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Abstract

We provide a new way of obtaining link complements from a poly-
hedral decomposition. Our topological approach shows that fully aug-
mented link complements are homeomorphic to link complements in
other 3-manifolds. We then extend our technique to find topological
realizations of the more general class of polyhedral partners.

1 Introduction

A link L is a collection of closed loops embedded in a 3-manifold M . Links
are typically studied in S3, but in this paper, we discuss links in other
3-manifolds as well. If the complement M\L has a complete hyperbolic
structure, then we say that L is hyperbolic.

A fully augmented link F is obtained from a link L in S3 as follows,
shown below in Figure 1. Begin with a link diagram of L, denoted D(L).
A twist region of D(L) is a sequence of alternating crossings between two
strands of the link. To augment D(L), add an unknotted component, called
a crossing circle, around each twist region. Then, to obtain F , remove
pairs of crossings from each twist region. This leaves either 0 or 1 crossings
in each twist region, and we call the crossing circle either flat or twisted,
respectively. The components of F that are not crossing circles are called
knot circles. The fully augmented link is hyperbolic if and only if D(L) has
at least two twist regions and is nonsplittable, prime, and twist reduced (see
[5]). Furthermore, any hyperbolic link can be obtained from some FAL via
Dehn filling.

Complements of hyperbolic FALs have been well-studied, particularly
for their geometric properties. In 2004, Agol and Thurston showed that
the complement of a hyperbolic FAL can be decomposed into two identical,
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a) b) c)

Figure 1: a) A link diagram; b) adding crossing circles to twist regions; c)
removing pairs of crossings to obtain a fully augmented link with one twisted
crossing circle (red) and one flat crossing circle (blue).

right-angled, totally geodesic, ideal polyhedra, P+ and P−, with faces that
can be checkerboard-colored. See more in [5]. Conversely, given a pair of
polyhedra P± with the properties just described, along with an FAL gluing
pattern, one can obtain (up to half-twists of crossing circles) the complement
of some FAL in S3.

The decomposition of an FAL complement into P+ and P− is shown be-
low in Figure 2. Part a) shows the Borromean Rings; the space surrounding
the link is the link complement. In part b), we slice the link complement
across the plane containing the black knot circle, which we call the plane of
projection. In part c), the top halves of crossing disks (bounded by crossing
circles) are flattened. Then, in part d), the top halves of crossing circles are
shrunk down to vertices. In part e), black knot arcs are shrunk down to ver-
tices. We call part e) the cell decomposition of P±. In part f), we transform
the cell decomposition to a circle packing on S2. The circle packing gives
rise to the two identical hyperbolic polyhedra, one above S2 (P+) and one
below (P−). See [5] for a more detailed description of the decomposition
process.

Since the polyhedra P± can be checkerboard-colored, in the cell de-
composition we choose to make the triangles that come from top halves
of crossing disks shaded (blue and red triangles in part e) above), and all
other remaining regions are left unshaded. An FAL gluing pattern on the
polyhedra P± is an identification of each unshaded face on P+ with its
corresponding face (i.e. its reflection) on P−, and an identification of each
shaded triangle with another shaded triangle that shares a common vertex.
The FAL gluing pattern is represented in the cell decomposition by the col-
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Figure 2: Polyhedral decomposition of the complement of the Borromean
rings.

oring and edge numbering of the shaded triangles. Two triangles shaded in
the same color are identified by gluing their edges with the same number.
For any pair of identified triangles, there are two possible edge numberings
that yield FALs, corresponding to a flat or a twisted crossing circle. A flat
crossing circle is the result of identifying two triangles in P+, whereas a
twisted crossing circle is the result of identifying a triangle in P+ with a
triangle in P−. The edge numbering shown on the blue triangles in Figure
2f yields a flat crossing circle in the link; swapping the numbers 1 and 2
on one of the blue triangles would lead to a twisted crossing circle. Other
ways of numbering these edges do not yield FAL complements (but rather
polyhedral partners, which we will discuss in Section 4).

Figure 2 shows a geometric approach to studying the polyhedral decom-
position of an FAL complement S3\L. The goal of this paper is to find
topological realizations of these glued polyhedra. By a topological realiza-
tion, we mean another 3-manifold M and a link L′ in M such that S3\L and
M\L′ are homeomorphic. In Section 3, we provide an original approach –
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an alternative to the geometric approach just described– of obtaining link
complements from cell decompositions, and we show that our method yields
not only S3\L but complements of links in other manifolds as well. We will
describe the tools needed for our topological approach in Section 2. We will
show in Section 4 that our approach can be applied to polyhedral partners, a
generalization of FAL complements. In Section 5, we will use our approach
to analyze the topological realizations of a particular class of polyhedral
partners.

2 Handlebodies and Heegaard Splittings

In this section, we introduce the construction of different 3-manifolds that
will arise in later sections as link complements.

We begin with an example. The manifold S2 × S1 can be constructed
from two solid tori H1 and H2 as shown in Figure 3. To do this, identify
a meridinal curve on H1 with a meridinal curve on H2. Notice that the
meridinal disks bounded by the identified meridinal curves form a sphere in
the resulting manifold. Gluing all meridinal curves in this manner yields a
sphere for each point around the longitude of H2, i.e. we obtain S2 × S1.

H1 H2

S2

Figure 3: Construction of S2 × S1 by gluing two solid tori (genus 1 handle-
bodies) from meridian to meridian. S2 × S1 has Heegaard genus 1.

Other manifolds can also be obtained from two solid tori by gluing a
meridinal curve of one torus to some other curve on the second torus. These
manifolds are called lens spaces. We will describe lens spaces in more detail
in Section 5, where we discuss link complements that involve lens spaces.
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Lens spaces can be generalized even further. A torus is a genus 1 handle-
body ; so, rather than just manifolds (such as S2×S1) that can be constructed
from two tori, we can look at manifolds that can be constructed from two
genus g handlebodies.

Figure 4: Constructing a handlebody.

Definition 1. Let B be a closed 3-ball, and let {D1, ..., Dg, D
′
1, ..., D

′
g} be a

set of pairwise disjoint disks in ∂B. Let ϕi : Di −→ D′
i be a homeomorphism.

Then a handlebody H is the genus g 3-manifold obtained after gluing along
ϕ1, gluing along ϕ2, ..., gluing along ϕg.

Gluing two disks Di, D
′
i on ∂B, as shown in Figure 4, is equivalent to

attaching a 1-handle D1×D2 to B by gluing ∂D1×D2 to ∂B. Thus, we will
refer to the operation of gluing along ϕi as attaching a 1-handle. Further
information about j-handle attachments can be found in [3].

Notice that a torus is obtained by gluing one 1-handle to a 3-ball. As
shown in Figure 3, we can construct more complicated manifolds by gluing
together two handlebodies in a particular way. In the construction of S2×S1,
it was enough to identify the boundary of a single meridinal disk embedded
in H1 with a meridinal curve on the boundary of H2. The identification
of the rest of the torus is determined by the image of the meridinal curve.
This is true for genus 1 handlebodies because one meridinal disk suffices as
a system of disks for H1:

Definition 2. A system of disks for a handlebody H is a set {D1, ..., Dm}
of properly embedded, essential disks such that the complement of a regular
neighborhood of

⋃
Di is a collection of 3-balls. Furthermore, a system of

disks is minimal if the complement is connected.

Intuitively, one can see in Figure 3 that the meridinal disk in H1 is a
system of disks for H1 because slicing along that disk yields a 3-ball.
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So, to glue two handlebodies H1, H2 of genus g, it suffices to find a
system of disks {D1, ..., Dm} for H1, and then identify each ∂Di with some
curve li on ∂H2. We call the pair (H, {li, ..., lm}) a Heegaard diagram (see
[2]).

Handlebodies are relatively simple manifolds to understand. A Heegaard
diagram allows us to combine two handlebodies into a more complicated
manifold. Conversely, we would like to be able to split up a given manifold
into handlebodies:

Definition 3. A Heegaard splitting of a 3-manifold M is an ordered triple
(Σ, H1, H2) where Σ is a closed surface embedded in M and H1 and H2 are
handlebodies embedded in M such that ∂H1 = Σ = ∂H2 = H1 ∩ H2 and
H1 ∪ H2 = M . The surface Σ is called a Heegaard surface. The Heegaard
genus of M is the smallest possible genus of a Heegaard splitting of M .

Figure 5: A genus 2 Heegaard splitting of #S2 × S1.

Lens spaces (including S2×S1) are thus manifolds of Heegaard genus 1,
with a Heegaard splitting given by (T 2, H1, H2), where T

2 is a torus and H1

and H2 are each solid handlebodies of genus 1. We will be using Heegaard
splittings as a tool for polyhedral decompositions of link complements.

In the remaining sections of this paper, we will construct links in the
connected sum of manifolds. The connected sum of two 3-manifolds M1 and
M2, denoted M1#M2, is the 3-manifold obtained by removing the interior
of a 3-ball from each of M1 and M2, and then gluing the boundaries of
each removed 3-ball to each other. When M1 = M2, we abbreviate the
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connected sum as #M1. Furthermore, we write #kM to mean k copies
of M joined together by repeatedly applying the connected sum operation.
Thus #2M = #M and trivially #1M = M .

3 Topological Realizations of Fully Augmented Links

The Heegaard splitting of a manifold into two identical handlebodies moti-
vates this next section. Since the complement of a fully augmented link in S3

decomposes into two identical polyhedra P±, it will be useful to construct
handlebodies H± from P±. To do this, we will use 1-handle attachments
to the cell decomposition of P±. Constructing these handlebodies will al-
low us to find distinct topological realizations of an FAL complement S3\L.
Of course, one such realization of a decomposition of S3\L into P± should
be S3\L itself. We will begin by showing how to obtain this realization:
starting with an FAL complement, we will build handlebodies from the cell
decomposition, and then we will use the handlebodies to reconstruct the
original FAL complement. This process is a new approach and an alterna-
tive to the process outlined in the introduction of this paper. Our leading
example will be the Borromean Rings, shown in Figure 6a.
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Figure 6: a) the Borromean rings; b) the cell decomposition of the com-
plement of the Borromean rings; c) the cell decomposition after stretching
vertices to arcs.

Begin with a cell decomposition of the complement of an FAL with 2g
shaded triangles T1, ..., Tg, T

′
1, ..., T

′
g, along with an FAL gluing pattern (Fig-

ure 6b). Now, stretch each ideal vertex to an arc with endpoints on the
boundaries of shaded triangles and unshaded regions on each side of the arc
(Figure 6c). Since an arc comes from either a knot circle or a crossing circle,
we will call an arc either a knot arc (black arcs in Figure 6c) or a crossing

7



arc (blue and red arcs). Notice that identified shaded triangles are joined
together by a crossing arc, and the gluing pattern identifies one endpoint of
the crossing arc with the other.

We now describe how to form the handlebody H+ from P+ by gluing
shaded triangles; applying the same operations to P− will form H−, which
is a reflection of H+. Note that P+ begins as a 3-ball, and the cell decom-
position is on the boundary of P+. So, the set {T1, ..., Tg, T

′
1, ..., T

′
g} is a set

of pairwise disjoint disks in ∂P+, and we have a gluing map ϕi : Ti −→ T ′
i for

each i. Now glue each Ti to T ′
i , as shown in Figure 7b and 7c. By Defini-

tion 1, the resulting manifold is a genus g handlebody H+. Intuitively, one
can see that gluing each pair of identified triangles “adds a handle” to the
manifold, which increases the genus of the manifold by 1. Furthermore, the
boundary ∂H+ of H+ is a genus g surface.
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Figure 7: Gluing shaded triangles to form genus 2 handlebody.

We now describe properties of the genus g handlebody H±. Let Di

denote the meridinal disk formed by gluing shaded triangles Ti and T ′
i .

Observe that the set of all Di is a minimal system of disks for H, since
slicing along all Di yields a 3-ball. Furthermore, notice that the endpoints
of the arcs on ∂Ti are glued to the endpoints of the arcs on ∂T ′

i , resulting in
three arcs that each “go around the handle” and puncture the boundary of
Di. In particular, since the endpoints of each crossing arc are identified, each
crossing arc in the cell decomposition (Figure 7a) corresponds to a curve on
H+ (red/blue curve in Figure 7c) that goes once around a handle. We call
this curve a natural longitude.

Next, to obtain a link complement in S3, we utilize 2-handle attachments
to H±. A 2-handle is a solid cylinder D2 × D1 that can be attached to a
manifold by gluing ∂D2× [0, 1] to an annulus on the manifold (see [3]). Glue
a 2-handle to each natural longitude on H+. To do this, glue ∂D2 × [0, 1]
to an annular neighborhood of the natural longitude, as shown in Figure
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8a. Furthermore, when we attach a 2-handle to each natural longitude, we
also drill out a core of the 2-handle in order to preserve the crossing circle
in the link complement (in the rest of this paper, when we say 2-handle,
we always mean a 2-handle with a drilled out core). Gluing a 2-handle to
a natural longitude on H+ yields a handlebody with genus one less than
H+. Furthermore, by an Euler characteristic argument, gluing a 2-handle
to any nonseparating curve on H+ reduces the genus of ∂H+ by 1. Thus,
after gluing 2-handles to all natural longitudes, the genus of H+ is now 0, so
H+ is homeomorphic to a 3-ball with g drilled out arcs, as shown in Figure
8b. We apply the same 2-handle attachments to H− so that H− is now also
homeomorphic to a 3-ball with g drilled out arcs. Curves on the surface of
the 3-ball will become knot circles of the link, and drilled arcs will be halves
of crossing circles.

H+

H+

a)

b)

Figure 8: Gluing 2-handles (with drilled out cores) to natural longitudes on
∂H+ to obtain a solid 3-ball.
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It now remains to glue the unshaded faces of P+ to their correspond-
ing unshaded faces in P−. Since all shaded triangles have been glued, the
unshaded faces of P± correspond exactly to the boundary surface of H±.
Thus, as shown in Figure 9a, glue ∂H+ to ∂H− using the reflection map as
the identification map. This results in endpoints of drilled arcs being glued,
forming full crossing circles in S3, as shown in Figure 9b. Furthermore,
knot circles glue to their reflections. In this example, one can see that the
resulting link in S3, consisting of two crossing circles and one knot circle, is
isotopic to the Borromean Rings, as desired.

H+

H-

a) b)

L

Figure 9: Gluing ∂H+ to ∂H− by reflection to obtain the complement of
the Borromean Rings in S3.

The above topological realization of the gluing pattern on the polyhedra
P± associated with the Borromean rings is not unique. We obtained the
Borromean rings after gluing H+ to H−, which occurred after gluing 2-
handles to all natural longitudes on H±. By changing the number of 2-
handle attachments, we can find two other topological realizations:

Lemma 3.1. The complement of the Borromean rings in S3 is homeomor-
phic to each of the following:

i) the complement of a link in #2S2 × S1

ii) the complement of a link in S2 × S1

Proof. Begin with the cell decomposition of the complement of the Bor-

10



romean rings. As above, stretch vertices to arcs, and then glue identified
shaded triangles to obtain two genus 2 handlebodies H± each with a genus
2 surface as its boundary.

Now, to realize a complement of a link in #2S2 × S1, glue H+ to H−

along their boundaries, as shown in Figure 10a.
Otherwise, to realize a complement of a link in S2 × S1, first glue a

2-handle to one of the natural longitudes on H±. This yields two genus 1
handlebodies H±, each with a genus 1 surface as its boundary. Then, gluing
∂H+ to ∂H− by reflection yields S2 × S1, as shown in Figure 10b.

H+ H-

H+ H-

a)

b)

Figure 10: a) constructing a link complement in #S2 × S1; b) constructing
a link complement in S2 × S1.

In fact, Lemma 3.1 generalizes to the following result about complements
of any FALs:

Theorem 3.1. Let M be the complement of an FAL in S3, and let 2g be
the number of shaded triangles in the polyhedral decomposition of M . Then
M is homeomorphic to the complement of a link in #kS2 × S1 for each
1 ≤ k ≤ g.
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Proof. LetM be the complement of any FAL in S3, and let 2g be the number
of shaded triangles on the polyhedra P± associated with M . Stretch vertices
to arcs and glue identified shaded triangles to obtain genus g handlebodies
H±. Since the gluing pattern on P± yields an FAL, all identified pairs of
triangles have a crossing arc that yields a natural longitude on the genus
g handlebodies H±, i.e. every handle of H± has a natural longitude. So,
for any 1 ≤ k ≤ g, glue a 2-handle to any g − k of the natural longitudes.
The result is a genus k handlebody H±. Gluing two genus k handlebodies
by the reflection on their boundary yields the connected sum #kS2 × S1.
Therefore, gluing ∂H+ to ∂H− results in a link in #kS2 × S1.

4 Topological Realizations of Polyhedral Partners

In the previous section, we described how to find topological realizations of
FAL complements. We will now show that our approach of 1-handle and
2-handle attachments can be used for polyhedra with less restrictive gluings.
FAL complements can be generalized to polyhedral partners:

Definition 4. (Meyer, Millichap, and Trapp [4]) Let MF = S3\F for some
hyperbolic FAL F , and let P± be the two associated totally geodesic ideal
polyhedra. We say that M is a polyhedral partner of MF if M can be
constructed from P± as follows:

(i) Corresponding unshaded faces of P± are identified in the same man-
ner as MF , and

(ii) If ϕ : G −→ H identifies shaded faces G and H, then their corre-
sponding faces are identified by conjugating ϕ with the reflection between
P±.

Polyhedral partners have been studied in [1] and [4]. In this paper, we
will often omit the relation of polyhedral partner to a particular FAL com-
plement. When we discuss a polyhedral partner M , one should be aware
that M is implicitly the polyhedral partner of some MF , since M can be
decomposed and then re-glued in a different manner to obtain some FAL
complement. However, in our context, the FAL complement that decom-
poses into the same polyhedra as our polyhedral partner M is of no par-
ticular importance to our topological realizations, and thus we will speak
simply of a polyhedral partner M . Furthermore, we will only consider flat
polyhedral partners. A polyhedral partner M , with associated polyhedra
P±, is flat if no shaded triangle in P+ is identified with a shaded triangle
in P−. This corresponds to the notion of flat versus twisted crossing circles
in FAL complements, as described in the introduction.
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Figure 11: a) cell decomposition of an FAL complement; b) cell decom-
position of a polyhedral partner, which differs from a) only by the edge
numbering of T1.

We will now discuss topological realizations of flat polyhedral partners.
Let M be a flat polyhedral partner, and begin with the cell decomposition
of the associated P±, as shown in Figure 11b. First, as with FAL comple-
ments, stretch vertices into arcs and then glue 1-handles to identified shaded
triangles. This transforms P+ from a 3-ball to a genus g handlebody H+

with a genus g surface as its boundary. Applying the same operations to
P−, we have a second genus g handlebody H− with genus g surface as its
boundary.

Distinct topological realizations of the glued P± can now be achieved
by different choices of the number and/or order of 2-handle attachments to
H±. In particular, as exemplified in part (i) of Lemma 3.1, it is not required
that any 2-handles be glued to the handlebodies H±: after 1-handles are
glued, the boundary of H+ consists of unshaded regions, which are identified
with their reflections in H−, and thus we can immediately glue genus g
handlebodies H+ and H− via the identification of their boundaries.

So, part (i) of Lemma 3.1 generalizes to the following result about any
flat polyhedral partner:

Theorem 4.1. Any flat polyhedral partner with 2g shaded regions on each
of the associated polyhedra P± is the complement of some link in #gS2×S1.

Proof. Let M be a flat polyhedral partner, and suppose that the associated
polyhedra P± each have 2g shaded triangles. Attach 1-handles to obtain two
genus g handlebodies, H±, each with a genus g surface as boundary. Now,
without gluing any 2-handles, glue ∂H+ to ∂H−. Since the gluing map is
the reflection, the resulting manifold containing the link is #gS2 × S1.
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We now want to consider gluing 2-handles to curves on ∂H± in order to
achieve different topological realizations. Recall that in Section 3, we glued
2-handles to the natural longitudes, and that doing so yields a handlebody
with genus reduced by 1 for each 2-handle that was glued. Natural longitudes
are formed from crossing arcs in the cell decomposition, and thus in the case
of FAL complements, there is a natural longitude around every handle in
the handlebody obtained after gluing 1-handles. For polyhedral partners,
since the gluing pattern does not require there to be crossing arcs, not every
handle will necessarily have a natural longitude. Knowing the number of
handles with natural longitudes will be helpful for analyzing possible 2-
handle attachments.

We thus introduce the following definition. In a polyhedral decompo-
sition with a specified gluing pattern, we say that two identified shaded
triangles Ti and T ′

i are augmented if, after stretching vertices to arcs, there
is an arc ei with one endpoint on ∂Ti and one endpoint on ∂T ′

i , and the
gluing pattern identifies the endpoints of that arc with each other. In Fig-
ure 11b, the red triangles are augmented, and the blue triangles are not
augmented. Notice that the complement of a fully augmented link has a
polyhedral decomposition where every pair of identified shaded triangles is
augmented (Figure 11a).

Augmented triangles guarantee a natural longitude on the handlebody,
allowing for the simplest type of 2-handle attachment. We will see in Section
5 that when we glue 2-handles to curves other than natural longitudes, the
resulting manifold is not necessarily a handlebody.

Definition 5. Let M be a polyhedral partner. If k is the number of pairs
of augmented shaded triangles, we say that M is a k-augmented polyhedral
partner. Furthermore, if M is homeomorphic to the complement of some
link L, then we call L a k-augmented link.

A fully augmented link with g crossing circles is thus a g-augmented
link, and its complement is a g-augmented polyhedral partner. So, this
definition generalizes FAL complements to k-augmented link complements.
Recall that Theorem 3.1 showed that FAL complements can be realized as
the connected sum of any 1 ≤ k ≤ g copies of S2 × S1. The following
theorem generalizes this result to k-augmented link complements:

Theorem 4.2. Let M be a k-augmented flat polyhedral partner with 2g
shaded triangles on the associated P±. Then M is homeomorphic to the
complement of some link in #jS2 × S1 for each g − k ≤ j ≤ g.
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Proof. Consider the polyhedra P± with 2g shaded triangles associated with
M . Since M is k-augmented, each genus g handlebody obtained from at-
taching 1-handles to P± has a natural longitude around exactly k of the
handles. So, for any g − k ≤ j ≤ g, glue a 2-handle to g − j of the natural
longitudes, reducing the genus of H± to j. Now, glue ∂H+ to ∂H− by the
reflection to obtain a link complement in #jS2 × S1.

5 Almost Augmented Links

We will now focus on almost augmented links, which are links whose com-
plements are (g− 1)-augmented flat polyhedral partners, also referred to as
almost augmented polyhedral partners. The goal of this section is to find
topological realizations of these manifolds. The main result of this section
is Theorem 5.1, which shows that any almost augmented polyhedral partner
is homeomorphic to a link complement in either S3 or the connected sum of
two lens spaces.

We first have the following result as an immediate corollary of Theorem
4.2:

Corollary 5.1. Let M be an almost augmented polyhedral partner with 2g
shaded triangles on each P±. Then M is homeomorphic to the complement
of some link in #kS2 × S1 for each 1 ≤ k ≤ g.

As discussed in Sections 3 and 4, we can obtain different realizations
of polyhedral partners through different choices of 2-handle attachments to
curves on the boundaries of the handlebodies H±. Thus far, we have only
glued 2-handles to natural longitudes. Notice that a natural longitude is
a nonseparating curve: the surface ∂H± remains connected after cutting
along the curve. We can in fact glue 2-handles to any nonseparating curves
on the surface of the handlebody. In Corollary 5.1, the #kS2×S1 manifolds
were obtained by attaching 2-handles to natural longitudes only. We will
now find other realizations of almost augmented polyhedral partners by also
attaching 2-handles to nonseparating curves that are not natural longitudes.

We will focus on the case in which 2-handles have first been glued to all
g− 1 natural longitudes, resulting in H± each as a solid torus. In Corollary
5.1, we then glued the boundaries of these solid tori to each other, obtaining
S2 × S1, and any remaining curves on ∂H± became knot circles in the
resulting link. See Figure 10b. Now, we would instead like to attach 2-
handles to the remaining curves on the tori prior to gluing ∂H+ to ∂H−.
To understand the manifolds that result from these 2-handle attachments,
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we first investigate the types of curves that can remain on the genus 1
handlebody surfaces. To describe a curve γ on a torus, we write γ = (p, q)
for some relatively prime p, q ∈ Z, where p is the longitude number and q is
the meridian number.

We now explain how to use the cell decomposition of almost augmented
polyhedral partner to determine the (p, q) values of each remaining curve
on the torus. We first discuss how to calculate (p, q) of a curve on a torus
using signed intersections, and then we translate the method from the torus
to the cell decomposition.

As shown in Figure 12a, assign an orientation to the curve γ. Let m be
the meridinal curve on the torus, and assign an orientation to m as well.
Then for each point in γ ∩ m, assign ±1 using the “right hand rule” as
follows. If a counter-clockwise rotation of the positive end of m aligns with
the positive end of γ, assign +1; otherwise, assign −1. Then the longitude
number p is equal to the sum of the ±1 values for all intersection points.
The meridinal number q is calculated similarly by looking at the intersection
point of γ with an oriented longitudinal curve l (see Figure 13a).
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Figure 12: (a) determining the longitude number of γ; (b) determining the
longitude number of the curve formed by arcs (e1, ..., e4).

We can now translate signed meridinal and longitudinal intersections
from the torus to the cell decomposition; this will allow us to determine the
curves prior to constructing the handlebody. First, we assign an orientation
to all knot arcs, as shown in Figure 12b. To do this, choose an arc e1 on
the cell decomposition, and give e1 some orientation, i.e. an assignment of
an initial vertex and terminal vertex. Since the terminal vertex of e1 glues
to the initial vertex of some other arc e2, we can continue to orient the arcs
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according the gluing pattern. When the terminal vertex of some ek glues
back to the initial vertex of e1, this completes the curve. If there exists some
arc ei /∈ (e1, ..., ek), repeat this process beginning with ei until all arcs are
oriented.

Next, we want to use an oriented meridinal curve to calculate the longi-
tude number p of the curves formed by the arcs. Let (e1, ..., ek) be the arcs
in the cell decomposition that will glue to form a curve on the torus. Let
T0 be one triangle of the non-augmented pair of identified triangles. Since
glued triangles form a system of disks in the handlebody, we know that ∂T0

bounds an embedded disk in the torus and thus is a meridinal curve. So, we
can use ∂T0 to determine the longitude number of a curve on the torus by
looking at the intersection points between that curve and ∂T0. Let n be the
number of arcs in (e1, ..., ek) with an endpoint on ∂T0. Note that 0 ≤ n ≤ 3.
If all arc endpoints on ∂T0 are terminal endpoints, or if all arc endpoints
on ∂T0 are initial endpoints, then p = n. Otherwise, there must be an arc
with a terminal endpoint on ∂T0 and an arc with an initial endpoint on ∂T0,
and hence p = n− 2. This corresponds to intersections with opposite signs
canceling each other out.

For example, in Figure 12b, the arc e1 has its initial endpoint on ∂T0,
and e2 has its terminal endpoint on ∂T0. Hence the longitude number of the
curve formed by (e1, ..., e4) is 2− 2 = 0. Similarly, in Figure 12a, the curve
γ intersects m twice, each time with a different orientation, and hence the
longitude number of γ is 0.
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Figure 13: (a) determining the meridian number of γ; (b) determining the
meridian number of the curve formed by arcs (e1, ..., e4).

To determine the meridian number q of each curve formed by (e1, ..., ek),

17



choose any point x on ∂T0 and its identified point x′ on ∂T ′
0, as shown in

Figure 13b. Let a be any arc, with some orientation, from x to x′ that
does not intersect ∂T0 or ∂T ′

0 at any other points. Notice that a becomes
a longitudinal curve when T0 and T ′

0 are glued. Thus, for each point of
intersection between a and any ei ∈ (e1, ..., ek), use the previously described
“right hand rule” to assign ±1. Then let q be the sum of all ±1 values
from intersection points. The meridian number is q (mod p), where p is the
number of longitudes as determined above. Different choices of the arc a
lead to values of q that are equivalent mod p.

Let M be an almost augmented flat polyhedral partner. Stretch vertices
on the cell decomposition ofM to arcs, glue 1-handles to all identified shaded
triangles, and glue 2-handles to all natural longitudes. This yields two genus
1 handlebodies H± each with a genus 1 surface as boundary. Let T 2 =
∂H+ = ∂H−. We now want to characterize the curves on T 2.

Lemma 5.1. Up to homeomorphism of M , each remaining curve on T 2

is one of {(0, 0), (1, 0), (3, 1), (3, 2)}. Furthermore, at least one curve is not
(0, 0).

Proof. First we discuss curves that are the same up to homeomorphism of
M . Given a curve γ = (p, q) on T 2, a Dehn twist on a meridian of T 2 changes
γ to the curve (p, q + kp) for some k ∈ {−1, 1}. Such a twist extends to
a homeomorphism of H+ via the operation of slicing along the meridinal
disk, doing one full twist, and gluing back together. The manifolds obtained
by gluing H+ to H− with or without the Dehn twist are homeomorphic.
Thus applying Dehn twists can change a curve on T 2 without changing M
itself. In particular, this gives us that for any integer q, a (1, q) curve can be
obtained from a (1, 0) curve by Dehn twists. Furthermore, for any integer
q ≡ 1 or 2 (mod 3), the (3, q) curve can be obtained from a (3, 1) or a (3, 2)
curve by Dehn twists.

We will show that any curve (p, q) /∈ {(0, 0), (1, 0), (3, 1), (3, 2)} cannot
exist on T 2. Let D0 be the disk resulting from the pair of identified triangles
T0, T

′
0 that are not augmented. First, no curve on T 2 can have a longitude

number greater than 3. This follows from the fact that ∂D0 is a meridian of
T 2 that is intersected three times by curves. So a curve can have a longitude
number of at most 3. Furthermore, we cannot have a (3, 3) simple closed
curve on a torus, as p and q must be relatively prime.

We also claim that no curve on T 2 can be of the form (2, q) for any q.
If a curve has longitude number exactly 2, then there is no other disjoint
curve on T 2 with longitude number exactly 1, which contradicts the fact
that ∂D0 is punctured exactly three times. To verify this, observe that the
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signed intersection of the torus knots (2, q) and (1, q′) is given by (2 ∗ l+ q ∗
m)(1 ∗ l+ q′ ∗m) = q− 2q′, where m ∗ l = 1 is the signed intersection of the
meridian m and a longitude l. Then, q − 2q′ ̸= 0 since q must be odd, and
thus (2, q) and (1, q′) are not disjoint.

Therefore, if (p, q) is on T 2, then (p, q) ∈ {(0, 0), (1, 0), (3, 1), (3, 2)}.
To prove the final part of the lemma, suppose that T 2 contains only (0, 0)
curves. Each (0, 0) curve must puncture ∂D either 0 or 2 times. Clearly, no
number of (0, 0) curves will lead to ∂D to be punctured exactly 3 times in
total. Therefore, there must be some curve on T 2 that is not (0, 0).

Now, since Lemma 5.1 tells us exactly what (p, q) curves can result on
T 2, we know exactly what 2-handle attachments are possible to the solid
tori. Before stating our final result, we provide the following definition:

Definition 6. A lens space, denoted L(p, q), is the 3-manifold obtained from
two solid tori by identifying a meridinal curve of one torus to a (p, q) curve
of the other torus.

Figure 14: Construction of the lens space L(3, 1).

Other definitions of lens spaces can be found in [6].
Almost augmented polyhedral partners can be topologically realized as

follows:

Theorem 5.1. Any almost augmented polyhedral partner is homeomorphic
to the complement of a link in S3 or in the connected sum #L(3, 1), or both.

Proof. Let M be an almost augmented polyhedral partner. From the cell
decomposition, stretch vertices to arcs, then glue 1-handles to all identified
shaded triangles, and then glue 2-handles to all natural longitudes. By
Lemma 5.1, each remaining curve on ∂H± must be (0, 0), (1, 0), (3, 1), or
(3, 2).
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If there is a (1, 0) curve on ∂H±, then gluing a 2-handle to that curve
reduces the genus of ∂H± and of H± both to zero. Thus, gluing H+ to H−

after attaching this 2-handle yields a link in S3.
If there is no (1, 0) curve on ∂H±, then Lemma 5.1 shows that ∂H±

must contain either a (3, 1) or a (3, 2) curve, to which we glue a 2-handle. As
shown in Figure 15, gluing a 2-handle to a curve γ = (p, q) then attaching
a 3-ball is equivalent to forming a lens space L(p, q). Thus the manifold
obtained by attaching a 2-handle to H+ along γ is the result of removing a
3-ball from L(p, q). To see this, compare Figure 14 to Figure 15.

H+B3

2-handle

Figure 15: Gluing a 2-handle to a (3, 1) curve on a torus

Since gluing a 2-handle to γ reduces the genus of ∂H+ by 1, the boundary
of H+ is S2. However, note that H+ is no longer a handlebody.

We now glue H+ to H−, where each is a copy of L(p, q)\B3, by identi-
fying the boundaries ∂H+ and ∂H−. Since ∂H+ and ∂H− are each S2, the
operation of gluing L(p, q)\B3 to L(p, q)\B3 by identifying a sphere S2 in
each manifold is exactly the operation of the connected sum of L(p, q) with
L(p, q). Hence, we obtain a link complement in #L(p, q), where (p, q) is the
curve γ to which we glued a 2-handle. Note that the manifolds #L(3, 2) and
#L(3, 1) are homeomorphic, since ±qq′ ≡ 1 (mod p) suffices to show that
L(p, q) and L(p, q′) are homeomorphic [6].

6 Future Work

• Analyze topological realizations of twisted polyhedral partners.

• Which 2-handle attachments lead to links in S3?
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• Compare the results of attaching 2-handles to nonseparating curves
versus separating curves.

• Characterize 2-handle attachments that yield nested links.

• Generalize the results of almost augment links to k-augmented links.
What types of curves can exist on the genus g − k surfaces, and what
are the resulting manifolds after further 2-handle attachments?
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