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Abstract

The project studies the volumes of hyperbolic planar trivalent graphs. To do
so we apply previous work on knots and links to graphs. In particular we use
Agol-Thurston’s tetrahedral upper bound and Adam’s bipyramidal construc-
tion. Adam’s bipyramid construction improves on Agol-Thurston. An infinite
family of graphs proves this bound is asymptotically sharp.
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1 Introduction

A knot is a single circular strand lying in S3. A link consists of more than
one knot circle in S3. A fully augmented link (FAL) is a link whose crossings
are twist reduced by removing all full twists from twist regions of the link and
replacing it with a crossing disk encircling the knot circles. Each FAL can be
described via perfect matchings in planar trivalent graphs. The volume of the
FAL is the volume of its complement in S3. To see more about FALs, refer to
Purcell [5]

The importance of hyperbolic geometry in topology stems from Mostow’s
rigidity theorem, which states that in dimension at least 3, homeomorphic ob-
jects are isometric. Thus geometric invariants become topological ones. In
particular, the importance of volume in hyperbolic geometry is that each hy-
perbolic knot and link is associated with a unique volume which can be used as
an invariant to identify properties of that knot or link.

There are many different upper bounds on volume in hyperbolic geometry
for different types of hyperbolic links. One previous result by Agol and Thurston
in an appendix to Lackenby [3] is the upper bound for hyperbolic links,

V ol(S3 − L) ≤ 10v3(t(D)− 1),

where t(D) is the number of twist regions.
A result by Adams [1] uses bipyramids to bound the volume of hyperbolic

alternating links. He proves the bound

V ol(S3 − L) ≤
∑

biV ol(Bi)− a.

For constants, read further. Adams shows that this upper bound improves
upon that of Agol-Thurston because bipyramids have less volume than the cor-
responding tetrahedral decomposition.

One natural generalization of links is embedded graphs in S3. The over-
arching focus of this paper is to use Adams bipyramid construction to bound
volumes of planar cubic graphs that are hyperbolic. Heard, Hodgson, Martelli
and Petronio initiated a study of trivalent graphs embedded in 3-manifolds,
classifying the simplest ones [3].

Masai made a connection between planar cubic graphs in S3 and FALs, and
considered upper bounds for volumes of such graphs [5]. Here we extend Masai’s
investigation by combining his results with Agol-Thurston, Adams and Purcell.
More precisely we find:

1. exact volume bounds for graphs with at most 12 vertices,

2. sharp lower bounds for graphs with n vertices,

3. upper bounds for hyperbolic graphs,

4. examples of cubic planar graphs whose upper bound is asymptotically
sharp.

—————-
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2 FALs and Cell Decomposition

Before discussing FALs or fully augmented links, some definitions are needed.
Full twists is when two link strands cross over one another twice.

Figure 1: Left: 1 full twist. Right: 3 full twists

When a link is twist reduced all twists for a collection of knot strands are
grouped in a single region. That region is called the twist region, a tangle in the
diagram where two knot strands twist.

Figure 2: Left: twist reduced link. Right: not twist reduced link.

A fully augmented link (FAL) is a twist reduced link where a trivial compo-
nent is placed around each twist region and full twists are removed. Each FAL
can be described via perfect matchings in planar trivalent graphs. See Purcell
[4] for more about FALs.

To see the hyperbolic structure we describe a cell decomposition of S3 − L.
The components of the cell decomposed FAL are

• 0-cells: None, otherwise they would be the endpoints of the edges which
correspond to ideal points.

• 1-cells: Intersections of planar and crossing disks.

• 2-cells: The crossing disks, and planar cells.

• 3-cells: Everything above and below the projection plane, B3
+ and B3

−.

Figure 3: Polyhedral decomposition of an FAL

To obtain the polyhedral decomposition of an FAL:
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1. Slice along planar two cells or knot circles. Since P+ and P− are reflections
of one another across the projection plane, lets focus on P+

2. Slice crossing disks along the 1 cells and flatten out.

3. Shrink crossing arcs, so now the crossing disks look like bow ties.

4. Shrink knot circles.

Figure 4: Example of turning link into FAL and its corresponding graph

Ideal points on the cell decomposition of an FAL are the points where two
of the unshaded regions and two of the shaded regions meet, the corners of the
triangles of the bow ties.

Remark: to get from P+ and P− to the FAL, glue P+ and P−.
A circle packing is the cell decomposition’s regions and how those regions are

adjacent represented in a diagram. A circle packing converts unshaded regions
to circles and the circles’ tangent edges respectively.

There are two combinatorial ways to describe this polyhedral decomposition.
The first way is the nerve which is a graph composed of triangular faces. Each
vertex representing the center of circles in the circle packing and all edges repre-
sents the points of tangency between the circles in the circle packing. Another
way to represent the polyhedral decomposition is the dual. The dual of a planar
graph is when a vertex is set on each face of the original graph and connected by
edges going through the original graph’s edges. Here the polyhedral decomposi-
tion can be represented as the dual of the nerve, where every vertex represents
a face in the nerve and each edge the tangency between the faces in the nerve.

3 Planar Cubic Graphs and Cell Decomposition

3.1 Definitions

The words trivalent, cubic, and 3-regular will be used synonymously to describe
graphs where each vertex has degree 3.

A perfect matching in a graph is a pairing of adjacent vertices.
Perfect matchings in trivalent graphs are clearly seen in the well-painted

graphs of Purcell where the edge between paired vertices is colored, each vertex
only having one colored edge. Purcll shows that perfect matchings correspond
to FALs.

The medial graph Gm of a graph G, is defined to have midpoints of edges of
G as vertices, with edges connecting nearby midpoints.
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Figure 5: Example of perfect matchings on the 6 vertex graph

Figure 6: Process of creating a medial graph from a dual: placing vertices on
midpoints of edges, connecting vertices based on the adjacency of dual’s faces,
the medial graph.

The medial graph Gm of a planar cubic graph G cuts the plane into regions
that can be checkerboard colored so that each shaded face is triangular. The
shaded triangles contain the vertices of the original graph G.

There is a connection between the checkerboard coloring of Gm circle pack-
ings of FALs. More precisely the shaded triangles of Gm are the shaded portions
of the circle packing.

Figure 7: Dual, dual’s medial graph, and circle packing

3.2 Planar Graphs and FALs

Note that shrinking the edges of a dual within the medial graph results in cell
decomposition of the dual, which in turn corresponds to the FAL. With a medial
graph, each shaded triangle corresponds of the shaded regions or bow ties that
appear in an FAL’s cell decomposition. Thus the FAL complement corresponds
to a perfect matching on a planar trivalent graph G, and the manifold S3 \ G
are made from the same polyhedra P+ and P−. The only difference between
S3 \G and the FAL is that shaded triangles are not glued to form S3 \G

The different matchings of a planar trivalent graph correspond to FALs of
different polyhedral gluings, but both correspond to the same circle packing.

This correspondence between FALs and planar trivalent graphs implies that
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their respective volume bounds also correspond.

3.3 Planar Cubic Graphs’ Cell Decomposition

We have already seen that planar trivalent graphs arise naturally in the FAL
setting. In fact, authors have studied them directly

Letting M be a closed, connected, orientable 3-manifold and G denote some
trivalent planar graph; when the meridian of edges of a graph correspond to
parabolic isometries then M \ G is a hyperbolic manifold with the boundary
as the thrice punctured spheres. This boundary on the graph is located at
each vertex. This boundary represents a thrice punctured sphere when one
envisions a sphere encircling a vertex and the edges radiating from the vertex
of the trivalent graph creating three punctures in the sphere. Refer to Heard,
Hodgson, Martelli and Petronio [3] for more information regarding parabolic
isometries.

Remark: to get from P+ and P− to the graph, only glue the unshaded faces
together

The resulting components of the cell decomposition of a cubic planar graph
are

• 0-cells: None, since ideal polyhedrons are used

• 1-cells: Intersection of the spheres with the projection plane

• 2-cells: The thrice punctured spheres and the projection plane

• 3-cells: The regions above and below the plane, B+ and B−

To obtain a cell decomposition of a planar cubic graph, referring to figure:

1. Replace each vertex with a sphere. Each edge makes a puncture on the
sphere.

2. Shrink graph edges to obtain P+ and P−

Figure 8: Cell decomposition of the planar graph

3.4 Structure of Planar Graph Embeddings

Planar graphs have associated equations which can be utilized in finding the
volume. One such equation is the Euler characteristic, letting V be the number
of vertices, E edges and F faces, we have
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V − E + F = 2.

Given the paper’s sole use of trivalent graphs, another applicable equation
is

3V = 2E.

Trivalent graphs have this property because each vertex is degree three, or
has three edges coming out of each vertex. Since each edge has a vertex on
either end, every edge is counted twice when summing all edges coming out of
each vertex.

4 Exact Volumes

Now that we have an explicit constructing for the hyperbolic structure on the
complement of planar trivalent graphs in S3, lets proceed with explicit volume
calculations for graphs with fewer vertices. Initially we determined which triva-
lent graphs in the table simple cubic graphs [7] are planar. To find the volume
of planar ones, we used perfect matchings to find associated FALs, then used
the SnapPy program to compute the volume. The limitation to this method
was that after 12 vertices, there would be too many graphs to find the volumes
by hand, as well as SnapPy’s inability to take in more than a certain number
of components when drawing the FAL into the program. The volumes of the
maximum volume graph of a certain number of vertices is compared with Agol-
Thurston’s bound and Adam’s collapsed bipyramidal construction below. This
coincides with and extends Masai’s calculations in [5].

Vertices Maximum Volume Agol-Thurston Adams
4 7.3277 10.1494 8.1192
6 14.6554 20.2988 15.8426
8 24.0922 30.4482 24.1882
10 32.5515 40.5676 35.8803
12 41.4162 50.747 45.8095

Figure 9: The maximum volume graphs in ascending vertex count order.

For the 4 and 6 vertex graphs, there is only one possible trivalent planar
graph, so those graphs are also their respective vertex count’s minimum volume
graph.

Multiple things were tried in order to find a pattern between the maximum
volume graphs and to see how they differed from the graphs of the same number
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of vertices but lower volumes. For vertex count 4 to 10, it seemed that nested
V
2 -gons were the maximum volume graphs, but the 12 vertex maximum graph
refuted that possibility.

Then I compared the FALs of the graphs with 4 to 12 vertices and observed
that the higher volume graphs had fewer belt-sum decompositions. In comparing
the graphs, the graphs with the same volume were non-prime graphs. This is
because the 3-cuts in those graphs corresponds to the thrice punctured sphere.
Slicing through those 3-cuts topologically corresponds to summing the volumes
of both graphs on either side of the slicing. See Adams [2].

Figure 10: Slicing and 10 vertex graph along a 3-cut. Cut edges are joined at
a new vertex. So the volume of the 10 vertex graph is the sum of the 2 prime
graphs.

Each maximum volume graph was a prime graph for its number of vertices.
It was also observed that each maximum volume graph had the highest n-cut for
its number of vertices, so that allowed me to ignore the 3-cut 12 vertex trivalent
planar graphs in analyzing graphs for the maximum volume.

Figure 11: The following table’s graphs from left to right going down: 4, 6, 8.1,
8.2, 10.1, 10.2, 10.3, 10.4, 10.5, 12.1, 12.2.
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Graph 3-edged face 4 5 6 Volume Uncollapsed Bipyr Vol
4 4 0 0 0 7.3276 16.2384
6 2 3 0 0 14.6552 27.2298

8.1 0 6 0 0 24.0921 38.2212
8.2 2 2 2 0 21.98 37.599
10.1 0 5 2 0 32.5515 48.5904
10.2 1 3 3 0 31.4199 48.2793
10.3 2 3 0 2 29.3109 47.5282
10.4 3 0 3 1 29.3109 47.4371
10.5 2 2 2 1 29.3109 47.7482
12.1 0 6 0 2 41.4162 58.5196
12.2 0 4 4 0 40.5977 58.9596

From there I read more about Agol-Thurston’s upper bound and Adam’s im-
provement upon it. I calculated the bipyramidal volume for each graph (without
collapsing) by hand after calculating the number of faces and edges bounding
however many faces by hand. Seeing that Adams gave the best upper bound,
I tried extending it by using the number of vertices a graph had to determine
sizes of the graphs faces, but reached a dead end. Attempting to generalize
the bound to use the number of vertices to determine the sizes of the faces had
issues in fitting into the numerical requirements of a linear equation, but not
meeting the Euler characteristic or trivalent property. There was no pattern in
the number of faces or the size of faces correlating with which graph had the
maximum volume.

5 Volume Bounds

5.1 Lower Bound

A lower bound for volumes of hyperbolic FALs appears in [5], whose Proposition
3.6 states

Proposition [Purcell]: If L is a hyperbolic fully augmented link with c
crossing circles, then

vol(S3 - L) ≥ 2v8(c - 1)

where v8 = 3.66386... is the volume of a regular ideal octahedron. Moreover

vol(S3 - L) = 2v8(c - 1)

if and only if S3 L decomposes into regular ideal octahedra.
Thus this bound is sharp. Refer to figure 10 for the following explanation.

Purcell observes that each successive central subdivision of a triangle within the
nerve adds a circle in one of the triangle’s in the nerve’s circle packing. The
adding of a circle in a triangle of the circle packing is the same as adding an
ideal regular octahedron. The central subdivision of a nerve is equivalent to
turning a vertex of the trivalent graph into three vertices. In taking a dual
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of a graph, each former vertex is surrounded by tangencies of the faces across
previous edges. The trivalent graph’s original vertex is a triangular face in
the nerve. By turning the trivalent graph’s vertex into three vertices, we are
equivalently centrally subdividing the triangular face that vertex is. Since both
are equivalent, Purcell’s lower bound for volume is sharp for trivalent graphs
and their corresponding hyperbolic link.

Figure 12: Left to right: Example of 4 vertex graph with its nerve and circle
packing then the 6 vertex graph as added vertices and central subdivision in its
nerve with the added circle in its circle packing

5.2 Upper Bounds

This paper will apply techniques of upper bounds for different kinds of hy-
perbolic links to the rivalent graph setting. In particular, we will draw from
Adam’s bipyramidal construction and apply them to planar trivalent graphs
and Agol-Thurston’s bound utilizing tetrahedra.

5.2.1 Agol-Thurston’s Upper Bound

Agol-Thurston improved Lackenby’s [3] upper bound for the volume of links K
with a prime alternating diagram D. Their upper bound was

Theorem[Agol-Thurston]: Given a projection diagram D of a link L with
twist number t(D) then

vol(S3 − L) ≤ 10v3(t(D)− 1)

Moreover there is a sequence of links Li such that

vol(S3 − L)/t(Di)→ 10v3

Overview of Agol-Thurston’s Proof : Agol-Thurston prove their theo-
rem by first creating an augmented alternating link L then cellularly decompos-
ing L. Tetrahedra are then placed on each shaded region, one on P+ and one on
P−. Noting that each twist region decomposes into 2 shaded regions, the bow
tie, there are 4t(D) tetrahedra on the shaded regions. The unshaded regions
are divided into as many tetrahedra as there are sides of the unshaded region.
Also noting that each twist region is tangent to 2 unshaded faces, and that the
unshaded faces must be at least 3-sided, then the number of tetrahedra given
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by the unshaded faces is at least 6t(D). Hence, the total number of tetrahedra
so far is 10t(D). Afterwards, Agol-Thurston collapse tetrahedra. To collapse
tetrahedra, choose an ideal vertex. Since every 2 unshaded regions have at least
6 tetrahedra and every 2 shaded regions have 4, we may collapse 10 tetrahedra,
resulting in

vol(S3 − L) ≤ 10v3(t(D)− 1).

Figure 13: Placement of tetrahedra on shaded regions and stellar subdivision of
unshaded regions into tetrahedra.

For more detail, please view Agol-Thurston’s proof in full in their appendix
to Lackenby [3].

5.2.2 Adam’s Upper Bound

Adams improved on the Agol-Thurston upper bound for hyperbolic alternating
links using a bipyramidal construction. By using bipyramids through the faces
of the augmented link instead of stellar subdivisions and placing tetrahedra on
all faces the process is much more efficient. An additional benefit to Adam’s
bipyramid construction is the fact that the volume of an n-sided bipyramid is
always less than the volume of the sum of n tetrahedra. Refer to Adams [1] for
more detail on his upper bound for hyperbolic alternating links.

Figure 14: The upper half of bipyramids on an FAL and the local collapsing at
a chosen ideal point

In figure 11, the upper half of bipyramids is displayed on the polyhedral
cell decomposition. The top point of the bipyramids goes to the vertices above
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and below the projection plane, one placed in P+ and one in P−. The first
image displays only the top half of the bipyramids for clarity. The second
image displays the regions around a chosen ideal point. The third displays the
flattening of the upper half of the bipyramids when shrinking the edge at the
ideal point. This collapsing at the ideal point also happens in the lower half.

5.2.3 Putting Together Agol-Thurston and Adams

Agol-Thurston show their upper bound is asymptotically sharp by doing com-
plex polyhedral gluings on the infinite chain link fence. Taking our cue from
their work, we show the bipyramid upper bound is asymptotically sharp for
trivalent planar graphs. We have prove then

Theorem: Given a planar trivalent graph having V vertices and bipyramidal
upper bound (BUB)

BUB ≤ 10v3(V
2 − 1)

And there is a sequence of graphs G where

BUB/V
2 → 10v3

Proof. : To obtain this upper bound we break down Agol-Thurston’s chain-link
fence by beginning with smaller graph constructions of the chain link fence (see
Figure 13).

Figure 15: Smaller graph constructions of the infinite chain-link fence, H4 and
H6.

The graph Hm cuts the plane into polygonal faces. We begin by counting the
number of faces of each type. It can be noted that there are m2 hexagonal faces,
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m = 4, 6, 8.... There are also 2m triangular faces. The two 2m-sided faces are
the largest faces. Recall Adam’s bipyramidal construction in section 5.2.2. We
will be collapsing the 2 largest faces since their sharing of an edge in the planar
trivalent graph translates to an ideal point in the FAL’s cell decomposition.
We also need the number of vertices, which will each have a 3-sided bipyramid
through them when computing the volume, except for the 2 collapsed at the
ideal point. To obtain this number, we shall utilize the Euler characteristic and
the graph’s trivalent property. Recall that we know F = m2 +2m+2, 3V = 2E
and V − E + F = 2. Substituting, we have

V − E + F = 2

V − 3V

2
+ m2 + 2m + 2 = 2

m2 + 2m =
V

2

2m2 + 4m = V.

Using Adams bipyramidal construction we place n-sided bipyramids on all
n-sided faces and 3-sided bipyramids on all vertices. Finally we collapse the two
largest faces together with the adjacent shaded triangles. We then see

BUB = m2vol(B6) + (2m + 2m2 + 4m− 2)vol(B3)

= m2vol(B6) + (2m2 + 6m− 2)vol(B3).

Noting vol(B6) = 6v3 and vol(B3) = 2v3 (see Adams[1]), upon dividing both
sides by half the number of vertices and taking a limit as m goes to infinity

lim
m→∞

BUB

m2 + 2m
= lim

m→∞

m26v3 + (2m2 + 6m− 2)2v3
m2 + 2m

= lim
m→∞

m26v3 + m24v3 + m12v3 − 4v3
m2 + 2m

= lim
m→∞

m210v3 + m12v3 − 4v3
m2 + 2m

= 10v3,

Since Adam’s shows that his bipyramid construction is always at most the
tetrahedral constant of Agol-Thurston, we have

BUB < 10v3(V
2 − 1)
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Despite supporting that 10v3 is an optimal coefficient to the upper bound
on volume, there are still several unknowns in the bipyramidal volume construc-
tion for trivalent graphs. Since this paper works with small trivalent graphs,
the hexagonal construction may not be the graph of the maximum volume for
however many vertices it has.

6 Future Research

Many roadblocks in this project can be explored more extensively to find po-
tentially lovely results.

• Is there any way to further improve the bipyramid bound?

• What would be done for links represented by non-planar graphs?

• Show that non-prime graphs also reach the upper bound for large enough
n vertices

• Is there a lower bound for the hexagon family graphs?

• Can Lackenby’s article on guts of surfaces be used to find a lower bound
on the maximum volume of graphs?

• Is there a way to prove that prime and highest connected graph for the
number of vertices a graph has are the graphs with maximum volume?
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