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Abstract

We examine the conditions under which linear independence of
three canonical algebraic curvatures tensors occurs in a vector space
of dimension 3. Previous studies have completely characterized these
conditions when we can assume that one of the three tensors is defined
by a positive definite inner product. In this paper, we aim to extend
those results by assuming that the form is only known to be non-
degenerate. Within this setting, we consider the particular case where
one of the other two tensors has an associated endomorphism with
Jordan type J(−, 3). We show that, in these circumstances, linear
independence occurs if and only if certain conditions are met, and we
specify those conditions.

1 Introduction

A manifold is a topological space which is Hausdorff and locally Euclidean.
Each point p on a given manifoldM is associated with a tangent space consist-
ing of all vectors tangent to M at the point p. Using the tools of differential
geometry, we are able to describe the “curvature” of a given manifold by
examining the tangent space of each point on the manifold. But in order to
do so, we must first choose a means by which we can define length of, and
angles between, tangent vectors at a given point on the manifold. This is
accomplished by using a certain type of symmetric bilinear form.
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Definition 1.1. A symmetric bilinear form on a vector space V ⊆ Rn is
a function

α : V × V → R

which satisfies the following properties:

(i) Symmetry: α(v, w) = α(w, v) for all v, w ∈ V , and

(ii) Bilinearity: α(bv + cw, z) = bα(v, z) + cα(w, z) for all v, w, z ∈ V and
b, c ∈ R. Note that linearity in the second slot follows from symmetry.

We write α ∈ S2(V ) to denote that α is a symmetric bilinear form on the
vector space V . We say that a symmetric bilinear form α is non-degenerate
if for all non-zero v ∈ V there exists some w ∈ V such that α(v, w) 6= 0. We
say that a symmetric bilinear form is positive-definite if α(v, v) ≥ 0 for all
v ∈ V , and α(v, v) = 0 if and only if v = 0. A positive-definite symmetric
bilinear form is known as an inner product. Note that non-degeneracy is a
weaker property than positive-definiteness, and thus every inner product is
also non-degenerate.

For a given symmetric bilinear form α and some basis {e1, e2, e3} for V , let
Dα denote the matrix whose (i, j) entry is α(ei, ej).

For each point p on a given manifold M , we can choose an inner product for
the tangent space of p, and these choices of inner products are collectively
known as a metric for M . This metric allows us to describe the curvature of
M at any given point. The curvature of the manifold M at a point p ∈M is
given by an algebraic curvature tensor:

Definition 1.2. For a given vector space V ⊆ Rn, an algebraic curvature
tensor is a function of the form

R : V × V × V × V → R

which satisfies the following properties for all x, y, z, w ∈ V :

(i) Multilinearity: R(ax+ bx′, y, z, w) = aR(x, y, z, w) + bR(x′, y, z, w) for
all x′ ∈ V and a, b ∈ R. Linearity is similar for the second, third, and
fourth slots,

(ii) R(x, y, z, w) = −R(y, x, z, w),

(iii) R(x, y, z, w) = R(z, w, x, y), and
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(iv) The Bianchi Identity: R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0.

Let A(V ) denote the vector space of all algebraic curvature tensors on V .

Definition 1.3. A model space is a triple M = {V, ϕ,R} where V is
a vector space, ϕ is symmetric bilinear form on V , and R is an algebraic
curvature tensor.

Given a manifold M and a metric g on M , we can construct a model space for
any point p ∈M from the tangent space at p, the metric at p, and curvature
tensor at p. Studying the curvature of M at a point p then amounts to
studying the curvature given by the corresponding model space. This paper
takes the approach of studying these model spaces, rather than a manifold
more generally. The following is of use in such an endeavor:

Definition 1.4. If ϕ is a symmetric bilinear form on a vector space V ⊆ Rn,
then a canonical algebraic curvature tensor with respect to ϕ is the
function Rϕ : V × V × V × V → R defined by

Rϕ(v1, v2, v3, v4) = ϕ(v1, v4)ϕ(v2, v3)− ϕ(v1, v3)ϕ(v2, v4).

We note that for any symmetric bilinear form α and c ∈ R, the following
properties follow from the definition of canonical algebraic curvature tensor
(see [5] for the computations):

Rα = R−α, cRα = R√cα.

From these properties, we see that

cRα = εR√|c|α, (1)

where ε = sign(c) = ±1.

We also note that for any α ∈ S2(V ) we have Rα ∈ A(V ) [3]. Moreover, since
{Rα | α ∈ S2(V )} is a spanning set for A(V ), we can attempt to efficiently
express any algebraic curvature tensor as a linear combination of the form
R =

∑
ciRα. For this reason, studying linear combinations of canonical

algebraic curvature tensors can help us better understand the structure of
A(V ), which in turn can help in describing the curvature given by a model
space.
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2 Linear Independence

One property of A(V ) which has been studied extensively concerns linear
independence of a set {Rαi

} of canonical algebraic curvature tensors. The
aim of this paper is to extend those studies. In particular, we will consider
sets of three canonical algebraic curvature tensors, in a vector space V where
dim(V ) = 3.

We say that three canonical algebraic curvature tensors Rϕ̃, Rψ̃, and Rτ̃ , are
linearly dependent if there exist c1, c2, c3 ∈ R such that

c1Rϕ̃ + c2Rψ̃ + c3Rτ̃ = 0 (2)

where at least one of c1, c2, or c3 is non-zero. We can divide this problem
into three cases:

1. Exactly one of c1, c2, or c3 is non-zero.

2. Exactly two of c1, c2, or c3 are non-zero.

3. Each of c1, c2, and c3 is non-zero.

We note that the first two cases are equivalent to a proper subset of {Rϕ̃, Rψ̃, Rτ̃}
being linearly dependent, which has been studied previously (see [1]). This
paper will therefore focus on the third case, which we refer to as proper
linear dependence.

Previous studies on this question have started from the assumption that ϕ̃ is
positive-definite, and have completely determined the conditions under which
linear dependence occurs, given that assumption. For example, Ye showed
in [5] that if ϕ̃ is positive-definite, and some specific eigenvalue relationships
hold, then the set {Rϕ̃, Rψ̃, Rτ̃} is properly linearly dependent if and only if

ψ̃ and τ̃ are simultaneously diagonalizable with respect to ϕ̃.

In this paper, we aim to generalize this line of inquiry, assuming only that
ϕ̃ is non-degenerate. We refer to such symmetric bilinear forms, which are
neither positive-definite nor negative-definite, as higher signature forms.
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3 Some Simplifications and Matrices

Let us begin by simpifying Equation 2. Divide both sides of Equation 2 by

c1 and let ϕ = ϕ̃, ψ =
√
| c2
c1
|ψ̃, and τ =

√
| c3
c1
|τ̃ . Then by Equation 1 we see

that Equation 2 reduces to

Rϕ + εRψ = δRτ (3)

where ε = sign(c2/c1) and δ = sign(c3/c1). Our problem now reduces to
analyzing Equation 3. Let us now introduce some concepts which will help
in this.

Definition 3.1. Suppose A : V → V is a linear transformation on a vector
space V ⊆ Rn. Then the adjoint of A with respect to a symmetric bilinear
form α is the linear transformation A∗ : V → V satisfying

α(Av,w) = α(v,A∗w)

for all v, w ∈ V . If A = A∗, then we say that A is self-adjoint.

Lemma 1. If ψ, τ ∈ S2(V ), then there exist linear maps Ψ : V → V and
T : V → V , self-adjoint with respect to ϕ, such that

ψ(v, w) = ϕ(Ψv, w) and τ(v, w) = ϕ(Tv, w)

for all v, w ∈ V .

We refer to the linear transformations Ψ and T as the associated endomor-
phisms for ψ and τ , respectively. Much of what follows in this paper will
concern the matrices corresponding to Ψ and T . In particular, we will need
the following concepts:

Definition 3.2. A sip matrix is a square matrix whose entries are all zeroes
except for ones on the main skew diagonal. We write sipk to denote a k × k
sip matrix.

Definition 3.3. The Jordan normal form of a matrix A is a block diagonal
matrix where each block is one of the two forms

λ 1
λ 1

. . . . . .
. . . 1

λ

 or


B I

V I
. . . . . .

. . . I
B


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where all blank entries are zero, I =

(
1 0
0 1

)
, and B =

(
a b
−b a

)
, for real

eigenvalues λ and complex eigenvalues a+ ib of A.

We will also need the following theorem from linear algebra:

Theorem 3.1. For every square matrix A, there exists an invertible matrix
P such that P−1AP = J is in Jordan normal form. In other words, every
square matrix is similar to a direct sum of Jordan blocks.

Now, it is established in [4] that there exists a basis F = {f1, f2, f2} with
respect to which Ψ is in Jordan normal form, and with respect to which Dϕ

is a corresponding direct sum of sip matrices. We note that in a vector space
of dimension 3 there are four possible types of Jordan normal form for Ψ:λ 1 0

0 λ 1
0 0 λ

 λ1 1 0
0 λ1 0
0 0 λ2

 λ1 0 0
0 λ2 0
0 0 λ3

  a b 0
−b a 0
0 0 λ


In this paper, we will assume that Ψ has the first of these Jordan types. So
we have

[Ψ]F =

λ 1 0
0 λ 1
0 0 λ

 and [Dϕ]F =

0 0 ε
0 ε 0
ε 0 0


Symbolically, this is denoted [Ψ]F = J(λ, 3) and [Dϕ]F = ± sip3. We note,
though, that for any symmetric bilinear form α we have Rα = R−α. There-
fore, we can assume without loss of generality that ε = 1, giving us

[Dϕ]F =

0 0 1
0 1 0
1 0 0


Let us now also specify the matrix of the associated endomorphism T . Let
us denote the entries of the matrix for [T ]F as follows:

[T ]F =

T11 T12 T13
T21 T22 T23
T31 T32 T33


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Now, since T is self-adjoint with respect to ϕ, we see that τ(f1, f2) =
ϕ(Tf1, f2) = ϕ(f1, T f2). So we have:

ϕ(Tf1, f2) = ϕ(f1, T f2)

ϕ(T11f1 + T21f2 + T31f3, f2) = ϕ(f1, T12f1 + T22f2 + T32f3).

It then follows from the bilinearity of ϕ that

T11ϕ(f1, f2)+T21ϕ(f2, f2)+T31ϕ(f3, f2) = T12ϕ(f1, f1)+T22ϕ(f1, f2)+T32ϕ(f1, f3).

By inspection of the matrix [Dϕ]F , this becomes

T11(0) + T21(1) + T31(0) = T12(0) + T22(0) + T32(1)

which gives us
T21 = T32.

Computations for other choices of two basis vector inputs are similar, and
the result is that our matrix now has the simpler form

[T ]F =

T11 T12 T13
T21 T22 T12
T31 T21 T11

 .

4 The System of Equations

Having specified the matrices of interest, let us now begin relating Equation
3 to the contents of these matrices.

For an arbitrary canonical algebraic curvature tensor Rα on V , let Rα(ijkl)

denote Rα(fi, fj, fk, fl). It follows from the properties of algebraic curvature
tensors that many choices of i, j, k, l yield equivalent canonical ACTs. In
fact, there are exactly six distinct, non-zero canonical ACTs, and we will
represent them by the following choices of i, j, k, l:

Rα(1221), Rα(1331), Rα(2332), Rα(1231), Rα(2132), Rα(3123)
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We start by evaluating Equation 3 for the first of these inputs:

Rϕ(1221) + εRψ(1221) = δRτ(1221) (4)

Expanding Equation 4 gives

ϕ(f1, f1)ϕ(f2, f2)− ϕ(f1, f2)ϕ(f2, f1)

+ε[ψ(f1, f1)ψ(f2, f2)− ψ(f1, f2)ψ(f2, f1)] = δ[τ(f1, f1)τ(f2, f2)− τ(f1, f2)τ(f2, f1)]

By inspection of the matrix [Dϕ]F , we see that ϕ(f1, f1) = ϕ(f1, f2) = 0, so
the above equation becomes

ε[ψ(f1, f1)ψ(f2, f2)− ψ(f1, f2)ψ(f2, f1)] = δ[τ(f1, f1)τ(f2, f2)− τ(f1, f2)τ(f2, f1)]

By Lemma 1 this gives us

ε[ϕ(Ψf1, f1)ϕ(Ψf2, f2)− ϕ(Ψf1, f2)ϕ(Ψf2, f1)] = δ[ϕ(Tf1, f1)ϕ(Tf2, f2)− ϕ(Tf1, f2)ϕ(Tf2, f1)]

Now, by inspection of the matrices [Ψ]F and [T ]F we see that

Ψf1 = λf1

Ψf2 = f1 + λf2

Ψf3 = f2 + λf3

So the left-hand side of our equation becomes

ε[ϕ(λf1, f1)ϕ(f1 + λf2, f2)− ϕ(λf1, f2)ϕ(f1 + λf2, f1)]

And since ϕ is bilinear, this becomes

ε[λϕ(f1, f1)[ϕ(f1, f2) + λϕ(f2, f2)]− λϕ(f1, f2)[ϕ(f1, f1) + λϕ(f2, f1)]]

And, once again, since ϕ(f1, f1) = ϕ(f1, f2) = 0, this evaluates to zero.

Next, since

Tf1 = T11f1 + T21f2 + T31f3

Tf2 = T12f1 + T22f2 + T21f3

Tf3 = T13f1 + T12f2 + T11f3
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we see that the right-hand side of our equation becomes

δ[ϕ(T11f1 + T21f2 + T31f3, f1)ϕ(T12f1 + T22f2 + T21f3, f2)

−ϕ(T11f1 + T21f2 + T31f3, f2)ϕ(T12f1 + T22f2 + T21f3, f1)]

And by the bilinearity of ϕ, this becomes

[T11ϕ(f1, f1) + T21ϕ(f2, f1) + T31ϕ(f3, f1)][T12ϕ(f1, f2) + T22ϕ(f2, f2) + T21ϕ(f3, f2)]

−[T11ϕ(f1, f2) + T21ϕ(f2, f2) + T31ϕ(f3, f2)][T12ϕ(f1, f1) + T22ϕ(f2, f1) + T21ϕ(f3, f1)]

By inspection of the matrix [Dϕ]F , this becomes

[T11(0) + T21(0) + T31(1)][T12(0) + T22(1) + T21(0)]

−[T11(0) + T21(1) + T31(0)][T12(0) + T22(0) + T21(1)]

which reduces to T31T22 − T 2
21. So, we have shown that Equation 4 is equiv-

alent to
0 = T31T22 − T 2

21

We can similarly compute the results for the other five possible inputs; the
results of these computations are as follows:

Rϕ(1221) + εRψ(1221) = δRτ(1221) ⇐⇒ 0 = T31T22 − T 2
21 (5)

Rϕ(1331) + εRψ(1331) = δRτ(1331) ⇐⇒ −1− ελ2 = δ(T31T13 − T 2
11) (6)

Rϕ(2332) + εRψ(2332) = δRτ(2332) ⇐⇒ −ε = δ(T22T13 − T 2
12) (7)

Rϕ(1231) + εRψ(1231) = δRτ(1231) ⇐⇒ 0 = T12T31 − T21T11 (8)

Rϕ(2132) + εRψ(2132) = δRτ(2132) ⇐⇒ 1 + ελ2 = δ(T11T22 − T21T12) (9)

Rϕ(3123) + εRψ(3123) = δRτ(3123) ⇐⇒ −ελ = δ(T21T13 − T11T12) (10)

From the above system of equations, the following is immediate:

Theorem 4.1. If [Ψ]F = J(λ, 3), [Dϕ]F = ±sip3, and [T ]F = J(η, 3), then
there does not exist a solution to Rϕ + εRψ = δRτ for any ε, δ ∈ {±1}.

9



Proof. Assume that [Ψ]F = J(λ, 3), [Dϕ]F = ±sip3, and [T ]F = J(η, 3).
Assume towards a contradiction that there exists a solution to the equation
Rϕ + εRψ = δRτ . We note that there exists a solution to this equation if
and only if Equations 5 - 10 all hold. But since [T ]F = J(η, 3), we see that
Equation 7 reduces to −ε = −δ, and thus we have ε = δ. Similarly, Equation
10 reduces to −ελ = −δη, so we have λ = η. But we also note that Equation
9 reduces to 1 + ελ2 = δη2. So by substitution this last equation becomes
1 = 0, and we have a contradiction.

Let us now note that we can partition the possible forms of T̃ and Ψ̃ as
follows:

• T̃ is not invertible

• T̃ and Ψ̃ are both invertible

• T̃ is invertible and Ψ̃ is not invertible

The next three sections of this paper look at these three respective cases.

5 If T̃ is not invertible

In this section we will make use of the following:

Definition 5.1. For some algebraic curvature tensor R, let the kernel of R,
denoted ker(R), be defined as

ker(R) = {v ∈ V | R(v, x, y, z) = 0 for all x, y, z ∈ V }

We note that the kernel of an algebraic curvature tensor is not biased towards
the first argument of (x, y, z, w) (see [2]).

The following Lemma is established in [3]:

Lemma 2. Let α be a symmetric bilinear form and Rα ∈ A(V ). Then
RankRα = Rankα.
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We may now proceed to our proof:

Theorem 5.1. If [Ψ̃]F is a constant multiple of J(λ, 3), [Dϕ̃]F = ±sip3,
and T̃ is not invertible, then the set {Rϕ̃, Rψ̃, Rτ̃} is not properly linearly
dependent.

Proof. Assume that [Ψ̃]F is a constant multiple of J(λ, 3), [Dϕ̃]F = ±sip3,

and T̃ is not invertible. Since T̃ =

√∣∣∣ c1c2 ∣∣∣T , we see that the assumption of T̃

not being invertible is equivalent to T not being invertible. And we note that
this is equivalent to ker(T ) 6= 0. And since ker(T ) 6= 0, and dim(V ) = 3, we
see that ker(T ) must have dimension 1, 2, or 3.

We note that if dim(ker(T )) = 2 or dim(ker(T )) = 3, then it follows that
Rτ = 0, in which case the set {Rϕ̃, Rψ̃} is linearly dependent, and thus the
set {Rϕ̃, Rψ̃, Rτ̃} is not properly linearly dependent (see [2]).

So, we are then left with the case where dim(ker(T )) = 1. We will now show
that this case cannot occur, since it leads to a contradiction.

Suppose dim(ker(T )) = 1. We then have dim(ker(Rτ )) = 1, and thus
ker(Rϕ+εRψ) also has dimension 1. So let v = af1+bf2+cf3 ∈ ker(Rϕ+εRψ)
where v 6= 0. By the definition of kernel, we have:

0 = Rτ (v, f3, f3, f2)

0 = Rτ (af1 + bf2 + cf3, f3, f3, f2)

0 = aRτ(1332) + bRτ(2332) + cRτ(3332)

0 = −aεδλ− bεδ

which gives us

b = −aλ (11)

Similarly, we also have

0 = Rτ (v, f2, f2, f3)

0 = Rτ (af1 + bf2 + cf3, f2, f2, f3)

0 = aRτ(1223) + bRτ(2223) + cRτ(3223)

0 = aδ(1 + ελ2)− cεδ
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which gives us

c =
a(1 + ελ2)

ε
(12)

Finally, we also have

0 = Rτ (v, f3, f3, f1)

0 = Rτ (af1 + bf2 + cf3, f3, f3, f1)

0 = aRτ(1331) + bRτ(2331) + cRτ(3331)

0 = aδ(−1− ελ2)− bεδλ

Now, suppose (−1 − ελ2) = 0. The last line in the above calculation then
becomes 0 = −bεδλ, which means that 0 = bλ. It cannot be the case
that λ = 0, because then (−1 − ελ2) = 0 would give −1 = 0, which is a
contradiction. So since it must be the case that λ 6= 0, the fact that 0 = bλ
means that b = 0. And by Equation 11 we thus also have a = 0. And by
Equation 12 we then also have c = 0.

Now suppose instead that (−1− ελ2) 6= 0. The equation 0 = aδ(−1− ελ2)−
bεδλ then becomes

a =
bελ

(−1− ελ2)
(13)

Combining Equation 13 and Equation 11 then yields

a =
−aλ2ε

(−1− ελ2)
a(1 + ελ2) = aελ2

a+ aελ2 = aελ2

a = 0

And by Equations 11 and 12, this means that a = b = c = 0.

So we see that in either case we obtain a = b = c = 0, which contradicts our
assumption that v = af1 + bf2 + cf3 6= 0.
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6 If T̃ and Ψ̃ are both invertible

Remark. Suppose that T̃ and Ψ̃ are both invertible. We note that this is
equivalent to T and Ψ both being invertible. Since Ψ is invertible, it follows
that Rank(Ψ) ≥ 3. And since we also have that T is invertible, it follows
from work by Diaz and Dunn in [1] that

ΨT = ±TΨ.

So suppose that ΨT = −TΨ, and thus ΨT + TΨ = 0. We note that

ΨT + TΨ =

2T11λ+ T21 T11 + 2T12λ+ T22 T12 + 2T13λ+ T12
2T21λ+ T31 T21 + 2T22λ+ T21 T22 + 2T12λ+ T11

2T31λ T31 + 2T21λ T21 + 2T11λ


Since ΨT + TΨ = 0, we see that each entry in the above matrix must be
zero. Now let us recall that λ 6= 0 by assumption. So, starting from the (3, 1)
entry in the above matrix, we see it must be the case that T31 = 0. But then
looking at the (3, 2) entry, we see it must then follow that T21 = 0. Looking
next at the (3, 3) entry, we see it must then follow that T11 = 0. And if we
continue to follow this line of reasoning, we find that

T11 = T12 = T13 = T21 = T22 = T31 = 0

and therefore T = 0. But this contradicts our assumption that T has full
rank. Therefore ΨT = −TΨ is impossible, and thus we see that Ψ and T
commute.

Lemma 3. If Ψ and T commute, then

[T ]F =

T11 T12 T13
0 T11 T12
0 0 T11


Proof. Assume that Ψ and T commute. We note that

ΨT =

T21 + λT11 T22 + λT12 T12 + λT13
T31 + λT21 T21 + λT22 T11 + λT12
λT31 λT21 λT11

 and TΨ =

λT11 T11 + λT12 T12 + λT13
λT21 T21 + λT22 T22 + λT31
λT31 T31 + λT21 T21 + λT11


But since Ψ and T commute, these two matrices are equal, and we thus have
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• T21 + λT11 = λT11, which gives T21 = 0

• T31 + λT21 = λT21, which gives T31 = 0

• T22 + λT12 = T11 + λT12, which gives T11 = T22

So we now have

[T ]F =

T11 T12 T13
0 T11 T12
0 0 T11



We now proceed to the main theorem of this section:

Theorem 6.1. If [Ψ]F = J(λ, 3), [Dϕ]F = ±sip3, and T̃ and Ψ̃ are both
invertible, then a solution to Rϕ+εRψ = δRτ exists if and only if δ(1+ελ2) >
0 and

[T ]F =
1√

δ(1 + ελ2)


δ(1 + ελ2) δελ −ε

δ(1+ελ2)

0 δ(1 + ελ2) δελ

0 0 δ(1 + ελ2)

 .

Proof. Assume that T̃ and Ψ̃ are both invertible, or equivalently that T and
Ψ are both invertible. By the above remark, we see that T and Ψ commute.
Therefore, by Lemma 3 we have

[T ]F =

T11 T12 T13
0 T11 T12
0 0 T11


Let us now recall Equations 5 - 10, which hold if and only if Equation 3
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holds. Given our new matrix for [T ]F , Equations 5 - 10 become:

Rϕ(1221) + εRψ(1221) = δRτ(1221) ⇐⇒ 0 = 0 (14)

Rϕ(1331) + εRψ(1331) = δRτ(1331) ⇐⇒ δ(1 + ελ2) = T 2
11 (15)

Rϕ(2332) + εRψ(2332) = δRτ(2332) ⇐⇒ δε = T 2
12 − T11T13 (16)

Rϕ(1231) + εRψ(1231) = δRτ(1231) ⇐⇒ 0 = 0 (17)

Rϕ(2132) + εRψ(2132) = δRτ(2132) ⇐⇒ 1 + ελ2 = δ(T 2
11) (18)

Rϕ(3123) + εRψ(3123) = δRτ(3123) ⇐⇒ δελ = T11T12 (19)

It follows from Equation 15 that

T11 =
√
δ(1 + ελ2)

From Equation 19 we then have

T12 =
δελ

T11
=

δελ√
δ(1 + ελ2)

Finally, from Equation 16 we have

T13 =
T 2
12 − δε
T11

=

λ2

δ(1+ελ2)
− δε√

δ(1 + ελ2)
=

λ2 − ε(1 + ελ2)

δ(1 + ελ2)
√
δ(1 + ελ2)

=
−ε

δ(1 + ελ2)
√
δ(1 + ελ2)

This gives us

[T ]F =
1√

δ(1 + ελ2)


δ(1 + ελ2) δελ −ε

δ(1+ελ2)

0 δ(1 + ελ2) δελ

0 0 δ(1 + ελ2)


So since

√
δ(1 + ελ2) is in the denominator of all entries of the matrix, clearly

solutions exist if and only if δ(1 + ελ2) 6= 0. And since the solutions are
complex if δ(1 + ελ2) < 0 we see that real solutions exist if and only if

δ(1 + ελ2) > 0.
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7 If T̃ is invertible and Ψ̃ is not invertible

Theorem 7.1. If [Dϕ]F = ±sip3, Ψ̃ is not invertible, and T̃ is invertible, a
solution to Rϕ + εRψ = δRτ exists if and only if δ = 1 and

[T ]F = ±

1 0 −ε
0 1 0
0 0 1


Proof. We note that Ψ̃ not being invertible is equivalent to [Ψ]F = J(0, 3),
which is to say λ = 0. Therefore, the system of Equations 5 - 10 becomes:

Rϕ(1221) + εRψ(1221) = δRτ(1221) ⇐⇒ 0 = T31T22 − T 2
21 (20)

Rϕ(1331) + εRψ(1331) = δRτ(1331) ⇐⇒ δ = T 2
11 − T31T13 (21)

Rϕ(2332) + εRψ(2332) = δRτ(2332) ⇐⇒ −ε = δ(T22T13 − T 2
12) (22)

Rϕ(1231) + εRψ(1231) = δRτ(1231) ⇐⇒ 0 = T12T31 − T21T11 (23)

Rϕ(2132) + εRψ(2132) = δRτ(2132) ⇐⇒ 1 = δ(T11T22 − T21T12) (24)

Rϕ(3123) + εRψ(3123) = δRτ(3123) ⇐⇒ 0 = T21T13 − T11T12 (25)

Now recall that we have

[T ]F =

T11 T12 T13
T21 T22 T12
T31 T21 T11


Switching the first and the second rows of T gives us

[Tnew]F =

T21 T22 T12
T11 T12 T13
T31 T21 T11


and we then have

det(Tnew) = T21T12T11 − T 2
21T13 − T22T 2

11 + T22T13T31 + T12T11T21 − T 2
12T31

= T21(T11T12 − T13T21)− T22(T 2
11 − T13T31) + T12(T11T21 − T12T31)

= −δT22
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Where the last line follows from our system of equations. Now, since T is
invertible, we know that det(T ) 6= 0. Therefore we have − det(Tnew) 6= 0,
which gives T22 6= 0. This fact allows us to divide by T22. Therefore, Equation
20 gives us

T31 =
T 2
21

T22
, (26)

while Equation 22 becomes

T13 =
−εδ + T 2

12

T22
, (27)

and Equation 24 becomes

T11 =
δ + T12T21

T22
. (28)

We can then plug Equation 27 and Equation 28 into Equation 25 as follows:

0 = T21

(
−εδ + T 2

12

T22

)
− T12

(
δ + T12T21

T22

)
,

0 = −εδT21 + T 2
12T21 − δT12 − T 2

12T21,

0 = −εδT21 − δT12,

which gives us

T12 = −εT21. (29)

Equation 23 then becomes

0 = −εT21
(
T 2
21

T22

)
− T21

(
δ + T12T21

T22

)
,

0 = −εT 3
21 − δT21 − T12T 3

21.

Applying Equation 29 here yields

0 = εT 3
21 − δT21 + εT 3

21,

0 = −δT21, so

0 = T21.
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And by Equations 29 and 26 this means we also have T12 = 0 and T31 = 0,
respectively.

Equation 21 then becomes δ = T 2
11, which means that δ = 1 and thus T11 = σ

where σ = ±1. Revisiting our system of equations, we now have

Rϕ(1221) + εRψ(1221) = δRτ(1221) ⇐⇒ 0 = 0 (30)

Rϕ(1331) + εRψ(1331) = δRτ(1331) ⇐⇒ 1 = σ2 (31)

Rϕ(2332) + εRψ(2332) = δRτ(2332) ⇐⇒ −ε = T22T13 (32)

Rϕ(1231) + εRψ(1231) = δRτ(1231) ⇐⇒ 0 = 0 (33)

Rϕ(2132) + εRψ(2132) = δRτ(2132) ⇐⇒ 1 = σT22 (34)

Rϕ(3123) + εRψ(3123) = δRτ(3123) ⇐⇒ 0 = 0 (35)

Equation 27 is now

T13 =
−ε
T22

= −εT11 = −εσ

and equation 34 gives us T22 = σ. So our matrix now looks like

[T ]F =

σ 0 −εσ
0 σ 0
0 0 σ

 = σ

1 0 −ε
0 1 0
0 0 1

 .

8 Summary

We can collect the theorems proved in the preceding three sections as follows:

Theorem 8.1. Consider arbitrary ϕ̃, ψ̃, τ̃ ∈ S2(V ), where dim(V ) = 3 and
ϕ̃ is non-degenerate. Given the equation

c1Rϕ̃ + c2Rψ̃ + c3Rτ̃ = 0

18



let ϕ = ϕ̃, ψ =
√
| c2
c1
|ψ̃, τ =

√
| c3
c1
|τ̃ , ε = sign(c2/c1), and δ = sign(c3/c1).

Let Ψ and T be the associated endomorphisms for ψ and τ , respectively, and
assume that Ψ with respect to a basis F has the Jordan normal form J(λ, 3),
where we also have [Dϕ]F = ±sip3.

• If T̃ is not invertible, then the set {Rϕ̃, Rψ̃, Rτ̃} is not properly linearly
dependent.

• If T̃ and Ψ̃ are both invertible, then a solution to Rϕ+εRψ = δRτ exists
if and only if δ(1 + ελ2) > 0 and

[T ]F =
1√

δ(1 + ελ2)


δ(1 + ελ2) δελ −ε

δ(1+ελ2)

0 δ(1 + ελ2) δελ

0 0 δ(1 + ελ2)

 .

• If T̃ is invertible and Ψ̃ is not invertible, then a solution to Rϕ+εRψ =
δRτ exists if and only if δ = 1 and

[T ]F = ±

1 0 −ε
0 1 0
0 0 1

 .

Previous studies of the linear dependence of three canonical algebraic cur-
vature tensors have shown that, if one of the three tensors is defined by a
positive-definite symmetric bilinear form (and some specific eigenvalue rela-
tionships hold), then linear dependence of three canonical ACTs occurs if
and only if the other two tensors are simultaneously diagonalizable with re-
spect to the first (positive-definite) tensor. However, if our tensor is defined
by a form which is not necessarily positive-definite, and is known only to be
non-degenerate, then Theorem 8.1 shows that simultaneous diagonalization
is not a necessary and sufficient condition for linear dependence.
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9 Open Questions

• The most natural open problem following from this work is the complete
characterization of the problem in dimension 3. That is, what are the
conditions under which we have linear independence when Ψ has one
of the other three possible Jordan types.

• Once a complete solution is found for the dimension 3 case, it would
then be natural to also extend these results to greater dimensions.

• A more involved project would be to investigate whether computing
norms of curvature tensors could help in studying questions of linear
independence.
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