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Abstract

Algebraic curvature tensors are a useful way to study the geometric
properties of surfaces in higher dimensions. While it’s been shown in [3]
that every algebraic curvature is geometrically realizable at a point on
a pseudo-Riemannian manifold, the requirements for geometric realiza-
tion on its complex analogue, the pseudo-Hermitian Manifold, are much
stricter. Our aim is to gain a better algebraic understanding of the cur-
vature of complex surfaces by recognizing these requirements, and to
determine when a canonical algebraic curvature tensor is geometrically
realizable on a Hermitian manifold. We will summarize what is already
known in order to classify the remaining bilinear forms that allow for
geometric realization.

1 Preliminaries

As a means to motivate our study of complex curvature, we must first introduce a few
terms in Riemannian geometry.

Definition 1.1. Let u, v 2 V . An inner product on V is a function that takes the
ordered pair (u, v) and returns a scalar hu, vi 2 R, and has the following properties:

1. Symmetry: hu, vi = hv, ui,
2. Additivity: hu+ v, wi = hu,wi+ hv, wi for all u, v, w 2 V ,
3. Homogeneity: h�u, vi = �hu, vi for all � 2 R and u, v 2 V ,
4. Non-degenerate: For all nonzero v 2 V , there is a w 2 V so that hv, wi 6= 0.

Definition 1.2. If we have hv, vi � 0 for all v 2 V , and hv, vi = 0 if and only if v = 0,
then we say the inner product is positive definite.

Definition 1.3. Let V be a real-valued n-dimensional vector space and let V
⇤ be the

corresponding dual space of V , where V
⇤ := {' : V ! R| ' is a linear transformation}.
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An algebraic curvature tensor is R 2 ⌦4
V

⇤ so that for all x, y, z, w 2 V , the following
conditions are satisfied:

1. R(x, y, z, w) = �R(y, x, z, w),
2. R(x, y, z, w) = R(z, w, x, y),
3. R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0,

the last of which is known as the Bianchi Identity. We use A(V ) to denote the set
of all algebraic curvature tensors on V , which is itself a vector space.

Definition 1.4. Let (V, h·, ·i) be a non-degenerate inner product space and A : V ! V

be a linear transformation. Then for all x, y 2 V , we define A
⇤ : V ! V as the adjoint

of A with the equation

(Ax, y) = (x,A⇤
y)

.
If A⇤ = A then we refer to A as symmetric or selfadjoint, and if A⇤ = �A then we
refer to A as antisymmetric or skew � adjoint.

Definition 1.5. Let S2(V ⇤) be the set of all symmetric bilinear forms on V
⇤ and ⇤2(V ⇤)

be the set of all antisymmetric bilinear forms on V
⇤.

If � 2 S
2 and ⌧ 2 ⇤2, then a canonical algebraic curvature tensor is of the form

1. RS
�(x, y, z, w) = �(x,w)�(y, z)� �(x, z)�(y, w), or

2. R⇤
⌧ (x, y, z, w) = ⌧(x,w)⌧(y, z)� ⌧(x, z)⌧(y, w)� 2⌧(x, y)⌧(z, w).

2 Complex Curvature Models

We now introduce some definitions from complex geometry that will be used throughout
the rest of the paper.

Definition 2.1. We define amodel spaceM = (V, h·, ·i, R), where V = span{e1, ..., en},
h·, ·i is a non-degenerate bilinear inner product, and R is an algebraic curvature tensor.

Definition 2.2. Let (V, h·, ·i) be a real, non-degenerate inner product space of dimension
2n. Note that we will assume 2n � 4, since the 2-dimensional setting is trivial [1].

If J : V ! V is a linear map that satisfies

J
2 = �I, and J

⇤ = �J

Then we say that J is an isometry.

Definition 2.3. If J : V ! V is a linear map that satisfies

J
2 = I, and J

⇤ = �J,

Then we say that J is a para� isometry [3].

2



Definition 2.4. In both cases, we refer to J as an almost complex structure.

Definition 2.5. Let J be an almost complex structure. A 2-dimensional subspace
⇡ ⇢ V is called a complex line if J⇡ ⇢ ⇡. For an isometric J, the inner product on a
complex line must be either positive definite, negative definite, or zero everywhere, but
not mixed. However, if J is a para-isometry then the inner product on a complex line
must be either mixed or zero everywhere [3].

Definition 2.6. [2]. A complex structure on a manifold M as a tensor field J so that
at each point p 2 M,Jp is an almost complex structure on TpM and there are local
coordinates (x1, y1, ..., xn, yn) on a neighborhood of p so that

J @xj = @yj andJ @yj = �@xj .

Definition 2.7. [2]. A Hermitian manifold M is a triple M := (M, g,J ) where M

is a 2n real-dimensional manifold, g a Riemannian metric, and J a complex structure
on TM .

We say that a complex curvature model (V, h·, ·i, A) is geometrically realizable by

a Hermitian manifold if for some point p on a Hermitian manifold M there exists an
isometry from ' from V to TM satisfying

'
⇤Jp = J, '

⇤
gp = h·, ·i, and '

⇤
Rp = A

where Rp is the Riemann curvature tensor of (M,g) at p.

2.1 Gray Identity

It has been shown in [1] that a complex curvature model is geometrically realizable if
and only if the given algebraic curvature tensor satisfies

R(x, y, z, w) +R(Jx, Jy, Jz, Jw) = R(Jx, Jy, z, w) +R(x, y, Jz, Jw)
+R(Jx, y, Jz, w) +R(x, Jy, z, Jw)
+R(Jx, y, z, Jw) +R(x, Jy, Jz, w),

which is known as the Gray Identity.

3 Previous Results

We will be borrowing heavily from Diro↵, who in 2012 characterized when certain canon-
ical algebraic curvature tensors satisfy the Gray Identity, focusing in particular on cases
where the bilinear form is equipped with a positive definite inner product, and the al-
most complex structure J is a isometry.
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Lemma 3.1. (Gilkey [3]). Let A : V ! V be a linear map. Let (V, h·, ·i) be an inner

product space endowed on an almost complex structure J . Let A
⇤ = ±A, put RA := R

S
A

if A
⇤ = A and RA := R

⇤
A if A

⇤ = �A. Then

1. If JA = AJ then RA satisfies the Gray Identity.

2. If JA = �AJ and if Rank(A) 2 then RA satisfies the Gray Identity.

3. If JA = �AJ and if Rank(A)� 2 then RA violates the Gray Identity.

Lemma 3.2. (Diro↵ [2]). Let A: V ! V be a linear map. Let (V, h·, ·i) be an inner

product space endowed on an almost complex structure J . Then Rank(AJ � JA) 6= 1.

Proof. We argue by contradiction. Put B := AJ � JA and suppose Rank(B) = 1. First
see that B and J anti-commute

JB = JAJ +A = (JA�AJ)J = �(AJ � JA)J = �BJ.

Since B
⇤ = (AJ � JA)⇤ = �JA + AJ = B, by the Spectral Thereom for self-adjoint

(positive definite) operators we can find a vector e1 2 V so that Be1 = �e1 with � 2 R
and � 6= 0. Now consider

BJe1 = �JBe1 = �J(�e1) = ��Je1.

Thus Je1 is an eigenvector of B corresponding to the eigenvalue ��. Since it was
assumed that � 6= 0, we can conclude that B has two distinct eigenvalues and thus
Rank(B) � 2, which gives us our contradiction.

Lemma 3.2 is important because it highlights the fact that Diro↵ only needed to
consider linear operators for B that are diagonal and induce a positive definite inner
product. For Rank(B) = 1, there is only one to consider:

B =

2

664

� 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

775 , � 6= 0.

Another important result from Lemma 3.2 is that when B = AJ � JA, we have
that B and J anti-commute. In fact, while Diro↵ only considered J as an isometry,
immediate computation will show that same is true when J is a para-isometry.

The proof is included because it shows that while we may not be able to use the
Spectral Theorem, we may still use the same eigenvalue argument that will allow us to
eliminate non-positive definite cases for which B is diagonal, whether J is an isometry
or para-isometry, since in both instances we have that BJ = �JB.
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Lemma 3.3. (Diro↵ [2]). Let (V, h·, ·i) be an inner product space endowed with an al-

most complex structure J . Let A: V ! V be a linear map. Then

1. R
S
A satisfies the Gray Identity if and only if R

S
AJ�JA = R

S
A+JAJ .

2. R
⇤
A satisfies the Gray Identity if and only if R

⇤
AJ�JA = R

⇤
A+JAJ .

We must note that while Diro↵ assumed a positive definite inner product, a careful
analysis reveals that the assumption was not used in the proof, and thus Lemma 3.3 still
holds when the inner product is not positive definite. Again, this is another important
result that we will use to determine the geometric realizability of canonical algebraic
curvature tensors on Hermitian manifolds.

Theorem 3.4. (Diro↵ [2]). Let (V, h·, ·i) be an inner product space endowed with an

almost complex structure J . Let A be a linear map on V .

1. If A
⇤ = �A then the complex curvature model (V, h·, ·i, J, R⇤

A) is geometrically re-

alizable on a Hermitian manifold if and only if

AJ = JA

2. If A
⇤ = A then the complex curvature model (V, h·, ·i, J, RS

A) is geometrically realizable

on a Hermitian manifold if and only if there exists a complex line ⇡ so that

AJ |⇡? = JA|⇡?

i.e. A commutes with J on the orthogonal complement of some complex line.

In addition to the results directly stated in Theorem 3.4, there are three major take-
aways:

(1) If A is antisymmetric, then no matter the rank of (AJ � JA), whenever we have
R

⇤
AJ�JA = R

⇤
A+JAJ , it must also be the case that AJ � JA = ±(A+ JAJ).

(2) If A is symmetric, then R
S
AJ�JA = R

S
A+JAJ implies that AJ � JA = ±(A + JAJ),

but only when Rank(AJ � JA) � 3.

(3) If Rank(B) = 0, then A and J commute everywhere, particularly on the orthog-
onal complement of a complex line.

Corollary 3.5. (Diro↵ [2]). Let A : V ! V be a linear map. Let (V, h·, ·i) be an inner

product space endowed on an almost complex structure J . If A
⇤ = �A and if AJ = �JA,

then Rank(A) 6= 2.
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Lemma 3.6. Suppose J
2 = I. If AJ � JA = ±(A+ JAJ), then A = 0.

Proof. Without loss of generality, assume AJ - JA = A + JAJ. Then

AJ � JA = A+ JAJ

J(AJ � JA) = J(A+ JAJ)
JAJ �A = JA+AJ

AJ � JA = A+AJ

J(AJ �A) = A(I + J)
J(AJ �A)(I + J)) = A(I + J)(I � J)

2J(AJ �A) = A(I2 � J
2)

AJ �A = 0
AJ = A

(1)

But also
AJ � JA = A+ JAJ

(AJ � JA)J = (A+ JAJ)J
A� JAJ = AJ + JA

A�AJ = JA+ JAJ

A(I � J) = J(A+AJ)
A(I � J)(I + J) = J(A+AJ)(I + J)

A(I2 � J
2) = 2J(AJ +A)
0 = AJ +A

�A = AJ

(2)

By equations (1) and (2) it follows that A = �A, and thus A = 0.

Our previous results conclude that Diro↵ categorized R
S
A and R

⇤
A for when (V, h·, ·i)

is a positive definite inner product space endowed on an almost complex structure J ,
when Rank(AJ �JA) � 3 and when Rank(AJ �JA) < 3. Since para-isometries require
a balanced signature and cannot exist when the inner product is positive definite, we
attribute the elimination of those cases to Diro↵ as well. By Theorem 3.4 and Lemma
3.6, all that is left to consider are the cases in which A is symmetric, the inner product
is not positive definite, and J is either an isometry or a para-isometry.

The cases will be studied and classified in the two sections that immediately follow.
In Section 4 we will characterize the Jordan types for B in which the Gray Identity
is not satisfied, considering J as an isometry and a para-isometry. In Section 5 we
will characterize the Jordan types that do satisfy the Gray Identity. In both cases we
will rely heavily on results from Mal’Cev, found in [5], that will allow us to choose a
convenient basis for which we can determine an inner product. For simplicity, all of the
following cases are considered in dimension 4, but our results are easily extendable to
higher dimensions.

6



4 Jordan Types for Which the Gray Identity is Not Satisfied

Let (V, h·, ·i) be a non-degenerate inner product space endowed on an almost complex
structure J . Suppose that A

⇤ = A, B = AJ � JA, and that Rank(B)  2. Then the
following are the cases in which the Gray Identity is not satisfied:

4.1 Rank(B) = 1

B =

2

664

� 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

775 , � 6= 0.

Thus � is the only nonzero eigenvalue. We claim that there does not exist an almost
complex structure J for a B of this rank and Jordan type which satisfies the Gray
Identity.

Proof. By [5], we know that for a B of this Jordan type, there exists a basis such that

Be1 = �e1.

Now consider
BJe1 = �JBe1 = ��Je1.

It follows that �� is also an eigenvalue for B, with corresponding eigenvector Je1. But
this contradicts that � is the only nonzero eigenvalue. Therefore since BJ = �JB in
both the isometric and para-isometric cases, no such J exists for a B of this particular
Jordan type with Rank(B) = 1.

4.2 Rank(B) = 2

B =

2

664

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

3

775

We claim that there does not exist an almost complex structure J for a B of this
rank and Jordan type which satisfies the Gray Identity.

Proof. By [5], we know that there exists a basis for a B of this Jordan type such that

Be1 = 0; Be2 = e1; Be3 = e2; Be4 = 0,

and the nonzero entries of the inner product are

he1, e3i = he2, e2i = 1, and hei, eii = ±1, for i � 4.
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We have that

Je1 =
4X

i=1

aiei; Je2 =
4X

i=1

biei; Je3 =
4X

i=1

ciei; Je4 =
4X

i=1

diei.

Now consider

BJe2 = B(
4P

i=1
biei)

�JBe2 = B(b2e2 + b3e3)
�Je1 = b2e1 + b3e2

Thus, we have
Je1 = �b2e1 � b3e2.

Similarly, we can show that
Je2 = �c2e1 � c3e2.

Consider

BJe4 = B(
4P

i=1
diei)

�JBe4 = B(d2e2 + d3e3)
0 = d2e1 + d3e2.

This implies that d2 = d3 = 0. Similarly, for any 2n⇥ 2n matrix B of this rank and
Jordan type, we can show that on this basis

J =
⇥
X Y

⇤
,

where

X =

2

666664

a1 b1 c1 d1

a2 b2 c2 0
a3 b3 c3 0
...

...
...

...
a2n b2n c2n d2n

3

777775
and Y =

2

666664

f1 . . . . . . 2n1

0 . . . . . . 0
0 . . . . . . 0
... . . . . . .

...
f2n . . . . . . 2n2n

3

777775
.

To prove that J cannot exist as an isometry or a para-isometry, we want to show that
the (3, 3) of J2 is 0, and therefore J2 6= ±I. To this end, it is enough to show that c3 = 0.

Consider the inner product

hJe2, e2i = �he2, Je2i
c3 = �c3

c3 = 0.
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Thus we have J
2 6= ±I, as required.

4.3 Rank(B) = 2

B =

2

664

0 1 0 0
0 0 0 0
0 0 � 0
0 0 0 0

3

775 , � 6= 0.

Thus � is the only nonzero eigenvalue. We claim that there does not exist an almost
complex structure J for a B of this rank and Jordan type which satisfies the Gray
Identity.

Proof. By [5], we know that there exists a basis for a B of this Jordan type such that
Be3 = �e3. Now consider

BJe3 = �JBe3 = ��Je3.

It follows that �� is also an eigenvalue for B, with corresponding eigenvector Je3. But
this contradicts that � is the only nonzero eigenvalue. Thus, since BJ = �JB in both
the isometric and para-isometric cases, no such J exist for a B of this particular Jordan
type with Rank(B) = 2.

4.4 Rank(B) = 2

B =

2

664

� 1 0 0
0 � 0 0
0 0 0 0
0 0 0 0

3

775 , � 6= 0.

Thus � is the only nonzero eigenvalue. We claim that there does not exist an almost
complex structure J for a B of this rank and Jordan type which satisfies the Gray
Identity.

Proof. By [5], we know that there exists a basis for a B of this Jordan type such that

Be1 = �e1.

Now consider
BJe1 = �JBe1 = ��Je1.

It follows that �� is also an eigenvalue for B, with corresponding eigenvector Je1. But
this contradicts that � is the only nonzero eigenvalue. Thus, since BJ = �JB in both
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the isometric and para-isometric cases, no such J exist for a B of this particular Jordan
type with Rank(B) = 2.

4.5 Rank(B) = 2

B =

2

664

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

3

775

We claim that there does not exist an almost complex structure J for a B of this
rank and Jordan type which satisfies the Gray Identity.

Proof. By [5], we know that without loss of generality, we can assume that for a B of
this Jordan type, the nonzero entries of the inner product on this basis are:

he1, e2i = he3, e4i = 1.

We have that

Be1 = 0; Be2 = e1; Be3 = 0; Be4 = e3, and

Je1 =
4X

i=1

aiei; Je2 =
4X

i=1

biei; Je3 =
4X

i=1

ciei; Je4 =
4X

i=1

diei.

First consider

BJe2 = B(
4P

i=1
biei)

�JBe2 = b2Be2 + b4Be4

�Je1 = b2e1 + b4e3.

Thus, we have
Je1 = �b2e1 � b4e3.

Similarly, we can show that

Je3 = �d2e1 � d4e3.

Because J is antisymmetric, we have hJe2, e3i = �he2, Je3i, and thus b4 = d2.

Suppose J is an isometry and consider
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J
2
e1 = J(�b2e1 � b4e3)

= �b2(�b2e1 � b4e3)� b4(�b4e1 � d4e3)
�e1 = (b22 + b

2
4)e1 + (b2b4 + b4d4)e3.

But this implies that b22 + b
2
4 = �1. Thus, there does not exist an isometric J for a

B of this Jordan type where rank(B) = 2.

Now suppose J is a para-isometry. It can be checked that in order to have

J
2 = I, AJ � JA = B, and BJ = �JB,

it must be the case that

b2 = ±d4 = ±1, and b3 = b4 = 0.

This yields the following possibilities for J :

Jx = ±

2

664

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

3

775 and Jy = ±

2

664

1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 1

3

775 .

For Jx we must have

A =

2

664

a �1
2 0 0

0 a 0 0
0 0 e �1

2
0 0 0 e

3

775 ,

and for �Jx we must have

A =

2

664

a
1
2 0 0

0 a 0 0
0 0 e �1

2
0 0 0 e

3

775 .

For Jy we must have

A =

2

664

a �1
2 0 0

0 a 0 0
0 0 e

1
2

0 0 0 e

3

775 ,
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and for �Jy we must have

A =

2

664

a
1
2 0 0

0 a 0 0
0 0 e �1

2
0 0 0 e

3

775 .

Now we know by Theorem 3.4 that in order to satisfy the Gray Identity, we need
RAJ�JA = RA+JAJ , for either J = Jx or J = Jy.
Recall that B = AJ � JA. We can calculate that

RAJ�JA(e2, e4, e4, e2) = 1.

Immediate computation will show that when J = Jx or J = Jy, in both cases we have

RA+JAJ(e2, e4, e4, e2) = 0.

Thus, RAJ�JA 6= RA+JAJ , which violates the Gray Identity, and the proof is complete.

4.6 Rank(B) = 2

B =

2

664

x y 0 0
�y x 0 0
0 0 0 0
0 0 0 0

3

775 , y 6= 0.

We claim that this case is not possible for an isometric J , and the only possibility
for a para-isometric J is when x = 0, but the solution is trivial.

Proof. By [5], we know that there exists a basis for a B of this Jordan type such that

Be1 = xe1 � ye2; Be2 = ye1 + xe2; Be3 = 0; Be4 = 0,

and the nonzero entries of the inner product on this basis are:

he1, e2i = 1, and hei, eii = ±1, for i � 3.

We have that

Je1 =
4X

i=1

aiei; Je2 =
4X

i=1

biei; Je3 =
4X

i=1

ciei; Je4 =
4X

i=1

diei.
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Consider

BJe1 = B(
4P

i=1
aiei)

�JBe1 = a1Be1 + a2Be2

�J(xe1 � ye2) = a1(xe1 � ye2) + a2(ye1 + xe2)
(�xa1 + yb1)e1 + (�xa2 + yb2)e2 = (xa1 + ya2)e1 + (xa2 � ya1)e2.

Thus we have the following equations:

�xa1 + yb1 = xa1 + ya2

y(b1 � a2) = 2xa1,
(3)

and
�xa2 + yb2 = xa2 � ya1

y(b2 + a1) = 2xa2.

Next, let us consider

BJe3 = B(
4P

i=1
ciei)

�JBe3 = c1Be1 + c2Be2

= c1(xe1 � ye2) + c2(ye1 + xe2)
0 = (xc1 + yc2)e1 + (xc2 � yc1)e2.

Which yields the equations

xc1 + yc2 = 0
xc1 = �yc2,

and
xc2 � yc1 = 0

xc2 = yc1.

Since x 6= 0, we have c1 = � y
xc2, and c1 = x

y c2, which implies that c2 = c1 = 0.
Similarly, we can show that d1 = d2 = 0. Furthermore, for any 2n⇥ 2n matrix B of this
rank and Jordan type, we can show that on this basis

J =


X 0
0 Y

�
, where X =


a1 b1

a2 b2

�
, and Y is some (2n�2)⇥ (2n�2) matrix.

To prove that J cannot exist as an isometry or a para-isometry for x 6= 0, we want
to show that the (1, 1) entry of J2 is 0, and therefore J

2 6= ±I. To this end, it is enough
to show that a1 = a2 = 0.
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Consider the inner product

hJe1, e1i = �he1, Je1i
a2 = �a2

a2 = 0.

Next, consider
hJe2, e2i = �he2, Je2i

b1 = �b1

b1 = 0.

By Equation (3), it follows that a1 = 0. Therefore, when x 6= 0, J cannot exist as
an isometry or a para-isometry.

If x = 0 and J is a para-isometry, then this case only works trivially. Consider the
inner products

hJe3e4i = �he3, Je4i
�c4 = �d3

c4 = d3.

and
hJe3e3i = �he3, Je3i

�c3 = c3

c3 = 0.

Similarly we can find that d4 = 0. This yields the only possibilities for J :

J = ±

2

664

1 0 0 0
0 �1 0 0
0 0 0 1
0 0 1 0

3

775 and J = ±

2

664

1 0 0 0
0 �1 0 0
0 0 0 �1
0 0 �1 0

3

775 .

Immediate computation will show that for A we must have

A = ±

2

664

y
2

y
2 0 0

y
2

y
2 0 0

0 0 0 0
0 0 0 0

3

775 or A = ±

2

664

�y
2

y
2 0 0

y
2 �y

2 0 0
0 0 0 0
0 0 0 0

3

775 .

Since we know from [4] that if A⇤ = A and Rank(A) = 1, then RA = 0. Thus,
RAJ�JA = RA+JAJ , but since RA = 0 the solution is trivial.
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5 Jordan Types for Which the Gray Identity is Satisfied

Let (V, h·, ·i) be a non-degenerate inner product space endowed on an almost complex
structure J . Suppose that A

⇤ = A, B = AJ � JA, and that Rank(B)  2. Then the
following are the cases in which the Gray Identity is satisfied:

5.1 Rank(B) = 2

B =

2

664

�1 0 0 0
0 �2 0 0
0 0 0 0
0 0 0 0

3

775 , �1,�2 6= 0.

Thus �1,�2 are the only two nonzero eigenvalues. This case is possible whether J is
an isometry or a para-isometry, but only if �1 = ��2.

Proof. Suppose that �1 6= ��2. By [5], we know that for a B of this Jordan type, there
exists a basis such that

Be1 = �1e1, Be2 = �2e2, Be3 = 0, and Be4 = 0.

Then
BJe1 = �JBe1 = ��1Je1, and

BJe2 = �JBe2 = ��2Je1.

It follows that ��1,��2 are also nonzero eigenvalues for B, with corresponding
eigenvectors Je1 and Je2, respectively. But this contradicts that �1,�2 are the only two
nonzero eigenvalues. Since BJ = �JB in both the isometric and para-isometric cases,
no such J exist for a B of this particular Jordan type with Rank(B) = 2, unless �1 = ��2.

Now suppose �1 = ��2, and let �1 = p 6= 0. Then we have

B =

2

664

p 0 0 0
0 �p 0 0
0 0 0 0
0 0 0 0

3

775 .

Let us first consider the case where J is an isometry. Notice that span{e1, e2} forms
a complex line, and when J is an isometry there are no mixed signatures. Consider

J = ±

2

664

0 �1 0 0
1 0 0 0
0 0 0 �1
0 0 1 0

3

775 and A = ±

2

664

x
p
2 0 0

p
2 x 0 0
0 0 0 0
0 0 0 0

3

775 .
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As required, we have J
2 = �I, AJ � JA = B, and BJ = �JB. Since Rank(A) = 2,

it is easy to show that RAJ�JA = RA+JAJ , and thus satisfies the Gray Identity.

Next we shall consider the case where J is a para-isometry, and show by contradiction
that no such J exists. Notice that span{e1, e2} forms a complex line, and when J is an
isometry there are only mixed signatures. Computation of the inner products on J will
show that

a1 = b2 = c3 = d4 = 0.

It then follows that for J and A we have the following possibilities:

J = ±

2

664

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

3

775 or J = ±

2

664

0 1 0 0
1 0 0 0
0 0 0 �1
0 0 �1 0

3

775 ,

and

A = ±

2

664

x
p
2 0 0

�p
2 x 0 0
0 0 0 0
0 0 0 0

3

775 .

Then we have

A+ JAJ = ±

2

664

2x 0 0 0
0 2x 0 0
0 0 0 0
0 0 0 0

3

775 .

Now, suppose we have RAJ�JA = RA+JAJ , and consider

RAJ�JA(e1, e2, e2, e1) = RA+JAJ(e1, e2, e2, e1)
p
2 = �4x2,

which gives us our contradiction.

5.2 Rank(B) = 1

B =

2

664

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

775
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This case is only possible if J is a para-isometry.

Proof. First we will show that it is not possible in the isometry case. By [5], we know
that without loss of generality, we can assume that for a B of this Jordan type, the
nonzero entries of the inner product on this basis are:

he1, e2i = he3, e3i = 1, and he4, e4i = �1.

We have that

Be1 = 0; Be2 = e1; Be3 = 0; Be4 = 0, and

Je1 =
4X

i=1

aiei; Je2 =
4X

i=1

biei; Je3 =
4X

i=1

ciei; Je4 =
4X

i=1

diei.

Then
BJe2 = B(b2e2)

�JBe2 = b2e1.

Thus, Je1 = �b2e1. Since we first assumed that J is an isometry, we have that

J
2
e1 = �e1 = b

2
2e1.

But this implies that b22 = �1. Thus, there does not exist an isometric J for a B of this
Jordan type where rank(B) = 1.

If J is a para-isometry, then this case works in at least dimension 4, if

J =

2

664

1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 �1

3

775 ,

and

A =

2

664

0 �1
2 0 0

0 0 0 0
0 0 z 0
0 0 0 w

3

775 ,

where either z = 0 or w = 0, but not both.
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As required, we have J
2 = I, AJ � JA = B, and BJ = �JB. Since we know

from [4] that if B⇤ = B and Rank(B) = 1, then RB = 0. Thus it is easy to show that
RAJ�JA = RA+JAJ , and since Rank(A) = 2 we have a non-trivial example of an A and
a para-isometric J in which the Gray Identity is satisfied.

6 Conclusions

In our assessment of geometric realizations of canonical algebraic curvature tensors on
Hermitian manifolds, we found that even when we have an inner product that is not
positive definite, Diro↵’s Theorem still holds. In other words, when the Gray Identity is
satisfied it still must be the case that A and J commute on the orthogonal complement
of a complex line. The para-isometric case that was found to satisfy the Gray Identity
is remarkable because we had Rank(B) = 1, but the fact that we had Rank(A) = 2
allowed us to find a solution that was non-trivial. Our findings illustrate the exceptional
condition of matrix commutativity.

7 Open Question

What can be said of sums of canonical algebraic curvature tensors as they relate to the
Gray Identity? Are there two or more canonical algebraic curvature tensors that do not
individually satisfy the Gray Identity, but do as a sum?
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