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Abstract

This papers studies past notions of curvature homogeneity while also discussing G-
modeled pseudo-Riemannian manifolds. It is shown that for any m ∈ N∩ [3,∞), there
exists a manifold M of dimension m, a model spaceM, and a one dimensional Lie group
such that M is G-modeled up to order 0 with respect toM. In addition, the manifold
fails to be curvature homogeneous as well as homothety curvature homogeneous.

1 Introduction
Past studies of curvature homogeneity, for example in [1], have involved the comparison of
pseudo-Riemmanian manifolds and model spaces. This paper dives into a deeper theory of
curvature homogeneity, which was first studied in [3]. We wish to examine a new branch of
manifolds known as G-modeled manifolds. This theory involves the ingredients of a pseudo-
Riemannian manifold, a model space, and a Lie group G. One of the first examples of a
G-modeled manifold (see [3]) appears in the form of a three dimensional manifold being
G-modeled with respect to a model, and a one dimensional Lie group G. In this paper, we
extend this particular result by increasing the dimension of the manifold to any arbitrary
finite dimension m, while leaving the dimension of the Lie group the same.

1.1 Manifolds and Model Spaces
For the remainder of the paper, when a vector space is mentioned, we assume that it is real
and finite dimensional.

Definition 1. Let V be a vector space. A function φ : V ×V → R is called an inner product
on V if

1. φ is bilinear,

2. φ(v, w) = φ(w, v) for any v, w ∈ V ,

3. φ(v, v) > 0 if v 6= 0 (positive definite).

Furthermore, if M is a manifold, then a metric g on M is a choice of inner product on each
tangent space. We denote the tangent space at a point P ∈ M as TPM . We say that the
tuple (M, g) is a pseudo-Riemannian manifold if g admits an inner product on each TPM
that satisfies the following property:
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4. For any v ∈ V \ {0}, there exists a w ∈ V such that φ(v, w) = 0.

Given a pseudo-Riemannian manifold (M, g) as discussed above, if ∇ is Levi-Civita connec-
tion on M , the we define the Riemannian curvature tensor R on the vector fields X, Y, Z,W
as

R(X, Y, Z,W ) := g
(
∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,W

)
.

Furthermore, we define ∇iR to be the ith covariant derivative of R. If P is a point on M ,
then we denote TPM to be the tangent space at P , and gP , ∇iRP to be the metric g and ith
covariant derivative at P , respectively.

Definition 2. A map R0 : V 4 → R is called an algebraic curvature tensor on V if

1. R0 is multilinear,

2. R0(x, y, z, w) = −R0(y, x, z, w),

3. R0(x, y, z, w) = R0(z, w, x, y), and

4. R0(x, y, z, w) +R0(z, x, y, w) +R0(y, z, x, w) = 0,

for all x, y, z, w ∈ V . The set of algebraic curvature tensors on V is denoted by A(V ). The
tuple (V, φ,R0) is called a model space. For simplicity, we denote the set of all model spaces
over V as M(V ).

Remark 1. We note that in the above definition, R0 was an element of ⊗4V ∗ that satisfies
the same algebraic properties as the Riemannian curvature tensor. We may further extend
the definition above by saying that a model space is a tuple (V, φ,R0, R1, . . . , Rk) where V is
a vector space, φ is an inner product on V , and each Ri, for i = 0, 1, . . . , k, is an element of
⊗4+iV ∗ that satisfies the same algebraic properties as ∇iR.

Given two model spaces V = (V, φ1, R0, . . . , Rk) and W = (W,φ2, S0, . . . , Sk), we say that V
is isomorphic to W and write V ∼= W , if there exists an invertible linear map A : V → W
such that V = A∗W , where A∗ represents precomoposition by A, and

A∗W := (W,A∗φ2, A
∗S0, . . . , A

∗Sk).

Remark 2. It is important to note that in some cases, for a model space M, we sometimes
define A∗M exactly as above, but do not precompose A with the inner product.

1.2 Curvature Homogeneity Theories
The next definitions discuss the types of curvature homogeneity we wish to study. If a model
is of the formM = (V, φ,R0, . . . , Rk), then we say thatM is a k-model and in some cases use
the notation Mk in its place. Also, if (M, g) is a pseudo-Riemannian manifold and P ∈M ,
then the tuple

Mk
P := (TPM, gP , RP , . . . ,∇kRP )

is a k-model space.
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Definition 3. Let (M, g) be a pseudo-Riemannian manifold and letMk = (V, φ,R0, . . . , Rk)
be a model space of order k. Then, we say that (M, g) is:

• Curvature homogeneous up to order k (CHk) with model Mk, if Mk
P
∼=Mk for every

P ∈M

• Homothety curvature homogeneous up to order k (HCHk) with model Mk, if there
exists a nonzero smooth function λ : M → R such that for every P ∈M ,

Mk
P
∼= (V, φ, λR0, λ

3
2R1, . . . , λ

k+2
2 Rk).

Remark 3. It is clear to see that CHk ⇒ HCHk by simply setting λ = 1.

While the above types of curvature homogeneity have been studied in the past, we can
generalize these notions by also considering a Lie group that acts on the set of model spaces
over V . Adding this aspect of a group action has only recently been studied in [3]. This idea
is clearly laid out in the following definition.

Definition 4. Let (M, g) be a pseudo-Riemmanian manifold and M = (V, φ,R0, . . . , Rk) be
a model space. Suppose that G ≤ Gl(V ) is a Lie group and A 7→ A · M is an action of G
on the set of model spaces over V . Then, (M, g) is G-modeled up to order k provided the
following hold:

1. For every P ∈M there exists an A ∈ G such that Mk
P
∼= A · M

2. For every A ∈ G there exists a P ∈M such that Mk
P
∼= A · M.

1.3 Invariants of Curvature Homogeneous Manifolds
As briefly discussed before, we are interested in manifolds that live in the category of Defi-
nition 4 but not that of Definition 3. The following result is a useful curvature homogeneous
invariant, which was first used in [2] and [3].

Proposition 1. Suppose (M, g) is an HCH0 manifold with model M. Define

τ :=
∑
i,j,k,l

gilgjkRijkl and ||R||2 :=
∑

i1,j1,...,i4,j4

gi1j1gi2j2gi3j3gi4j4Ri1i2i3i4Rj1j2j3j4 , (1)

then we have that
τ(P1)2

||R(P1)||2 = τ(P2)2

||R(P2)||2

for any points distinct points P1, P2 ∈M .

We use the contraposititive of this statement, in practice.

Corollary 1. Let (M, g) be a manifold. As defined above, if τ2

||R||2 is non-constant on M ,
then (M, g) is not HCH0, and hence not CH0 either.
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2 G-modeled Manifolds of 4 Dimensions
In [3], it was shown that there exists a 3-dimensional manifold that is G-modeled up to order
0, with respect a model space M and a Lie group G ∼= R+ acting on M. This manifold
was also not HCH0 nor CH0. While it is our overall goal to construct an arbitrary finite
dimensional manifold satisfying these conditions, we begin by showing that there exists such
a manifold of 4 dimensions.

Let M := {(x1, x2, x3, x4) : x1 > 0}, where (x1, x2, x3, x4) are the standard coordinates
of R4 and define a metric on M via

g(∂x1, ∂x1) = 1, g(∂x2, ∂x3) = g(∂x2, ∂x4) = e2f(x1), and g(∂x3, ∂x3) = h(x1)

where we define f(x1) := −x1+ln(ex1−1) and h(x1) := 1
4e

2x1 . Let V = span{X1, X2, X3, X4}.
We construct a model space on V , and define it to be M := (V, φ,R0) where the following
are the nonzero entries of R0 and φ, up to the standard symmetries:

φ(X1, X1) = φ(X2, X3) = φ(X2, X4) = 1,

R0(X1, X3, X3, X1) = R0(X3, X4, X2, X3) = −1,
and

R0(X1, X2, X3, X1) = R0(X2, X3, X3, X2) = R0(X1, X2, X4, X1) = R0(X2, X4, X4, X2) = 1.

Let G ≤ Gl(V ) be the Lie group

G =




1 0 0 0
0 t 0 0
0 0 1 0
0 0 0 1

 : t > 0

 ,
which is isomorphic to R+. Let G act on the set of model spaces over V by

G×M(V )→M(V )
(A, (V, φ,R0)) 7→ (V, φ,A∗R0).

The following Lemma is due to calculations done in Maple.

Lemma 1. Let (M, g) be constructed as above. The following hold:

1. The nonzero covariant derivatives of the coordinate frames are

∇∂x2∂x3 = ∇∂x3∂x2 = ∇∂x2∂x4 = ∇∂x4∂x2 = −e2f(x1)f ′(x1)∂x1,

∇∂x3∂x3 = −h
′(x1)
2 ∂x1, ∇∂x1∂x2 = ∇∂x2∂x1 = f ′(x1)∂x2,

∇∂x1∂x3 = ∇∂x3∂x1 = h′(x1)
2h(x1)∂x3 +

(
− h

′(x1)
2h(x1) + f ′(x1)

)
∂x4,

and
∇∂x1∂x4 = ∇∂x4∂x1 = f ′(x1)∂x4.
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2. The nonzero curvature entries (up to the usual symmetries) are

R(∂x1, ∂x3, ∂x3, ∂x1) = (h′(x1))2

4h(x1) −
h′′(x1)

2 , R(∂x3, ∂x4, ∂x2, ∂x3) = −e
2f(x1)(f ′(x1))(h′(x1))

2 ,

R(∂x2, ∂x3, ∂x3, ∂x2) = R(∂x2, ∂x4, ∂x4, ∂x2) = e4f(x1)(f ′(x1))2,

and

R(∂x1, ∂x2, ∂x3, ∂x1) = R(∂x1, ∂x2, ∂x4, ∂x1) = −e2f(x1)((f ′(x1))2 + f ′′(x1)).

Theorem 1. As defined above, (M, g) is G-modeled up to order 0 with respect to the model
space M (and group action as above). Moreover, (M, g) is neither CH0 nor HCH0.

Proof. Using Lemma 1 part 2, we consider the frame {X1, X2, X3, X4} (note that this is an
abuse of notation when considering V above, but the significance of this abuse will become
clear) where

X1 = ∂x1, X2 =

√
|∆|

e2f(x1)∂x2, X3 = 1√
|∆|

∂x3, and X4 = 1√
|∆|

∂x4.

Here, we define ∆ := (h′(x1))2

4h(x1) −
h′′(x1)

2 . It is an easy verification that

|∆| = −∆ and h′(x1)
2 = |∆|

for any x1 > 0. Now,
g(X1, X1) = g(X2, X3) = g(X2, X4) = 1

and

R(X1, X3, X3, X1) = ∆
|∆| = −1, R(X1, X2, X3, X1) = R(X1, X2, X4, X1) = −((f ′(x1))2+f ′′(x1)),

R(X2, X3, X3, X2) = R(X2, X4, X4, X2) = (f ′(x1))2,

and R(X3, X2, X4, X3) = −f
′(x1)h′(x1)

2|∆| = −f ′(x1).

It is trivial to see that f ′(x1) = −((f ′(x1))2 + f ′′(x1)) and also that f ′({x1 : x1 > 0}) = R+.
Hence, for any t > 0, we can find a point P0 = (y1, y2, y3, y4) ∈ M such that f ′(y1) = t, and
when considering the frame (X1, X2, X3, X4), we have

R(X1, X3, X3, X1) = −1, R(X1, X2, X3, X1) = R(X1, X2, X4, X1) = t,

R(X2, X3, X3, X2) = R(X2, X4, X4, X2) = t2, R(X3, X2, X4, X3) = −t.
In other words, given any A ∈ G, there exists a point P ∈ M such that RP ≡ A∗R0 and
hence A∗M = MP . We conclude that (M, g) is G-modeled up to order 0 with model M.
To verify that this manifold is not HCH0, we calculate the values in (1) (via Maple) as

τ = 2(−e2x1 + 2ex1 − 2)
(ex1 − 1)2
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and
||R||2 = 16(36ex1 − 131e4x1 − 32e6x1 + 80e5x1 − e8x1 + 8e7x1 − 94e2x1)

(ex1 − 1)2

for any x1 > 0. Now, one could verify that τ2

||R||2 is non-constant as x1 varies. Thus, by
Corollary 1, we find that our manifold is not HCH0. By Remark 3, it is also not CH0.

3 G-Modeled Manifolds of Finite Dimension m ≥ 3
It is our goal to prove the following Theorem:

Theorem 2. Let m ∈ N ∩ [3,∞). Then, there exists:

• a pseudo-Riemannian manifold (M, g),

• a 0-model M, and

• a Lie group G ∼= R+ and an action of G on M(V )

such that M is G-modeled up to order 0 with respect to the model spaceM, and dim(M) = m.
Furthermore, (M, g) is neither CH0 nor HCH0.

For the remainder of this section, suppose that n is an arbitrary element of N.

3.1 Construction for m = 2n+ 1
Lemma 2. Let M = R2n+1 with coordinates (x1, x2, . . . , x2n+1). Suppose f is a function of
only x1. Let g be a metric on M with nonzero entries given by

g(∂x1, ∂x1) = 1

and
g(∂x2, ∂x3) = g(∂x4, ∂x5) = · · · = g(∂x2n, ∂x2n+1) = e2f(x1).

The following hold:

1. The nonzero covariant derivatives of the coordinate frames are

∇∂x1∂xk = ∇∂xk
∂x1 = f ′(x1)∂xk and ∇∂xi

∂xj = ∇∂xi
∂xj = −f ′(x1)e2f(x1)∂x1

where k = 2, 3, ..., 2n+ 1, and {i, j} ∈ U := {{i, j} : gxixj
= gxjxi

= e2f(x1)}.

2. The nonzero curvature entries up to symmetry are

R(∂x1, ∂xi, ∂xj, ∂x1) = −e2f(x1)((f ′(x1))2+f ′′(x1)), R(∂xi, ∂xj, ∂xj, ∂xi) = e4f(x1)(f ′(x1))2

and R(∂xi, ∂xa, ∂xb, ∂xj) = −e4f(x1)(f ′(x1))2,

where {i, j} and {a, b} are unique sets contained in U .

6



Proof. 1. By construction, the only nonzero Christoffel symbols of the second kind (up
to symmetries) are

Γ1kl = f ′(x1)e2f(x1) and Γkl1 = −f ′(x1)e2f(x1),

where {k, l} ∈ U . Now, since

Γ1kl = g

(2n+1∑
m=1

Γm1k∂xm, ∂xl
)

= Γk1kg(∂xk, ∂xl),

we have that
Γm1k =

{
f ′(x1) if m = k
0 otherwise .

This implies that ∇∂x1∂xk = f ′(x1)∂xk and similar derivations show that ∇∂xk
∂x1

obtains the same value. Also, we have that

Γkl1 = g

(2n+1∑
m=1

Γmkl∂xm, ∂x1

)
= Γ1

klg(∂x1, ∂x1),

and hence
Γ1
kl =

{
−f ′(x1)e2f(x1) if m = 1
0 otherwise .

Thus, ∇∂xk
∂xl = −f ′(x1)e2f(x1)∂x1 and by symmetry, we conclude that ∇∂xl

∂xk ob-
tains the same value, proving the second assertion of (1). It is also clear that any other
covariant derivative entries vanish.

2. Let {i, j}, {a, b} ∈ U . By part 1, we have

R(∂x1, ∂xi, ∂xj, ∂x1) = g (∇∂x1∇∂xi
∂xj −∇∂xi

∇∂xi
∂x1, ∂xj)

= g
(
−2(f ′(x1))2e2f(x1) − f ′′(x1)e2f(x1) − (f ′(x1))2e2f(x1), ∂x1

)
= −((f(x1))2 + f ′′(x1)),

R(∂xi, ∂xj, ∂xj, ∂xi) = g
(
∇∂xi
∇∂xj

∂xj −∇∂xj
∇∂xi

∂xj, ∂x1
)

= g((f ′(x1))2e2f(x1)∂xj, ∂xi)
= −e4f(x1)(f ′(x1))2,

and

R(∂xi, ∂xa, ∂xb, ∂xj) = g (∇∂xi
∇∂xa∂xb −∇∂xa∇∂xi

∂xb, ∂xj)
= g

(
−(f ′(x1))2e2f(x1)∂xi, ∂xj

)
= −e4f(x1)(f ′(x1))2,
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as needed. It is left to show that the remaining curvature entries vanish. Let p, q, r, s ∈
{2, 3, . . . , 2n+ 1}. First assume that {q, r} 6∈ U . Then,

R(∂xp, ∂xq, ∂xr, ∂xs) = g
(
−∇∂xq∇∂xp∂xr, ∂xs

)
=
{
g
(
(f ′(x1))2e2f(x1)∂xp, ∂xs

)
if {p, r} ∈ U

0 otherwise
.

However, we note that if both {p, r}, {q, s} ∈ U , then this is a symmetry of a nonzero
curvature entry. Thus, if either {p, r} or {q, s} are not in U , then this curvature entry
vanishes, as required. Now suppose that {q, r} ∈ U . To distinguish from an existing
nonzero curvature entry, it must be the case that {p, s} 6∈ U . Now,

R(∂xp, ∂xq, ∂xr, ∂xs) = g
(
−(f ′(x1))e2f(x1)∂xp −∇∂xq∇∂xp∂xr, ∂xs

)
= 0,

where the last inequality holds since g(∂xp, ∂xs) = 0 and ∇∂xq∇∂xp∂xr = 0. It remains
to verify that any curvature entry with only one input of ∂x1 is zero. Let p, q, r ∈
{2, 3, . . . , 2n+ 1}. We have that

R(∂x1, ∂xp, ∂xq, ∂xr) =

 g
(
−e2f(x1)((f ′(x1))2 + f ′′(x1))∂x, ∂xs

)
if {p, r} ∈ U

g
(
−e2f(x1)(2f ′(x1))2 + f ′′(x1))∂x, ∂xs

)
otherwise

,

but since g(∂x1, ∂xs) = 0, this value is zero in either case. Due to symmetry, we have
that any curvature entry with only one input of ∂x1 is zero.

The goal now is to utilize the metric construction of Lemma 2 on a particular manifold,
and show that it is G−modeled up to order 0 for some Lie group isomorphic to R+. In
addition, we want our construction to omit a manifold which is neither CH0 nor HCH0. We
now show given any 2n + 1, there exists a manifold M satisfying the above properties with
dim(M) = 2n+ 1.

Let (x1, x2, . . . , x2n+1) be the standard coordinates of R2n+1 and define

M := {(x1, x2, . . . , x2n+1)|x1 > 0}

to be our manifold. We also let our metric g on M to be defined as in Lemma 2, while using
the same notation for U , and also setting f(x1) := −x1 + ln(ex1 − 1). With this mind, we
let our model space be given by M := (V, φ,R0) where V = span{X1, X2, . . . , X2n+1}, and
the nonzero inner product entries (up to the standard symmetries) are given by

φ(X1, X1) = φ(X2, X3) = · · · = φ(X2n, X2n+1) = 1.

If we denote Ũ := {{i, j} : φ(Xi, Xj) = φ(Xj, Xi) = 1 and i 6= j}, then we define the nonzero
algebraic curvature entries as

R0(X1, Xi, Xj, X1) = R0(Xi, Xj, Xj, Xi) = 1, R0(Xi, Xa, Xb, Xj) = −1.
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where {i, j} and {a, b} are distinct sets in Ũ . We also let G ≤ Gl(V ) be the Lie group
defined to be the set of (2n+ 1)× (2n+ 1) matrices A = [aij] for which

aij =


1 if i = j ≡ 1 (mod 2),
t if i = j ≡ 0 (mod 2),
0 otherwise

where t ∈ R+, so that G ∼= R+. Furthermore, we let G act on the set of model spaces over
V (call this set M(V )) via

G×M(V )→M(V )
(A, (V, φ,R0)) 7→ (V, φ,A∗R0),

where A∗ represents precomposition by A.

Theorem 3. As defined above, the manifold (M, g) is G-modeled up to order 0 with respect
to the model space M and the given group action on M(V ). In addition, (M, g) is not
HCH0.

Proof. By Lemma 2, we deduce that the nonzero curvature entries on the vector field (up to
the usual symmetries) are given by

R(∂x1, ∂xi, ∂xj, ∂x1) = −e2f(x1)((f ′(x1))2 + f ′′(x1)), R(∂xi, ∂xj, ∂xj, ∂xi) = e4f(x1)(f ′(x1))2

and R(∂xi, ∂xa, ∂xb, ∂xj) = −e4f(x1)(f ′(x1))2,

where {i, j} and {a, b} are unique sets contained in U . Now consider the frame {X1, X2, . . . , X2n+1}
(using the same abuse of notation as before) where

Xi =
{
∂xi if i ≡ 1 (mod 2)
e−2f(x1)∂xi if i ≡ 0 (mod 2) .

Noting that if {i, j} ∈ U , then i is incongruent to j modulo 2, it easily follows that

g(X1, X1) = g(X2, X3) = g(X4, X5) = · · · = g(X2n, X2n+1) = 1

and
R(X1, Xi, Xj, X1) = −((f ′(x1))2 + f ′′(x1)), R(Xi, Xj, Xj, Xi) = (f ′(x1))2,

R(Xi, Xa, Xb, Xj) = −(f ′(x1))2,

for any distinct pairs {i, j} and {a, b} in Ũ . We already know that f ′(x1) = −((f ′(x1))2 +
f ′′(x1)) and also that f ′ is surjective onto R+. Thus, for any t > 0, there exists a point
P = (y1, y2, ..., y2n+1) ∈ M such that f ′(y1) = t, and on the frame (X1, X2, . . . , X2n+1), we
find that

R(X1, Xi, Xj, X1) = t, R(Xi, Xj, Xj, Xi) = t2,

and
R(Xi, Xa, Xb, Xj) = −t2.
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In other words, for any A ∈ G, there exists a P ∈ M such that A∗M =MP . We conclude
that (M, g) is G−modeled up to order 0 with respect to the model space M.

We now check that the manifold is not HCH0. Calculating the values in (1), through
basic counting, one could deduce that

τ = (4n)t−
(

2n+ 8
(
n

2

))
t2

and that
||R||2 = 8nt2 +

(
4n+ 16

(
n

2

))
t4

for any t > 0. Hence, as a function of t,

F (t) := τ 2

||R||2
= (4n3 − 4n2 + n)t2 − (8n2 − 4n)t+ 4n

(2n− 1)t2 + 2 ,

in which case,

F ′(t) = (16n3 − 16n2 + 4n)t2 + (16n3 − 32n2 + 12n)t− (16n2 − 8n)
((2n− 1)t2 + 2) .

Since F ′(t) 6≡ 0, by Corollary 1, we conclude that our manifold is not HCH0, and hence not
CH0 either.

3.2 Construction for m = 2n+ 2
Lemma 3. Let M = R2n+2 with coordinates (x1, x2, . . . , x2n+2). Suppose f is a function of
only x1. Let g be a metric on M with nonzero entries given by

g(∂x1, ∂x1) = 1

and

g(∂x2, ∂x3) = g(∂x4, ∂x5) = · · · = g(∂x2n, ∂x2n+1) = g(∂x2n+2, ∂x2n+2) = e2f(x1).

The following hold:

1. The nonzero covariant derivatives of the coordinate frames are

∇∂x1∂xk = ∇∂xk
∂x1 = f ′(x1)∂xk and ∇∂xi

∂xj = ∇∂xi
∂xj = −f ′(x1)e2f(x1)∂x1

where k = 2, 3, ..., 2n+ 1, and {i, j} ∈ U̇ := {{i, j} : gxixj
= gxjxi

= e2f(x1), i 6= j}.

2. The nonzero curvature entries up to symmetry are

R(∂x1, ∂xi, ∂xj, ∂x1) = R(∂x1, ∂x2n+2, ∂x2n+2, ∂x1) = −e2f(x1)((f ′(x1))2 + f ′′(x1)),

R(∂xi, ∂xj, ∂xj, ∂xi) = e4f(x1)(f ′(x1))2,

and R(∂xi, ∂xa, ∂xb, ∂xj) = R(∂x2n+2, ∂xi, ∂xj, ∂x2n+2) = −e4f(x1)(f ′(x1))2,

where {i, j} and {a, b} are unique sets contained in U̇ .
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Proof. The proof of this Lemma is similar to the proof of Lemma 2 and thus is omitted.

Now, for our construction, let our manifold be given by

M := {(x1, x2, . . . , x2n+2) ∈ R2n+2 : x1 > 0}

and let the metric g on M be defined as in the previous Lemma. We again suppose
that f(x1) = −x1 + ln(ex1 − 1). Suppose M := (V, φ,R0) is the model space where
V = span{X1, X2, . . . , X2n+2}, the nonzero inner product entries are

φ(X1, X1) = φ(X2, X3) = · · · = φ(X2n, X2n+1) = φ(X2n+2, X2n+2) = 1.

Defining Û := {{i, j} : φ(Xi, Xj) = φ(Xj, Xi) = 1, i 6= j}, we let the nonzero algebraic
curvature entries be given by

R0(X1, Xi, Xj, X1) = R0(X1X2n+2, X2n+2, X1) = 1, R(Xi, Xj, Xj, Xi) = 1

and R(Xi, Xa, Xb, Xj) = R(X2n+2, Xi, Xj, X2n+2) = −1,

where {i, j} and {a, b} are unique sets in Û . We also let G ≤ Gl(V ) be the set of (2n+ 2)×
(2n+ 2) matrices A = [aij] such that

aij =


1 if i = j ≡ 1 (mod 2),
t if i = j ≡ 0 (mod 2) and i 6= 2n+ 2,√
t if i = j = 2n+ 2

0 otherwise

where t ∈ R+, so that G ∼= R+. We again let G act on M(V ) via

G×M(V )→M(V )
(A, (V, φ,R0)) 7→ (V, φ,A∗R0),

where A∗ represents precomposition by A.

Theorem 4. As defined above, the manifold (M, g) is G-modeled up to order 0 with respect
to the model space M and the given group action on M(V ). In addition, (M, g) is not
HCH0.

Proof. The details of this proof are similar to that of Theorem 3, and hence we only mention
the change of frames. We consider the frame {X1, X2, . . . , X2n+2} (using the same abuse of
notation as before) where

Xi =


∂x1 if i ≡ 1 (mod 2),
e−2f(x1) if i ≡ 0 (mod 2) and i 6= 2n+ 2,
e−f(x1) if i = 2n+ 2

.

As before, if we set f ′ = t, then

R(X1, Xi, Xj, X1) = R(X1, X2n+2, X2n+2, X1) = t, R(Xi, Xj, Xj, Xi) = t2,
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and R(Xi, Xa, Xb, Xj) = R(X2n+2, Xi, Xj, X2n+2) = −t2,

where {i, j} and {a, b} are unique sets contained in U̇ .
Again, as in Theorem 3, it can be verified that the value τ2

||R||2 is non-constant, and using
Corollary 1, we see that (M, g) is neither CH0 nor HCH0.

The combination of Theorems 3 and 4 proves Theorem 2.

4 Conclusion and Open Problems
While the work above tampers with the dimension of a G-modeled manifold, with the di-
mension of G being 1, it was shown in [3] that there is a 3 dimensional manifold that is
G-modeled with respect to a model M, where G had dimension 2. In fact, in this example,
the manifold was G−modeled up to order 1. The next steps would be to investigate mani-
folds that are G-modeled up to order k ≥ 1, where the Lie group has dimension l ≥ 1. In
addition, one might investigate more topologically interesting groups, such as a compact Lie
group.
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