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Abstract

This paper proves that not every manifold realizing a decomposable model space is decomposable
as the orthogonal product of smaller dimensional manifolds by providing two examples of warped
product curvature models where the associated 0-model is decomposable but the 1-model is not.
Since every 1-model can be geometrically realized, it follows that any manifold realizing this model
space is irreducible.

1 Introduction

Substantial research has been done exploring the effect restrictions on algebraic curvature data have on
the geometric properties of the manifold. Past studies (see [?]) have investigated the relationship between
curvature homogenous manifolds and model spaces in both the Riemannian [?] and pseudo-Riemannian
[?] settings. In [?], it was shown when certain operators defined using the curvature tensor of a model
space commute, there is a geometric restriction placed on the model space and the manifolds. Other
explorations of model space considerations about curvature operators and their restrictions on the ge-
ometry can be found in [?].

This paper continues the theme of geometric properties arising from algebraic restrictions through the
study of irreducible manifolds. Specifically, we wish to show that there exist manifolds that realize de-
composable curvature models despite being irreducible. In Section 2, we present some basic results from
differential geometry that will be used throughout the remainder of the paper. In Section 3, we discuss
the model space considerations necessary for such a manifold to exist and present our main theorem.
Lastly, in Section 4, we provide proof of this theorem in the form of two examples of decomposable cur-
vature models that are geometrically realizable as irreducible manifolds before summarizing our results
in Section 5.

2 Preliminaries

2.1 Manifolds and curvature

Let M be an arbitrary smooth manifold, and denote the tangent space at a point p ∈ M as TpM .
For the duration of the paper, when a vector space V is mentioned, we will assume V is real and
finite-dimensional.

Definition 2.1. An inner product on V is the function < ·, · >: V × V → R satisfying the following
properties for all x, y, z ∈ V and c ∈ R:

(i) Linearity: < x+ y, z > = < x, z > + < y, z > and < cx, y > = c < x, y >,

(ii) Symmetry: < x, y > = < y, x >,

(iii) Non-degeneracy: ∀x ∈ V \{0} there exists y ∈ V such that < x, y > 6= 0.
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Note that the inner product is bilinear, since symmetry implies linearity in both the first slot and the
second.

On each tangent space TpM , there exists a choice of inner product called the metric, g, on M . The
ordered pair (M, g) is called a pseudo-Riemannian manifold. For the remainder of this section, we will
denote the pseudo-Riemannian manifold (M, g) by the name of its smooth manifold, M .

Let (x1, x2, . . . , xn) be coordinates on M at point p. The following result, known as the basis theo-
rem, provides a link between coordinates and tangent vectors [?].

Theorem 2.1. If (x1, x2, . . . , xn) is a coordinate system in M at p, then its coordinate vectors {∂x1
, ∂x2

, . . . , ∂xn
}

form a basis for the tangent space TpM .

The ∂xi
are known as coordinate vector fields, and we define ∂xi

f = ∂
∂xi

f = f/i. The vector fields in the

tangent space can be differentiated in a certain direction using a connection on a manifold.

Definition 2.2. Let X1, X2, Y be tangent vectors in TpM . A connection on a smooth manifold M is a
function ∇ : X1 ×X2 → Y such that:

(i) ∇YX1 +X2 = ∇YX1 +∇YX2,

(ii) ∇X1+X2Y = ∇X1Y +∇X2Y ,

(iii) ∇fX1
Y = f∇X1

Y ,

(iv) ∇X1(fY ) = X(f)Y + f∇XY .

The covariant derivatives of the coordinate vector fields can be computed using a unique connection ∇
known as the Levi-Civita connection.

Definition 2.3. On a pseudo-Riemannian manifold M there is a unique connection ∇ such that

(i) [X,Y ] = ∇XY −∇YX

(ii) X (g(Y, Z)) = g (∇XY,Z) + g (Y,∇XZ)

for all X,Y, Z ∈ M . ∇ is called the Levi-Civita connection of M , and is characterized by the Koszul
formula

2g (∇XY,Z) = X (g(Y,Z)) + Y (g(Z,X))− Z (g(X,Y ))− g (X, [Y,Z]) + g (Y, [Z,X]) + g (Z, [X,Y ]) .

If {∂x1
, ∂x2

, . . . , ∂xn
} are coordinate vector fields forming a basis for TpM , then ∇∂xi

∂xj
is a linear

combination of the coordinate vectors fields and can be computed using the Christoffel symbols of the
connection.

Definition 2.4. Let (x1, x2, . . . , xn) be coordinates on M . The Christoffel symbols of the first kind are
the Γk

ij such that

∇∂xi
∂xj

=

n∑
k=1

Γk
ij∂xk

(1)

and the Christoffel symbols of the second kind, Γijk, are given by

Γijk = g
(
∇∂xi

∂xj
, ∂xk

)
.

Using the Koszul formula, we can express the Christoffel symbols of the second kind as

Γijk =
1

2
(gjk/i + gik/j − gij/k). (2)

If g(·, ·) is the metric on M and ∇ is the Levi-Civita connection on M , then we define the Riemannian
curvature tensor R on the coordinate vector fields ∂xi

, ∂xj
, ∂xk

, ∂xl
as

R(∂xi
, ∂xj

, ∂xk
, ∂xl

) := g(∇∂xi
∇∂xj

∂xk
−∇∂xj

∇∂xi
∂xk

, ∂xl
). (3)
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Using Equation ??, we can similarly define the first covariant derivative of R as

∇R(∂xi
, ∂xj

, ∂xk
, ∂xl

; ∂xm
) :=∇∂xm

R(∂xi
, ∂xj

, ∂xk
, ∂xl

)−R(∇∂xm
∂xi

, ∂xj
, ∂xk

, ∂xl
)

−R(∂xi
,∇∂xm

∂xj
, ∂xk

, ∂xl
)−R(∂xi

, ∂xj
,∇∂xm

∂xk
, ∂xl

)

−R(∂xi
, ∂xj

, ∂xk
,∇∂xm

∂xl
).

(4)

In general, we define ∇iR to be the ith covariant derivative of R, with the convention that ∇0R = R.

Definition 2.5. An algebraic curvature tensor R is a multilinear function R : ⊗4V ∗ → R satisfying the
following properties for all x, y, z, w ∈ V :

(i) R(x, y, z, w) = −R(y, x, z, w),

(ii) R(x, y, z, w) = R(z, w, x, y),

(iii) (First Bianchi Identity) R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0.

The set of all algebraic curvature tensors on V is denoted A(V ). Similarly, we define the first algebraic
covariant derivative curvature tensor as the multilinear function ∇R : ⊗5V ∗ → R satisfying the the same
properties as R in the first four slots in addition to the following:

(iv) (Second Bianchi Identity) ∇R(x, y, z, w; t) +∇R(x, y, w, t; z) +∇R(x, y, t, z;w) = 0

The set of all ∇R on V is denoted as A1(V ).

Note that in the above definition, R and ∇R satisfy the same algebraic properties as the Riemannian
curvature tensor and the first covariant derivative of the Riemannian curvature tensor, respectively [?].

Definition 2.6. The kernel of R ∈ A(V ) is defined as

kerR := {v ∈ V | R(v, x, y, z) = 0 ∀x, y, z ∈ V }. (5)

Similarly, the kernel of ∇R ∈ A1(V ) is defined as

ker(∇R) := {v ∈ V | ∇R(v, x, y, z;w) = 0 ∀x, y, z, w ∈ V }. (6)

We prove in Proposition ?? that the definition of the kernel is not biased in favor of the first entry of R
or ∇R, although the final slot of ∇R is somewhat different.

Definition 2.7. Given a symmetric bilinear form ϕ ∈ S2(V ), where S2(V ) is the set of all symmetric
bilinear forms on V , we define the canonical algebraic curvature tensor Rϕ as

Rϕ(x, y, z, w) = ϕ(x,w)ϕ(y, z)− ϕ(x, z)ϕ(y, w).

for x, y, z, w ∈ V .

Additionally, if c is any positive real number, then cRϕ = R√cϕ.

On an appropriate basis, any ϕ ∈ S2(V ) can be expressed as a diagonal matrix with a unique num-
ber of negative (or, “timelike”) entries, p, and positive (or, “spacelike”) entries, q. The tuple (p, q) is
called the signature of ϕ. A Riemannian manifold has a metric with positive definite signature (0, q),
whereas a pseudo-Riemannian manifold has a metric with a nondegenerate signature (p, q), with p, q ≥ 1.

2.2 Model spaces

In this section, we introduce the concept of model spaces and discuss their properties. A model space is
a vector space V together with an inner product and an algebraic curvature tensor. For example, if ϕ
is a symmetric bilinear form on V and A ∈ A(V ), (V, ϕ,A) is a model space. A manifold with metric
g and curvature R is said to realize this model if (TpM, gp, Rp) is isomorphic to (V, ϕ,A) at some point
p ∈M .
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Definition 2.8. Let M = (V, ϕ,R) and M̄ = (V̄ , ϕ̄, R̄) be manifolds. Then M is isomorphic to M̄
(denoted M ∼= M̄) if there exists an invertible function T : V → V̄ such that T ∗ϕ̄ = ϕ and T ∗R̄ = R.

For the purposes of the paper, it is convenient to distinguish two specific types of models.

Definition 2.9. If V is a real, finite-dimensional vector space, < ·, · > an inner product on V , R ∈ A(V ),
and ∇R ∈ A1(V ), then we define the 0-model M0 as

M0 := (V,< ·, · >,R)

and the 1-model as
M1 := (V,< ·, · >,R,∇R).

Whenever dim(V ) ≥ 2, V can be decomposed into the direct sum of two orthogonal vector spaces, V1
and V2, denoted V = V1 ⊕ V2. If ϕ is an inner product on V such that ϕ(v1, v2) = 0 for any v1 ∈ V1 and
v2 ∈ V2, then the vector space V with inner product ϕ can be decomposed as (V, ϕ) = (V1, ϕ1)⊕(V2, ϕ2).
Similarly, if R ∈ A(V ) is a curvature tensor on V , then R decomposes into the direct sum R1 ⊕ R2 if
R(v1, v2, x, y) = 0.

Definition 2.10. A model space M is said to be decomposable if there exists a nontrivial orthogonal
decomposition V = V1 ⊥ V2 that induces a direct sum decomposition R = R1 ⊕ R2. If M is not
decomposable, then M is said to be indecomposable.

For example, if R ∈ A(V ) and ker(R) 6= 0, then there is a decomposition (V,R) ∼= (V̄ , R̄)⊕ (ker(R), 0),
where V̄ is a complimentary subspace. We will investigate this situation further in Section 3.

Similarly to Definition ??, a manifold is said to be reducible if it can be expressed as the orthogonal cross
product of smaller dimensional manifolds. If a manifold is not reducible, then we say it is irreducible.
The cross product of manifolds appears in a common construction known as a warped product, however
such a construction may or may not be initially reducible.

Definition 2.11. Let M , N , P be manifolds. Then a warped product is the manifold M ×N together
with a smooth function f : M → R and metric gM×N = gM⊕f ·gN . If we define a second smooth function
h : M × N → R and metric g(M×fN)×hP = (gM ⊕ f · gN ) ⊕ h · gP , then the manifold (M ×f N) ×h P
together with f , h, and g(M×fN)×hP is called a multiply warped product.

As a simple example, let M = R2, N = R, and f : R2 → R be the function f(x, y). Then the manifold
R2 × R together with the metric ds2R2 + f(x, y) · ds2R is a warped product of flat space onto flat space.
The warped products we discuss in subsequent sections will all be warped products of flat space warped
onto flat space.

The family of model spaces discussed in the remainder of this paper are known as warped product
curvature models, and the term curvature model will be used synonymously with model space.

Definition 2.12. A model space (V,< ·, · >,R) is a warped product curvature model if there exists an
orthogonal decomposition V1 ⊥ V2 of V and symmetric bilinear form H ∈ S2(V1) such that if xi ∈ V1
and yi ∈ V2, the only nonzero curvature entries up to the usual symmetries are the following:

R(yi, xj , xk, yl) = H(xj , xk) < yi, yl >, R(yi, yj , yk, yl) = cR<·,·>(yi, yj , yk, yl).

3 Determination of Mk for decomposable R

In this section, we discuss the model space considerations that are sufficient for the geometric realization
of a decomposable curvature model by an irreducible manifold. Although there are potentially a multi-
tude of ways in which an algebraic curvature tensor R can decompose, the simplest decomposition is to
split off the kernel of R. Then R decomposes into the direct sum of the nonzero curvature entries with
0. Furthermore, if Rϕ is a canonical algebraic curvature tensor, then this decomposition is the only way
in which Rϕ can decompose. The following lemma formalizing this statement is adopted from [?].
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Lemma 3.1. Let ϕ ∈ S2(V ). Assume Rank{ϕ} ≥ 2. If there is a decomposition V = V1 ⊕ V2 with
Rϕ = R1 ⊕R2, then either V1 ⊂ kerϕ or V2 ⊂ kerϕ.

It was shown in [?] that although the definition for ker(R) in Equation (??) appears to favor the first
entry of R, the symmetries in Definition ?? prove that the definition for ker(R) holds regardless of which
entry of R we consider. The proposition below verifies the analogous result for ∇R and is relevant to
the discussions in the remainder of this section.

Proposition 3.1. Let ∇R ∈ A1(V ), and let ker(∇R) be defined as in Equation (??). Then

ker(∇R) = {v ∈ V | ∇R(v, x, y, z;w) = 0 ∀x, y, z, w ∈ V }
= {v ∈ V | ∇R(x, v, y, z;w) = 0 ∀x, y, z, w ∈ V }
= {v ∈ V | ∇R(x, y, v, z;w) = 0 ∀x, y, z, w ∈ V }
= {v ∈ V | ∇R(x, y, z, v;w) = 0 ∀x, y, z, w ∈ V }
⊆ {v ∈ V | ∇R(x, y, z, w; v) = 0 ∀x, y, z, w ∈ V }.

Proof. Let v ∈ V be given and x, y, z, w ∈ V be arbitrary. Using the symmetries of ∇R we have

∇R(v, x, y, z;w) = −∇R(x, v, y, z;w) = ∇R(y, z, v, x;w) = −∇R(y, z, x, v;w).

By the second Bianchi Identity,

∇R(x, y, z, w; v) +∇R(x, y, w, v; z) +∇R(x, y, v, z;w) = 0.

But ∇R(x, y, w, v; z) = ∇R(x, y, v, z;w) = 0. Thus, ∇R(x, y, z, w; v) = 0.

It then follows that if a manifold M realizing the 0-model M0 = (V,< ·, · >,Rϕ) decomposes as the
orthogonal cross product of smaller manifolds, M = M1 ⊥M2, thenM0 =M01 ⊕M02 . Without loss of
generality, we can assume this holds true for all decomposable algebraic curvature tensors R. Using the
same reasoning, we can extend this concept to include the 1-model M1 and conclude that if the inner
product decomposed and both R and ∇R decomposed in the same manner (for example, R and ∇R
have the same kernel and decompose into a direct sum of their nonzero entries and 0), then the 1-model
M1 = (V,< ·, · >,R,∇R) would decompose.

Furthermore, if < ·, · >, R, and ∇R are decomposable, but ∇R has a different decomposition than
R (for example, R has a kernel but ∇R does not) then the associated 1-model cannot decompose. Sim-
ilarly, if ∇R is indecomposable, then M1 is indecomposable regardless of whether or not R and < ·, · >
decompose.

We now state the main theorem of this paper, which we will prove in Section 4.

Theorem 3.1. There exist manifolds that are irreducible yet realize decomposable model spaces.

In [?], Gilkey proves that any 1-model is geometrically realizable at point on a pseudo-Riemannian
manifold. Thus ifM1 is indecomposable, any manifold M that realizes this model is irreducible. Lemma
?? below is again adopted from Gilkey’s work in [?].

Lemma 3.2. Let M1 be a 1-model. There exists a point P of a pseudo-Riemannian manifold M so that
M1 is isomorphic to M1(M,P ).

4 Two Examples

As previously discussed, we are interested in manifolds that are irreducible despite geometrically realizing
a decomposable model space. We present two such model spaces in this section as proof of Theorem ??.
In Section 4.1, we will discuss a warped product curvature model of flat space warped onto flat space in
which the algebraic curvature tensor is an Rϕ. This example is of arbitrary signature (p, q) and is thus
not restricted to either Riemannian or pseudo-Riemannian manifolds.

In Section 4.2, we will discuss a doubly warped product curvature model, also of flat space onto flat
space, in which the algebraic curvature tensor is not an Rϕ but has a non-trivial kernel of dimension 2.
This example is restricted to pseudo-Riemannian manifolds, as it cannot be positive-definite.
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4.1 Warped product curvature model with 1-dimensional kernel

For the duration of this section, let M = Rn−1 × (0,∞) with coordinates (x1, x2, . . . , xn) and arbitrary
signature (p, q). Let g be a metric on M with nonzero entries given by

g(∂x1
, ∂x1

) = ε1x
2
n,

g(∂x2
, ∂x2

) = ε2x
2
n,

...

g(∂xn−1 , ∂xn−1) = εn−1x
2
n,

g(∂xn , ∂xn) = εn,

where εi = ±1.

Lemma 4.1. Let (M, g) be as defined above. Then

(i) The nonzero curvature entries up to symmetry are

R(∂xi
, ∂xj

, ∂xj
, ∂xi

) = −(εiεj)x
2
n

where i 6= j and i, j ∈ {1, . . . , n− 1}.

(ii) ∇R(∂xi
, ∂xj

, ∂xj
, ∂xi

; ∂xn
) = −2(εiεj)xn 6= 0

Proof. By Equation (??), the only nonzero Christoffel symbols are Γiin and Γini. Equation (??) then
implies

∇∂xi
∂xi = −εixn∂xn

and
∇∂xi

∂xn =
εi
xn
∂xi

are the only nonzero values of ∇∂xi
∂xj . From Equation (??), we have

R(∂xi
, ∂xj

, ∂xk
, ∂xl

) = g(∇∂xi
∇∂xj

∂xk
−∇∂xj

∇∂xi
∂xk

, ∂xl
).

By inspection, we see that if i = j,

∇∂xi
∇∂xj

∂xk
−∇∂xj

∇∂xi
∂xk

= 0

which would imply R(∂xi
, ∂xi

, ∂xk
, ∂xl

) = 0. Thus for nonzero curvature entries, we have i 6= j. Further-
more, ∇∂xi

∇∂xj
∂xk
−∇∂xj

∇∂xi
∂xk
6= 0 implies either ∇∂xi

∇∂xj
∂xk
6= 0 or ∇∂xj

∇∂xi
∂xk
6= 0.

Case I. Suppose ∇∂xi
∇∂xj

∂xk
6= 0. Then j = k by inspection.

Case II. Suppose ∇∂xj
∇∂xi

∂xk
6= 0. Then i = k by inspection.

Since R(∂xi , ∂xj , ∂xk
, ∂xl

) = −R(∂xj , ∂xi , ∂xk
, ∂xl

), we can assume j = k. Hence

∇∂xi
∇∂xj

∂xk
−∇∂xj

∇∂xi
∂xk

= ∇∂xi
∇∂xj

∂xj
−∇∂xj

∇∂xi
∂xj

= ∇∂xi
(−εjxn∂xn

)−∇∂xj
· 0

= ∂xi(−εjxn)∂xn + (−εjxn)∇∂xi
∂xn

= 0− εjxn
(
εi
xn
∂xi

)
= −(εiεj)∂xi

.
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Thus

R(∂xi , ∂xj , ∂xk
, ∂xl

) = R(∂xi , ∂xj , ∂xj , ∂xl
)

= g(−εiεj∂xi
, ∂xl

)

= −(εiεj)g(∂xi
, ∂xl

)

is nonzero only when i = l. Therefore, the only nonzero curvature entries up to the usual symmetries
are R

(
∂xi

, ∂xj
, ∂xj

, ∂xi

)
= −(εiεj)x

2
n. This completes the proof for (i).

We now wish to prove (ii) by computing ∇R(∂xi
, ∂xj

, ∂xj
, ∂xi

; ∂xn
). Using the usual symmetries of

R and the proof of (i), we can simplify equation (??) to get

∇R(∂xi , ∂xj , ∂xj , ∂xi ; ∂xn) = ∇∂xn
R(∂xi , ∂xj , ∂xj , ∂xi)

= ∇∂xn

(
−(εiεj)x

2
n

)
= −2(εiεj)xn

6= 0.

Corollary 4.1.

(i) span{∂xn} ⊆ ker(R)

(ii) span{∂xn
} 6⊆ ker(∇R)

Proof. This result follows directly from Lemma ?? and Equations (??) and (??).

Lemma 4.2. Given (M, g) defined above and change of basis

Xi :=
1
√
xn
∂xi

, Xn := ∂xn
,

the algebraic curvature tensor R = Rϕ, where ϕ is defined as ϕ(Xm, Xm) = εm ∀m = 1, . . . , n− 1.

Proof. Let (M, g) be as defined above, and recall that the nonzero entries of g are given by

g(∂x1
, ∂x1

) = ε1x
2
n

g(∂x2 , ∂x2) = ε2x
2
n

...

g(∂xn−1
, ∂xn−1

) = εn−1x
2
n

g(∂xn
, ∂xn

) = εn

where εi = ±1. Fix a change of basis such that

Xi :=
1
√
xn
∂xi

, Xn := ∂xn

Then the nonzero entries of R are

R(Xi, Xj , Xj , Xi) = R

(
1
√
xn
∂xi

,
1
√
xn
∂xj

,
1
√
xn
∂xj

,
1
√
xn
∂xi

)
=

1

x2n
R(∂xi , ∂xj , ∂xj , ∂xi)

=
1

x2n

(
−(εiεj)x

2
n

)
= −εiεj
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for i, j = 1, . . . , n−1 and i 6= j. Define ϕ ∈ S2(V ) to be such that ϕ(Xm, Xm) = εm for allm = 1, . . . , n−1
are the only nonzero values of ϕ. Then

R(Xi, Xj , Xk, Xl) = ϕ(Xi, Xl)ϕ(Xj , Xk)− ϕ(Xi, Xk)ϕ(Xj , Xl)

is nonzero when either i = l and j = k or i = k and j = l. Without loss of generality, take i = l and
j = k. Then,

R(Xi, Xj , Xj , Xi) = ϕ(Xi, Xi)ϕ(Xj , Xj)− ϕ(Xi, Xj)ϕ(Xj , Xi)

= −εiεj

is the only nonzero curvature entry. Therefore, R = Rϕ.

Lemma 4.3. Let (M, g) be as given above, and let R and ∇R be as stated in Lemma ??. Then the
0-model M0 = (M, g,R) has the unique decomposition at every point in M as

M0 = (ker(R)⊥, g1, R|ker(R)⊥)⊕ (ker(R), g2, 0)

where g1(∂xi
, ∂xi

) = εi for 1 ≤ i < n and g2(∂xn
, ∂xn

) = εn, but the associated 1-model M1 =
(M, g,R,∇R) does not decompose.

Proof. From Lemma ??, we have the only nonzero curvature entries are R(∂xi , ∂xj , ∂xj , ∂xi) where i, j < n
and i 6= j. By Corollary ??(i), span{∂xn

} ⊆ ker(R). Since we showed in Lemma ?? that R = Rϕ, we
can use Lemma ?? to conclude (M, g,R) has the unique decomposition

(M, g,R) ∼= (V̄ , g1, R̄)⊕ (ker(R), g2, 0).

By Corollary ??(ii), span{∂xn} 6⊆ ker(∇R). Therefore, the 1-model M1 = (M, g,R,∇R) does not
decompose.

We now prove Theorem ?? using the above results.

Proof of Theorem ??. Let M , g, R, and ∇R be defined as in Lemma ??. By Lemma ??, the 0-model
M0 = (M, g,R) decomposes as the direct sum

M0 = (V̄ , g1, R̄)⊕ (ker(R), g2, 0).

But by the same Lemma, the associated 1-model, M1 = (M, g,R,∇R), does not decompose. Since M1

does not decompose, any manifold that realizes this 1-model cannot decompose, even though the 0-model
M0 decomposes.

4.2 Doubly-warped product curvature model with 2-dimensional kernel

For the duration of this section, let M = R2n × (0,∞) × (0,∞) with coordinates (x1, x2, . . . , x2n, a, b).
Let g be a metric on M with nonzero entries given by:

g(∂xp
, ∂xp

) = a2, g(∂xq
, ∂xq

) = b2, g(∂a, ∂b) = 1

where 1 ≤ p ≤ n and n+ 1 ≤ q ≤ 2n.

Lemma 4.4. Let (M, g) be as defined above. Then

(i) The nonzero curvature entries up to symmetry are

R(∂xp
, ∂xq

, ∂xq
, ∂xp

) = −ab. (7)

(ii) ∇R(∂xp
, ∂xq

, ∂xq
, ∂xp

; ∂a) = −b and ∇R(∂xp
, ∂xq

, ∂xq
, ∂xp

; ∂b) = a.

The proof of Lemma ?? follows the same procedure as the proof of Lemma ??.
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Corollary 4.2.

(i) span{∂a, ∂b} = ker(R)

(ii) span{∂a, ∂b} 6⊆ ker(∇R)

Proof. This result follows directly from Lemma ?? and equations (??) and (??).

Lemma 4.5. Let (M, g) be as defined above, let p ∈ M , and let R be the nonzero curvature entries
described in Lemma ??. If ∂x1

∈ V1, then the only decomposition of the model space (TpM, gp, Rp) is

(TpM, gp, Rp) ∼= (V1, g1, R)⊕ (V2, g2, 0).

That is, V2 ⊆ ker(R).

Proof. Let TpM = V1 + V2 such that V1 ⊥ V2. Then for any v ∈ TpM , v = v1 + v2, where v1 ∈ V1 and
v2 ∈ V2. Let ∂x1

∈ V1. Since v2 = c1∂x1
+ c2∂x2

+ · · · + c2n∂x2n
+ c2n+1∂a + c2n+1∂b, bilinearity of the

inner product implies

g(∂x1
, v2) = g(∂x1

, c1∂x1
+ c2∂x2

+ · · ·+ c2n∂x2n
+ c2n+1∂a + c2n+1∂b)

= c1g(∂x1
, ∂x1

) + c2g(∂x1
, ∂x2

) + · · · c2ng(∂x1
, ∂x2n

) + c2n+1g(∂x1
, ∂a) + c2n+1g(∂x1

, ∂b)

= c1g(∂x1
, ∂x1

) + c2 · 0 + · · ·+ c2n · 0 + c2n+1 · 0 + c2n+2 · 0
= c1g(∂x1

, ∂x1
)

= c1a
2,

with a 6= 0. But g(∂x1
, v2) = 0, so c1 = 0. Similarly, the multilinearity of the curvature tensor implies

R(∂x1
, ∂x2n

, v2, ∂x1
) = R(∂x1

, ∂x2n
, c2∂x2

+ · · ·+ c2n∂x2n
+ c2n+1∂a + c2n+1∂b, ∂x1

)

= c2R(∂x1
, ∂x2n

, ∂x2
, ∂x1

) + · · ·+ c2n+1R(∂x1
, ∂x2n

, ∂a, ∂x1
) + c2n+1R(∂x1

, ∂x2n
, ∂b, ∂x1

)

= c2 · 0 + · · ·+ c2nR(∂x1
, ∂x2n

, ∂x2n
, ∂x1

) + c2n+1 · 0 + c2n+2 · 0
= c2nR(∂x1

, ∂x2n
, ∂x2n

, ∂x1
)

= −c2nab,

where a, b 6= 0. But R(∂x1 , ∂x2n , v2, ∂x1) = 0, so c2n = 0. Repeating the above calculation for
R(x1, xq, v2, x1) = 0, where n+1 ≤ q ≤ 2n, shows cq = 0. Thus, v2 = c2∂x2

+· · · cn∂xn
+c2n+1∂a+c2n+1∂b,

which implies V2 ⊆ span{∂x2
, . . . , ∂xn

, ∂a, ∂b} and V1 ⊆ span{∂x1
, . . . , ∂x2n

}. However, this contradicts
Equation (??), since

R(∂x1 , v2, v2, ∂x1) = (c22 + c23 + · · ·+ c2n)(−ab) = 0.

This implies c2 = · · · = cn = 0.

Hence ∂x2 , . . . , ∂xn 6∈ V2 and V2 ⊆ span{∂a, ∂b}. Then Lemma ?? implies V2 ⊆ ker(R).

Since we had the additional assumption that ∂xi was restricted to one of the subspaces of TpM , we were
not able to demonstrate that (TpM, gp, Rp) must only decompose as in Lemma ??. If this hypothesis
could be removed, then one could provide an alternate proof of Theorem ?? in the following way.

Let M , g, R, and ∇R be defined as in Lemma ??. If Lemma ?? could be proven without this ad-
ditional assumption, then the 0-model M0 = (M, g,R) must only decompose as the direct sum

(M, g,R) = (V1, g1, R|V1
)⊕ (V2, g2, 0)

where V2 ⊆ ker(R). But by Lemma ??, ker(∇R) 6= ker(R). Hence the 1-model M1 = (M, g,R,∇R)
cannot decompose. Therefore, any manifold that realizes this 1-model cannot decompose.
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5 Conclusion

The warped product curvature models presented in this paper show that not every manifold realizing
a decomposable model space is reducible. The first curvature model we discussed was an Rϕ with a
one-dimensional kernel, whereas the second curvature model was not an Rϕ but had a nontrivial two-
dimensional kernel. Although there was an additional restriction placed on the second curvature model
effecting the decomposition of the 0-model, if this restriction could be removed, the second curvature
model would provide an additional family of irreducible manifolds that geometrically realize decompos-
able model spaces.

The research discussed in this paper seems to raise more questions than it answers. A few of the
more pressing ones are discussed in Section 5.1 below.

5.1 Open Questions

1. Perhaps the most obvious question is whether or not the additional hypothesis in Lemma ?? can
be removed. If it is proved that this is possible, then the alternate proof of Theorem ?? can be
completed.

2. Is the example discussed in Section 4.2 signature dependent? That is, is it not possible to produce
a two-dimensional kernel with Riemannian manifolds using a warped product curvature model? It
seems like the construction in Section 4.2 is flexible enough that it could be arranged to work in a
Riemannian signature.

3. There are many different ways to make the kernel nontrivial. This paper only explores cases where
the kernel is one- or two-dimensional. Is it possible to find a model with any size kernel? Similarly,
there are other ways for an algebraic curvature tensor to decompose than by splitting off the kernel.
Do models spaces with other decompositions exist? A twisted product curvature model seems like
a possible candidate.

4. This paper raises a number of questions regarding warped products. Given a warped product
curvature model, when must it decompose? In what ways can it decompose? When is a warped
product an Rϕ?

5. Roughly speaking, holonomy measures the extent to which parallel transport around a closed loop
fails to preserve geometric data. The holonomy of a manifold is the holonomy group of the Levi-
Civita connection on tangent bundle. To what extent does the algebraic data of a decomposable
model space interact with the holonomy group of any manifold that geometrically realizes it? Is
there a relationship between curvature invariant subspaces and the holonomy group of a manifold?
A good starting point for exploring this would be [?].
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