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Algebraic curvature tensors can be expressed in a variety of ways, and it is
helpful to develop invariants that can distinguish between them. One known
invariant of an algebraic curvature tensor R is its structure group. Another
potential invariant is the signature of R, which could be defined in a number
of ways. A better understanding of how the structure groups of sums and
differences of canonical algebraic curvature tensors differ in general could be
helpful in further study on the signature conjecture because if R = Rτ1 +Rτ2

and R = Rψ1 − Rψ2 , the structure groups GRτ1+Rτ2
and GRψ1−Rψ2 must

be equal. The author conducted research in both the structure groups of
sums and differences of canonical algebraic curvature tensors in dimension 3
and the signature conjecture. As a result, this report contains two sections.
The first is dedicated to the signature conjecture, and the second concerns
structure groups.

1 The Signature Conjecture

1.1 Abstract

This project shows that any algebraic curvature tensor defined on a vector
space V with dim(V ) = n can be expressed using only canonical algebraic
curvature tensors from forms with rank k or higher for any k ∈ {2, . . . , n},
and that such an expression is not unique. We also provide bounds on the
minimum number of algebraic curvature tensors of rank k needed to express
any given R.

1



1.2 Introduction

Throughout, V is a real vector space with finite dimension n. A multilinear
formR : V×V×V×V → R is an algebraic curvature tensor if ∀x, y, z, w ∈ V ,
R satisfies

R(x, y, z, w) = R(z, w, x, y) = −R(y, x, z, w), and

R(x, y, z, w) +R(x, z, w, y) +R(x,w, y, z) = 0.

The space of all algebraic curvature tensors on V is denoted A(V ). Given a
symmetric bilinear form ϕ, we can define the canonical algebraic curvature tensor
Rϕ

Rϕ(x, y, z, w) = ϕ(x,w)ϕ(y, z)− ϕ(x, z)ϕ(y, w).

For any positive real number c, R√cϕ = cRϕ.
Since algebraic curvature tensors are multilinear forms, we can R can be
defined by where it maps some basis vectos ei. R(ei, ej, ek, el) is denoted Rijkl.
For a canonical algebraic curvature tensorR = Rϕ, Rijkl = ϕ(ei, el)ϕ(ej, ek)−
ϕ(ei, ek)ϕ(ej, el). A diagonal matrix representation of ϕ exists since ϕ is
symmetric, and ϕ(ei, ej) is the entry in the ith row and jth column of this
diagonal matrix. Thus ϕ(ei, ej) 6= 0 only if i = j, so Rijkl 6= 0 only when
two idices are used exactly twice, e.g. Rijji. Note that Rjiij, Rijij, etc. are
defined by their relation to a given Rijji using the properties of algebraic
curvature tensors. Thus it suffices to define R by all the possible Rijji, and
Rijji is the product of the ith and jth diagonal entries of ϕ.
In [3], Gilkey showed that any algebraic curvature tensor R can be expressed
in the form

R =
m∑
i=1

εiRϕi

for εi = 1 or −1 and some symmetric bilinear forms ϕi. For a given R, define

ν(R) = min{m|R =
m∑
i=1

εiRϕi}.

For any positive integer n, define

ν(n) = max
R∈A(V )

ν(R)
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where V has dimension n. Gilkey also showed in [3] that any R can be
expressed as

R =
m∑
i=1

εiRψi

for εi = 1 or −1 and some antisymmetric bilinear forms ψi. Then we have
the analogous definitions [5]

η(R) = min{m|R =
m∑
i=1

εiRψi} and

η(n) = max
R∈A(V )

η(R).

If we instead use bilinear forms τi which may be symmetric or antisymmetric
[5],

µ(R) = min{m|R =
m∑
i=1

εiRτi} and

µ(n) = max
R∈A(V )

η(R).

This paper focuses on symmetric bilinear forms. For some positive integer
k ≥ 2, we define

νk(R) = min{m|R =
m∑
i=1

εiRϕi , where ∀i, Rank(ϕi) ≥ k}.

Then, for any positive integer n, we define

νk(n) = max
R∈A(V )

νk(R)

where V has dimension n. Note that if Rank(ϕ) = 1 or 0, Rϕ is the zero
tensor. Thus any minimal expression for R 6= 0 contains only forms of Rank
2 or higher, so the absolute minimal number of canonical tensors needed,
ν(R) is equal to ν2(R) for all R 6= 0, and ν2(n) = ν(n). It was shown in [4]

that ν(n) ≤ n(n+1)
2

.
Any symmetric bilinear form ϕ can be diagonalized, and Sylvester’s law

of inertia [7] states that the number of negative entries p, the number of
positive entries q, and the number of 0 entries s along the diagonal is unique.
(p,q,s) is called the signature of ϕ.
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Throughout, we denote diagonal matrices

diag(λ1, λ2, . . . , λn) =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

 .

We demonstrate the proof that Rϕ = RA + RB for some symmetric bilinear
forms ϕ, A, and B the first time it arises in the proof of theorem 1.1. All
similar claims are proved in the same way, so we do not demonstrate the
calculations again. For any symmetric bilinear form ϕ with Rank(ϕ) ≥ 3,
there is no ψ for which Rϕ = −Rψ [1]. Noting this, the following conjecture
was made.

Conjecture 1.1 (The Signature Conjecture). For any algebraic curvature
tensor R and expression

R =

ν3(R)∑
i=1

εiRϕi

where Rank(ϕi) ≥ 3 ∀i, the number of i such that εi = −1 is unique.

If one is presented with components of two algebraic curvature tensors on
different bases that could perhaps be the same tensor, it is useful to develop
quantities that can distinguish between these algebraic curvature tensors.
These quantities are called invariants. If the signature conjecture were true,
we could define the signature of an algebraic curvature tensor R to be the
number of + and − signs used any expression of R in ν3(R) terms, and the
signature of R would be an invariant.

In section 1.3, we show that ν3(R) is well defined for every R. In section
1.4, we show that the signature conjecture is not true as stated in conjecture
1.1, and we provide revised conjectures in section 1.5.

1.3 Bounds on νk(n)

Gilkey’s proof that R =
∑m

i=1 εiRϕi for every R requires that some ϕi can
have rank 2. Thus to even consider the signature conjecture, we need to show
that ν3(R) is well defined. It is also useful to check that νk(R) is well defined,
as a higher rank requirement is one way to strengthen the conjecture. In this
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section, we show that νk(R) is well defined for any R and any k ∈ 3,. . .,n,
and we provide an upper bound on νk(R).

Theorem 1.1. νk(R) ≤ 2νk−1(R) for any R ∈ A(V ) and any k ∈ 3,. . .,n.

Proof. Choose any R ∈ A(V ). By definition, νk−1(R) ≤ νk−1(n). We can
write

R =

νk−1(R)∑
i=1

εiRϕi with Rank(ϕi) ≥ k − 1 ∀i,

For any ϕi with rank k − 1, there is some basis where

ϕi = diag(0, . . . , 0, λ1, . . . , λk−1)

for λi ∈ R. Define

A = diag
(

0, . . . , 0, 1,
λ1√

2
, . . . ,

λk−1√
2

)
and

B = diag
(

0, . . . , 0,−1,
λ1√

2
, . . . ,

λk−1√
2

)
.

One can check that Rϕi = RA + RB. Let the number of diagonal entries
equal to 0 in ϕi be s. The ijji entry of Rϕi is 0 if i ≤ s or j ≤ s and λiλj if
i > s and j > s.
The ijji entries of RA and RB are both 0 if i < s− 1 or j < s− 1 and

λiλj
2

if

i > s and j > s. Without loss of generality, the sjjs entry of RA is
λj√

2
and

the sjjs entry of RB is
−λj√

2
. Then the ijji entries of RA +RB are 0 if i ≤ s

or j ≤ s and λiλj if i > s and j > s, so Rϕi = RA +RB. Replace Rϕi in the

expression R =
∑νk−1(R)

i=1 εiRϕi with RA+RB. There are at most νk−1(R) Rϕi

to be replaced, so R can be expressed as a sum of at most 2νk−1(R) forms of
rank k.

Corollary 1.1.1. νk(n) ≤ 2νk−1(n) for any k ∈ 3,. . .,n.

Proof. By definition, νk−1(R) ≤ νk−1(n) ∀R. The theorem shows that νk(R) ≤
2νk−1(R) ≤ 2νk−1(n) for all R, so it is clear that νk(n) ≤ 2νk−1(n).

Corollary 1.1.2. νk(n) ≤ 2k−3n(n+ 1) for any k ∈ 3,. . .,n.
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Proof. In [4], it was shown that ν(n) ≤ n(n+1)
2

. When k = 3, 2k−3 = 1. The
previous theorem shows that ν3(n) ≤ 2ν(n), and Gilkey’s result verifies that
ν3(n) ≤ n(n + 1). If νk(n) ≤ 2k−3n(n + 1) for some k, then the theorem
implies νk+1(n) ≤ 2νk(n) ≤ 2k−2n(n + 1). Thus the corollary is true by
induction.

The following theorem demonstrates that in at least some cases, νk(n) <
2νk−1(n).

Theorem 1.2. ν3(3) = ν(3) = 2

Proof. In [2], it was shown that ν(3) = 2 and any R ∈ A(V ) when dim(V ) =
3 is exactly one of the following: Rϕ whereRank(ϕ) = 3, Rϕ whereRank(ϕ) =
3, or R = Rϕ1 +Rϕ2 and R 6= Rϕ for any ϕ where, on some basis,

ϕ1 = diag(0, 1, λ2) and ϕ2 = diag(1, 0, λ1) for some nonzero λi.

In the first case, ν3(R) = 1. In the second case, Gilkey showed that Rϕ 6= Rψ

for any ϕ with rank 2 and ψ with rank 3, so ν3(R) 6= 1. There is some basis
where R = diag(0, a, b). Then R = RA + RB for A = diag

(
1, a√

2
, b√

2

)
and

B = diag
(
− 1, a√

2
, b√

2

)
, so ν3(R) = 2.

In the third case, it is again clear that ν3(R) > 1, but Rϕ1 +Rϕ2 = Rτ1 +Rτ2

where

τ1 = diag
( 1√

3
,−
√

3,

√
3λ

2

)
and τ2 = diag

(
1, 1,

λ

2

)
if λ = λ1 = −λ2,

τ1 = diag
( 1√

3
,
√

3,

√
3λ

2

)
and τ2 = diag

(
1,−1,

λ

2

)
if λ = λ1 = λ2,

and

τ1 = diag
(√

2,
√

2,
λ1 + λ2√

8

)
and τ2 = diag

(
−
√

2,
√

2,
λ1 − λ2√

8

)
otherwise. For any nonzero choice of λi, Rank(τi) = 3, so ν3(Rϕ1 +Rϕ2) = 2.
Thus ν3(3) = 2.

1.4 Counterexamples to the Signature Conjecture

In the original statement of the signature conjecture, we require that any
expression of R uses forms of at least rank 3. To generate a counterexample,
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choose any real numbers a and b with |b| > |a|. Rτ where τ takes the form

τ = diag
(

0, . . . , 0,
√
b2 − a2,

√
b2 − a2

)
is a counterexample, since Rτ = RA +RB = RĀ −RB̄ where

A = diag

(
0, . . . , 0, 1,

√
b2 − a2

√
2

,

√
b2 − a2

√
2

)
, B = diag

(
0, . . . , 0,−1,

√
b2 − a2

√
2

,

√
b2 − a2

√
2

)
,

Ā = diag
(
0, . . . , 0, a, b, b

)
, and B̄ = diag

(
0, . . . , 0, b, a, a

)
.

This problem cannot be resolved by choosing a higher minimal rank in
what might be a revised signature conjecture, as the following theorem shows.

Theorem 1.3. For any symmetric bilinear form τ with rank k − 1, Rτ =
RA + RB = RĀ − RB̄ for some symmetric bilinear forms A, B, Ā, and B̄
with rank k.

Proof. Take any symmetric bilinear form τ of signature (p, q, s + 1) where
p+ q = k − 1. We can find a basis where

τ = diag(0, . . . , 0︸ ︷︷ ︸
s+1

,−1, . . . ,−1︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
q

).

Then Rτ = RA +RB for

A = diag
(

0, . . . , 0︸ ︷︷ ︸
s

, 1,
−1√

2
, . . . ,

−1√
2︸ ︷︷ ︸

p

,
1√
2
, . . . ,

1√
2︸ ︷︷ ︸

q

)
,

B = diag
(

0, . . . , 0︸ ︷︷ ︸
s

,−1,
−1√

2
, . . . ,

−1√
2︸ ︷︷ ︸

p

,
1√
2
, . . . ,

1√
2︸ ︷︷ ︸

q

)

and R = RĀ −RB̄ for

Ā = diag(0, . . . , 0︸ ︷︷ ︸
s

, a,−b, . . . ,−b︸ ︷︷ ︸
p

, b, . . . , b︸ ︷︷ ︸
q

), and

B̄ = diag(0, . . . , 0︸ ︷︷ ︸
s

, b,−a, . . . ,−a︸ ︷︷ ︸
p

, a, . . . , a︸ ︷︷ ︸
q

)

7



where b = 1
a

and 1
a2
− a2 = 1, or a = ±

√√
5−1
2

= ± 1√
ϕ

where ϕ is the golden

ratio. In other words, if

T1 = diag(0, . . . , 0︸ ︷︷ ︸
s

,
1

ϕ
,−1, . . . ,−1︸ ︷︷ ︸

p

, 1, . . . , 1︸ ︷︷ ︸
q

), and

T2 = diag(0, . . . , 0︸ ︷︷ ︸
s

, ϕ,−1, . . . ,−1︸ ︷︷ ︸
p

, 1, . . . , 1︸ ︷︷ ︸
q

),

RĀ = R√ϕT1 and RB̄ = R 1√
ϕ
T2

, so R = ϕRT1 − 1
ϕ
RT2 .

Counterexamples of this type can be avoided by requiring that ν(R) =
νk(R) for a chosen minimal rank k.

Definition 1.1. An algebraic curvature tensor R is absolutely minimal in
rank k if νk(R) = ν(R).

The above counterexamples demonstrate that absolute minimality is nec-
essary. The following result demonstrates that it is not sufficient when k = 3.

Theorem 1.4. There exists an algebraic curvature tensor R such that ν(R) =
2 and R = Rτ1 +Rτ2 = Rψ1 −Rψ2 for some symmetric bilinear forms τ1, τ2,
ψ1, and ψ2 with rank at least 3.

Proof. Let R = Rϕ1 +Rϕ2 where

ϕ1 = diag(0, 1, λ1) and ϕ2 = diag(1, 0, λ2) with λi 6= 0

for some nonzero λ1 and λ2. [2] showed that ν(R) = 2. Rψ1 −Rψ2 for

ψ1 = diag(λ1, λ2, 2) and ψ2 = diag(λ1, λ2, 1)

and R = Rτ1 +Rτ2 where τ1 and τ2 are defined as in the proof of Theorem 1.2.
Since λ1 and λ2 were chosen to be nonzero, Rank(τ1) = Rank(τ2) = Rank(ψ1) =
Rank(ψ2) = 3.

Corollary 1.4.1. For any integer n, there exists an algebraic curvature ten-
sor R ∈ A(V ) where dim(V ) = n such that ν(R) = 2 and R = Rτ1 + Rτ2 =
Rψ1 −Rψ2 for some symmetric bilinear forms τ1, τ2, ψ1, and ψ2 with rank at
least 3.
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Proof. Let R = Rϕ1 +Rϕ2 where

ϕ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−2

, 1, λ1) and ϕ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, 1, 0, λ2) with λi 6= 0

for some nonzero λ1 and λ2. The proof that ν(R) = 2 given in [2] still holds
when we extend R to dimension n by adding more 0 entries on the diagonal,
so ν(R) = 2. R = Rψ1 −Rψ2 where

ψ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, λ1, λ2, 2) and ψ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, λ1, λ2, 1),

and R = Rτ1 +Rτ2 where

τ1 = diag
(

0, . . . , 0︸ ︷︷ ︸
n−3

,
1√
3
,−
√

3,
3λ

2
√

3

)
and τ2 = diag

(
0, . . . , 0︸ ︷︷ ︸
n−3

, 1, 1,
λ

2

)
if λ = λ1 = −λ2 6= 0,

τ1 = diag
(

0, . . . , 0︸ ︷︷ ︸
n−3

,
1√
3
,
√

3,
3λ

2
√

3

)
and τ2 = diag

(
0, . . . , 0︸ ︷︷ ︸
n−3

, 1,−1,
λ

2

)
if λ = λ1 = λ2 6= 0, and

τ1 = diag
(

0, . . . , 0︸ ︷︷ ︸
n−3

,
√

2,
√

2,
λ1 + λ2√

8

)
and τ2 = diag

(
0, . . . , 0︸ ︷︷ ︸
n−3

,−
√

2,
√

2,
λ1 − λ2√

8

)
otherwise.

1.5 Revisions to the Signature Conjecture

Since all the absolutely minimal counterexamples have k = 3, it may be
sufficient to require k ≥ 4. The revised signature conjecture would then be:

Conjecture 1.2. Given an expression R =
∑ν(R)

i=1 αiRϕi where αi = ±1 and
Rank(ϕi) ≥ 4, the number of i for which αi = −1 is unique.

The simplest form of a counterexample to this revised signature conjec-
ture would be any R such that ν(R) = 2 and R = Rτ1 + Rτ2 = Rψ1 − Rψ2

for some τi and ψi with rank at least k for some k ≥ 4. Since the majority
of the counterexamples come from manipulating kernels, it would also be
reasonable to amend this conjecture to k = n.
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Conjecture 1.3. Given an expression R =
∑ν(R)

i=1 αiRϕi where αi = ±1,
Rank(ϕi) = n, and n ≥ 4, the number of i for which αi = −1 is unique.

In every counterexample we have demonstrated for k > 3, the signatures
of the symmetric bilinear forms involved in an expression of R differ when
the signs involved differ. We cannot simply require that the multiset of
signatures of the ϕi is equal to the multiset of signatures of the ψj in any

two absolutely minimal expressions R =
∑ν(R)

i=1 αiRϕi =
∑ν(R)

j=1 εjRψj where
Rank(ϕi) = Rank(ψj) = n in dimension 4 or higher. We must account for
the fact that Rϕ = R−ϕ and the signatures of ϕ and −ϕ differ. This leads to
the definition of an adjusted signature of ϕ and another possible revision of
the signature conjecture.

Definition 1.2. The adjusted signature of a bilinear form ϕ is the signature
(p, q, s) of ϕ if q ≥ p and the signature (q, p, s) of −ϕ if p > q.

Conjecture 1.4. In any two absolutely minimal expressions in dimension 4
or higher, R =

∑ν(R)
i=1 αiRϕi =

∑ν(R)
j=1 εjRψj where Rank(ϕi) = Rank(ψj) = n

and the multiset of adjusted signatures of the ϕi is equal to the multiset of
adjusted signatures of the ψj, the number of i for which αi = −1 is equal to
the number of j for which εi = −1.

We consider only k ≥ 4 because the case R = Rϕ1 + Rϕ2 where ϕ1 =
diag(0, . . . , 0, 1, λ), ϕ2 = diag(0, . . . , 0, 1, 0, λ), and λ < 0 is a counterexample
if k = 3. This can be seen by checking the signatures of the rank 3 τi and ψi
defined in the previous section such that R = Rτ1 +Rτ2 = Rψ1 −Rψ2 .

1.6 Future Work

1. What is the nature of all counterexamples to the signature conjecture
as originally stated? Does there exist an R in dimension 4 or higher
for which ν(R) = 2, R = Rτ1 + Rτ2 for some τi with rank n, and
R = Rψ1 −Rψ1 for some ψi with rank n?

2. In the dimension 3 case, it was shown that ν3(3) = ν(3) = 2, so ν3(3) <
2ν2(3) = 4. Can the bounds on νk(n) be improved upon in other cases?

3. When does Rϕ = Rτ1 + Rτ2 = Rψ1 − Rψ2 where Rank(ϕ) = k and
Rank(τi) = Rank(ψi) = k − 1? Some cases to this are already known
[8], but a more complete classification could be useful in proving one
of the revised signature conjectures.
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4. Given R, what is

ν̄k(R) = min
N

{
R =

N∑
i=1

αiRϕi |Rank(ϕi) = k
}

?

5. Which revision from section 1.5, if any, of the signature conjecture
holds?

6. Are there bounds on ηk(R) and ηk(n)? On µk(R) and µk(n)?

7. Is {R|ν(R) = 1} a dense subset of A(V )?

2 Structure Groups

2.1 Abstract

How does the subgroup of Gl(n) which preserves R where R = Rϕ1 ± Rϕ2

relate to the subgroups that preserve each Rϕi individually? Clearly any
element of Gl(n) that preserves both Rϕi preserves R, but it is not clear
whether these are the only elements that preserve R. We provide examples
of A ∈ Gl(n) which preserve R but not Rϕ1 or Rϕ2 in a special case and state
a conjecture that would explain when such A exist.

2.2 Introduction

The structure group of an algebraic curvature tensor R ∈ A(V ), denoted
GR, is the group of elements A ∈ Gl(n) such that

R(x, y, z, w) = R(Ax,Ay,Az,Aw) ∀x, y, z, and w ∈ V .

GR is always a Lie group. The dimension of GR for any R in dimension 3
is known [6], but this was determined by studying the Lie algebras rather
than the groups themselves, so the general forms of the elements were not
previously known.

Here we examine the special case GR where R = Rϕ1 ± Rϕ2 for ϕ1 =
diag(0, 1, λ2) and ϕ2 = diag(1, 0, λ1) where λ1 and λ2 are nonzero. Note
that −Rϕ2 = Rϕ̄2 where Rϕ̄2 = diag(1, 0,−λ1), so it suffices to study R =
Rϕ1 +Rϕ2 .
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We chose this example because it was shown in [2] that such an R has
ν(R) = 2, eliminating the possibility that Rϕ1 + Rϕ2 = Rϕ for some ϕ.
Additionally, work in the previous section showed that Rϕ1 + Rϕ2 = Rτ1 +
Rτ2 = Rψ1 − Rψ2 where Rank(τi) = Rank(ψi) = 3. Therefore, this example
also provides insight into the structure groups of sums and differences of rank
3 forms. While one might expect that GRA+RB and GRC−RD are different for
arbitrary rank 3 forms A, B, C, and D, they must be equal in the special
case of GRτ1+Rτ2

and GRψ1−Rψ2 . Understanding when this equality does and
does not occur could be helpful in proving or disproving the revisions to the
signature conjecture in section 1.5.

Throughout, {e1, . . . , en} denotes an orthonormal basis for V . For any
x ∈ V , xi denotes the real number such that x =

∑n
i=1 xiei. Finally, ϕ1 =

diag(0, 1, λ2) and ϕ2 = diag(1, 0, λ1).

2.3 Elements of GRϕ1
±Rϕ2

Theorem 2.1. GRϕ1
∩GRϕ2

( GRϕ1±Rϕ2

Proof. We can calculate, for some arbitrary x, y, z, w ∈ V ,

R(x, y, z, w) = λ1(x1y3 − x3y1)(z3w1 − z1w3) + λ2(x2y3 − x3y2)(z3w2 − z2w3)

A matrix A ∈ Gl(3) is in the structure group GR if

R(Ax,Ay,Az,Aw) = R(x, y, z, w)

For an arbitrary 3× 3 matrix A,

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33


and

Ax =

a11 a12 a13

a21 a22 a23

a31 a32 a33

x1

x2

x3

 =

a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3

 .

We can directly compute R(Ax,Ay,Az,Aw) to show that A is in GR iff the
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elements of A satisfy the following system of equations:

λ1(a11a32 − a31a12)2 + λ2(a21a32 − a31a22)2 = 0

λ1(a11a32 − a31a12)(a11a33 − a31a13) + λ2(a21a32 − a31a22)(a21a33 − a31a23) = 0

λ1(a11a32 − a31a12)(a12a33 − a32a13) + λ2(a21a32 − a31a22)(a22a33 − a32a23) = 0

λ1(a11a33 − a31a13)(a11a32 − a31a12) + λ2(a21a33 − a31a23)(a21a32 − a31a22) = 0

λ1(a11a33 − a31a13)2 + λ2(a21a33 − a31a23)2 = λ1

λ1(a11a33 − a31a13)(a12a33 − a32a13) + λ2(a21a33 − a31a23)(a22a33 − a32a23) = 0

λ1(a12a33 − a32a13)(a11a32 − a31a12) + λ2(a22a33 − a32a23)(a21a32 − a31a22) = 0

λ1(a12a33 − a32a13)(a11a33 − a31a13) + λ2(a22a33 − a32a23)(a21a33 − a31a23) = 0

λ1(a12a33 − a32a13)2 + λ2(a22a33 − a32a23)2 = λ2

When λ1 and λ2 have the same sign, some solutions are

A =


a

√
λ2
λ1

(1− a2) 0

−
√

λ1
λ2

(1− a2) a 0

0 0 1

 for a ∈ [0, 1] and

A =


a

√
λ2
λ1

(1− a2) 0√
λ1
λ2

(1− a2) −a 0

0 0 1

 for a ∈ [0, 1].

When the signs of λ1 and λ2 are different, assume without loss of gener-
ality that λ1 > 0 and λ2 < 0. Then some solutions are

A =

 a
√
|λ2|
λ1

(a2 − 1) 0√
λ1
|λ2|(a

2 − 1) a 0

0 0 1

 for a ≥ 1 and

A =

 a −
√
|λ2|
λ1

(a2 − 1) 0√
λ1
|λ2|(a

2 − 1) −a 0

0 0 1

 for a ≥ 1.

For any of these solutions, whenever a 6= 1, the solution is not in GRϕ1
or

GRϕ2
.
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Note that in either case, there is a continuous path of solutions in the
component of the identity and a continuous path not in the component of
the identity. Note also that any of the elements above where a 6= 1 combine
a space-like or time-like basis vector with a light-like one.

2.4 Future Work

1. In general, do all of the elements of GRϕ1+Rϕ2
which do not preserve

Rϕ1 and Rϕ2 map basis vectors of one type to a linear combination of
themselves with those of another type, e.g. space-like with light-like,
in ϕ1 and ϕ2 respectively?

2. Does this process work using any two basis vectors of different types,
or does it require the use of light-like basis vectors?

3. What is the structure group of R = Rϕ1 +Rϕ2 +Rϕ3 , and how does it
compare with GRϕi

?

4. How do the structure groups of RA +RB and RC −RD differ when the
ranks of A, B, C, and D are at least 3, so that −RD 6= RD̄ for any D̄?

3 Linear Dependence Relationships

Throughout the course of this project, a number of linear dependence rela-
tionships arose. They are documented in this section so they can be conve-
niently located for use in future projects.

1. Given symmetric bilinear forms ϕ and ψ with signatures (p, q + 1, k)
and (p+ 1, q, k) respectively, Rϕ −Rψ = Rτ for some τ with signature
(p, q, k + 1) if ϕ and ψ are simultaneously diagonalizable,

ϕ = diag(0, . . . , 0︸ ︷︷ ︸
k

, a,−b, . . . ,−b︸ ︷︷ ︸
p

, b, . . . , b︸ ︷︷ ︸
q

), and

ψ = diag(0, . . . , 0︸ ︷︷ ︸
k

, b,−a, . . . ,−a︸ ︷︷ ︸
p

, a, . . . , a︸ ︷︷ ︸
q

).
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2. Rϕ1 +Rϕ2 = Rτ1 +Rτ2 when, for some nonzero λ,

ϕ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−2

, 1, λ),

ϕ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, 1, 0, λ),

τ1 = diag
(

0, . . . , 0︸ ︷︷ ︸
n−3

,
1√
3
,
√

3,
3λ

2
√

3

)
, and

τ2 = diag
(

0, . . . , 0︸ ︷︷ ︸
n−3

, 1,−1,
λ

2

)
.

3. Rϕ1 +Rϕ2 = Rτ1 +Rτ2 when, for some nonzero λ,

ϕ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−2

, 1,−λ),

ϕ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, 1, 0, λ),

τ1 = diag
(

0, . . . , 0︸ ︷︷ ︸
n−3

,
1√
3
,−
√

3,
3λ

2
√

3

)
, and

τ2 = diag
(

0, . . . , 0︸ ︷︷ ︸
n−3

, 1, 1,
λ

2

)
.

4. Rϕ1 + Rϕ2 = Rτ1 + Rτ2 when, for some nonzero λ1 and λ2 such that
|λ1| 6= |λ2|,

ϕ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−2

, 1, λ2),

ϕ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, 1, 0, λ1),

τ1 = diag
(

0, . . . , 0︸ ︷︷ ︸
n−3

,
√

2,
√

2,
λ1 + λ2√

8

)
, and

τ2 = diag
(

0, . . . , 0︸ ︷︷ ︸
n−3

,−
√

2,
√

2,
λ1 − λ2√

8

)
.
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5. Rϕ1 +Rϕ2 = Rψ1 −Rψ2 when, for any real numbers λ1 and λ2,

ϕ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−2

, 1, λ2),

ϕ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, 1, 0, λ1),

ψ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, λ1, λ2, 2), and

ψ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, λ1, λ2, 1).

6. Rϕ1 +Rϕ2 +Rϕ3 = Rτ when, for any real number λ,

ϕ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

,−1, 1,
λ

2
),

ϕ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, 1, 1,−λ
2

),

ϕ3 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, 1,−1,−λ
2

), and

τ = diag(0, . . . , 0︸ ︷︷ ︸
n−3

,
1√
3
,−
√

3,

√
3λ

2
).

7. Rϕ1 +Rϕ2 = Rτ when, for any real number λ,

ϕ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

,
√

2,
√

2,
λ√
2

),

ϕ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

,−1, 1,
λ

2
),

τ = diag(0, . . . , 0︸ ︷︷ ︸
n−3

,
1√
3
,
√

3,

√
3λ

2
).
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8. Rϕ1 +Rϕ2 = Rτ when, for any real numbers λ1 and λ2,

ϕ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, 1, 1,
λ1

2
),

ϕ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, 1, 1,
λ2

2
),

τ = diag(0, . . . , 0︸ ︷︷ ︸
n−3

,
√

2,
√

2,
λ1 + λ2

2
).

9. Rϕ1 +Rϕ2 = Rτ when, for any real numbers λ1 and λ2,

ϕ1 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

,−1, 1,
λ1

2
),

ϕ2 = diag(0, . . . , 0︸ ︷︷ ︸
n−3

, 1,−1,
λ2

2
),

τ = diag(0, . . . , 0︸ ︷︷ ︸
n−3

,−
√

2,
√

2,
λ1 − λ2

2
).
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algebraic curvature tensors. Linear Algebra and its Applications, 382:271–
277, December 2003.

[3] Peter Gilkey. Geometric Properties of Natural Operators Defined by the
Riemann Curvature Tensor. World Scientific, 2001.

17



[4] Peter Gilkey. The Geometry of Curvature Homogeneous Pseudo-
Riemannian Manifolds. World Scientific, 2007.

[5] Elise McMahon. Linear dependence of canonical algebraic curvature ten-
sors of symmetric and anti-symmetric builds. CSUSB REU Program,
pages 23–24, 2014.

[6] Malik Obeidin. On the computation and dimension of structure groups
of algebraic curvature tensors. CSUSB REU Program, pages 6–7, 2012.

[7] James Joseph Sylvester. ”a demonstration of the theorem that every ho-
mogeneous quadratic polynomial is reducible by real orthogonal substitu-
tions to the form of a sum of positive and negative squares. Philosophical
Magazine, 4:138–142, 1852.

[8] Susan Ye. Linear dependence in sets of three canonical algebraic curvature
tensors. CSUSB REU Program, page 16, 2015.

18


