cycles are the boundary of an embedded totally
geodesic disk.

11



A

B

C

D

A

B

C

Figure 13: Caption

Lemma 3.12. The only 4-cycle interior edge cycle that is the boundary of an embedded
totally geodesic disk is in the Borromean Rings (with or without half-twists).

Proof. We know that every path will consist of an even number of edges by Property 2.
So, we begin with three alternating interior edges that form a path and observe how the
fourth edge behaves so that γ = ∂D and is closed. Begin with an arbitrary circle packing
consisting of three tangential circles labeled them A, B, and C (see Figure 13). Choose any
interior edge that lies in the shaded triangle between them and continue the path γ so that
there are three alternating interior edges. If we choose the interior edge on circle A, the
fourth edge must connect to the interior edge on B and the interior edge on C.

Thus, the fourth circle we draw must be tangent to circle A and circle C. If we draw a
circle D so that it is tangent to B, C, and A, it will share exactly one puncture with each
of the circles. This ensures that there an alternating interior edge between B and C. By
making D tangent to A, it satisfies the condition that there is a puncture between B & D
and a puncture between C & D to ensure an alternating interior edge will exist.

Note that if there were another circle in any of the four shaded triangles in the figure on
the right in Figure 13, the interior edges would no longer be a 4-cycle.

Now we must show that this path γ = ∂D. Notice how the symmetry of A, B, and C
makes the tangencies reflective. So, we can find a circle between the 2 tangent points on A
that also intersect the punctures where C and B meet D. Thus, these punctures fall on the
same circle and lie in the boundary of a geodesic disk.

So, circle D is tangent to A, B, and C and we see that this circle packing is actually the
Borromean Rings.

A general n-cycle ∈ ∂P+ will not bound a geodesic disk in P+. In fact, it not clear that
the boundary of a geodesic disk is ever an n-cycle. We now prove that geodesic disks with
n-cycle boundaries indeed exist.

Theorem 3.13. For every n ≥ 6, there exists a P+ containing a geodesic disk whose
boundary is an n-cycle.

Proof. Similar to Lemma 3.12, we can analyze what is necessary for an interior edge 6-cycle
to exist as a boundary curve of an embedded totally geodesic disk. Then, we generalize for
all n > 6. Begin with an arbitrary circle configuration of five circles so that we can construct
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an alternating interior edge path of length five. See the figure on the left in Figure 14 for a
possible construction and labeling of the tangent circles. We label our circles A, B, C, D,

E

D

C

B

A

F

E

A

B

DC

Figure 14: A possible construction of a 6-cycle

and E. We must add a sixth circle, F , that is tangent to circles A & B and D & E. This
ensures that there is a shaded triangle between A, B, & F and D, E, & F which allows the
alternating interior edge path γ to be closed and simple. We can draw circle F around all
five circles so that it shares a puncture with A, B, D, and E exactly once such as in the
figure on the right in Figure 14.

We can choose a circle packing such that these six punctures ∈ γ lie on a circle and thus
on ∂D. If we rearrange our circles so that three congruent circles lie tangent within three
larger congruent circles, such as in Figure 15, we can create some convenient symmetric
properties. There are three lines of symmetry in Figure 15. The punctures that γ intersect
are all equidistant from the center of the three congruent smaller unshaded faces and thus
lie on a circle. This implies that γ = ∂D.

Generalizing for all n > 6, we can see that if we arrange any n-cycle into a circle packing
with n

2 congruent smaller circles lying inside n
2 congruent larger circles, we create n

2 lines
of symmetry. If γ contains the punctures where the smaller circles meet the larger circles,
we can see that γ = ∂D because all punctures are equidistant from the center of this figure.
See Figure 16. Note that anywhere there exists an unshaded triangle not bounded by an
interior edge, we can place more unshaded faces where P+ continues to contain an n-cycle.
Thus, multiple n-cycles exist as the boundary of a geodesic disk.
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Figure 15: An example of a symmetric circle packing with a 6-cycle

Figure 16: An example of a symmetric circle packing with an 8-cycle
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3.4 Finiteness Theorem

We study all possible curves of γ ∈ ∂P+ which can be the boundary of a geodesic disk. The
five possible simple, closed paths that γ can be are a standard geodesic disk, an alternating
interior edge cycle, an unshaded face path, a slope path, or an altitude containing path. We
count these paths to prove the following theorem:

Theorem 3.14. There are finitely many embedded totally geodesic disks in a polyhedra P±.

Proof. We count the number of paths that we can find in any polyhedron given n, the
number of crossing circles in the FAL complement and m, the number of unshaded faces in
P+. With the structure theorems in the previous sections, we show the upper bound for
the number of paths γ = ∂D where γ can consists of a restricted set of segments from those
listed in Section 2. We break these paths into five cases. If γ contains an altitude, we know
that there is exactly one embedded totally geodesic disk that passes through that altitude.

Case 1: Standard Geodesic Disks

Our standard geodesic disks are the regions of the projection plane and the the crossing
disk in a FAL complement that lift to unshaded faces and shaded triangles. If there
are n crossing circles, then after the cell decomposition, we reveal two halves of a
crossing disk that lift to shaded triangles. Thus, there are two geodesic disks per
crossing circle. Similarly, each region of the the projection plane that is bounded by
crossing circles and knot arcs will lift to an unshaded face in P+.

Case 2: Alternating Interior Edge Cycles

We found in Lemma 3.12 that the shortest alternating interior edge cycle is a 4-cycle
in the Borromean Rings. Thus, we exclude the 4-cycle from our count and the next
shortest possible path for any alternating path becomes a 6-cycle. Additionally, in
an alternating path, there is only one edge to which γ can travel signifying that each
interior edge belongs to at most one alternating interior edge cycle. By taking the total
number of interior edges in any fundamental region and dividing it by the smallest
number of interior edges needed in an alternating interior edge cycle, we find an upper
bound for the total possible number of alternating paths. The total number of interior
edges is 6n, where n is the number of crossing circles in the FAL. Each crossing circle,
after decomposed, becomes a puncture between two halves of the crossing disks which
are represented by shaded triangles. Each shaded triangle contains three interior edges.
Thus, six interior edges per crossing circle.

2 ∗ 3 ∗ n
6

= n paths.

Note that in general, not every alternating interior edge cycle will contain exactly six
interior edges. It may contain more, but no less. Additionally, not all of the interior
edge cycles will lie on the boundary of intersection of a geodesic disk D and P+.

Case 3: Unshaded Face Paths

Lemma 3.10 tells us that the only unshaded face paths that exist are orthogonal to
every unshaded face that γ intersects. Thus, for each puncture that we send to infinity
under a Möbius transformation, we count the maximum number of vertically sloped
lines that we could have whose punctures lie on the vertical unshaded faces, such as
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C and D in Figure 17. The maximum number of vertically sloped lines we can count
is the number of unshaded faces that lie in P+ but are not the vertical unshaded faces
C,D, or the unshaded faces that are adjacent to the vertical shaded triangles, such as
E and F in Figure 17. I there are m unshaded faces in P+, then there exist at most
m− 4 vertically sloped lines.

Then, we multiply that by the total number of punctures in P+, which is 6n. However,
we count these paths more than once, but we know that we have o

A B

C

D

E F
P+

Figure 17: An arbitrary P+ with vertical shaded triangles A,B and vertical unshaded faces
C,D.

Case 4: Slope Paths

So that γ does not intersect any shaded face of P+ at an altitude, it must intersect the
vertical shaded faces A and B at its punctures, see the red dotted line in the Figure
above. If γ begins from one puncture of P+, the maximum paths that γ can continue
through are the punctures on the adjacent unshaded face labeled E in the Figure on
the right. If k−2 is the amount of punctures on E not touching C or D, and p1, p2 are
puncture on A, then we count k − 2 positive slope paths from p1 and k − 2 negative
slope paths from p2. Total, that is 2(k− 2) ways that γ can exit a puncture on A and
intersect E. Finally, we multiply by the total number of punctures in P+, 3n, to get
an upper bound.

Case 5: Altitude containing paths

If a curve γ contains an altitude through a crossing circle puncture, then Corollary 3.6
shows that there is exactly one path γ containing this altitude and that γ = ∂D is a
vertical plane in P+. Although S may not intersect more than one altitude, we count
one surface S for every altitude because we cannot generalize how many altitudes will
appear in each altitude containing path. However, we do know that there is exactly
one altitude passing through any crossing circle puncture and thus, we count a surface
S for each of these. There are exactly n altitudes passing through crossing circle
punctures if there are n crossing circles in the FAL. So, there are at most n paths.

Otherwise, the curve γ contains an altitude through a knot puncture. Similarly, there
is exactly one geodesic disk D that contains any altitude through a knot puncture.
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Type of Geodesic Disk Boundary Upper Bound

Standard Geodesic Disks 2n+m
Alternating Interior Edge Cycles n

Unshaded Face Paths 3n(m− 4)
Slope Paths 6n(k − 2)

Altitude Containing Paths 3n

Key:
n, number of crossing circles

m, number of unshaded faces

k, see Case 4

Figure 18: Upper Bound for Disks in a FAL complement

4 Surfaces Comprised of Geodesic Disks

4.1 Unshaded Face Path Projections

Now we analyze how geodesic disks whose boundaries are unshaded face path curves glue up.
A geodesic disk D where D ∈ P+ may glue up to other geodesic disks that together project
to one embedded totally geodesic surface in a FAL complement. Let R be the reflection
interchanging P±. Then, each unshaded face A is glued to its reflection R(A). The gluing
map for an unshaded face path is ϕ = R ◦ rA, where rA is a hyperbolic reflection over a
hemisphere containing A. The isometry ϕ determines how disks can glue to form totally
geodesic surfaces. Let γi ∈ A be an edge of ∂D, and let G be the plane containing D. The
extension De of D across γi is defined by De = ϕ(G) ∩ F .

For these disks to glue up into geodesic surfaces, they must be disjoint disks in the
fundamental region whose extensions under a gluing map ϕ are non-intersecting. Clearly, if
D glues to part of an embedded totally geodesic surface in a FAL complement, then De must
be a part of the same surface. Any other geodesic disk containing ϕ(γi) forms a pleated
surface when glued to D.

A geodesic disk D glues to R(D). We show this in the following lemma:

Lemma 4.1. Let γi = A ∩G where A is an unshaded face and G contains a geodesic disk
D, then De = R(G) if and only if G ⊥ A.

Proof. Note that if rA(G) = G if and only if G ⊥ A. In this case, we know that

De = ϕ(G) ∩ F
De = R

(
rA(G)

)
∩ F (∗)

De = R(G) ∩ F (∗∗)

Where (∗) is by the definition of ϕ. Step (∗∗) implies that rA(G) = G which is true if G ⊥ A
as the inversion of G under hemisphere A will return itself.

Corollary 4.2. If De = R(D), then both D and R(D) are orthogonal to ∂P+.
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Proof. We know by Lemma 4.1 that if De = R(D), then D is orthogonal to every face it
intersects. Finally, Euclidean reflections are a conformal mapping and thus, De is orthogonal
to every face it intersects as well.

Knowing that D and De are orthogonal to every face they intersect in P± gives insight
on the surface they project to in a FAL complement.

Lemma 4.3. If De = R(D), then D and De will glue to an embedded totally geodesic
surface in a FAL complement.

Proof. An unshaded face path β = H ∩ P+ will intersect P+ orthogonally as a plane in H3.
All of the punctures that β intersects will lie on a straight line. However, if a puncture is
mapped under a Möbius transformation such that β is not straight, the punctures of β will
lie on a circle. We know that either way, the gluing map ϕ = R ◦ rA will be rewritten as
ϕ = R.

As we know, if D glues to part of an embedded totally geodesic in a FAL complement,
then De must be a part of the same surface. However, D and De intersect P± orthogonally.
This implies that after they glue up to each other, they project to an embedded totally
geodesic surface in a FAL complement. This is confirmed because D does not intersect De

and the Euclidean reflection R ensures that De will meet D at the same points.

4.2 Altitude Containing Path Projections

Altitude containing paths will glue up differently than unshaded face paths. Altitudes
that pass through knot punctures have a restrictive gluing process. An altitude passing
through knot punctures signify that the shaded triangles containing the altitude will glue
up to different shaded triangles in P+. In fact, if γa ∈ A is the segment passing through
one shaded triangle and γb ∈ B is the altitude passing through the other, γa will glue to
γa′ ∈ A′ and γb will glue to γb′ ∈ B′. Unless A′ and B′ share a knot puncture so that A, B,
A′ and B′ surround an unshaded face with four punctures, γa′ and γb′ will continue to glue
up to the shaded triangles shared by their crossing circle punctures. This gluing process
may be extensive and large after γa and γb continue creating associated gluing paths in P+.
In fact, we conjecture that these paths become too restrictive and will eventually intersect.

However, if A′ and B′ share a knot puncture such as in Figure 19, then γ has only
one associated gluing path. This duplicate altitude may lie on a disjoint geodesic disk D′

that may glue up to a geodesic surface. To avoid counting the duplicates, we divide the
total number of altitudes through knot punctures by the smallest number of duplicates any
altitude may have. If there are n crossing circles in the FAL, there are 2n shaded triangles,
each of which have two shared knot punctures with another shaded triangle. So, there are

2 ∗ 2 ∗ n
2

= 2n knot punctures.

This signifies that we could have at most 2n altitudes through those knot punctures, but
to account for the duplicates, we divide by two, the smallest number of duplicates that any
altitude through a knot puncture can have.

2 ∗ n
2

= n paths.
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A A′

B B′

Figure 19: Altitude through a knot puncture (solid line), where A glues to A′ and B glues
to B′, and its gluing duplicate (dashed line).

4.3 Finiteness Theorem for Embedded Totally Geodesic Surface

Theorem 4.4. There are finitely many embedded totally geodesic surfaces in a FAL com-
plement.

Proof. We know that if there are a finite number of geodesic disks in P+ and P−, the
disks will glue up and project to even fewer embedded totally geodesic surfaces in a FAL
complement. If we continue a similar investigation of all of the geodesic disks we have
counted in Theorem 3.14, we can see how these disks glue up and if they create non-pleated
surfaces in a FAL complement.
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