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Abstract

This paper addresses fully augmented links (FALs) and nested links, two
subclasses of generalized FALs. We utilize a graph called the crushtacean,
which is derived from a cell decomposition of the link complement. Sufficient
conditions are given for nested links and FALs to have homeomorphic comple-
ments, and these homeomorphisms are shown to be products of Dehn twists.
Applications are made to fully augmented pretzel links, including describing a
family of nested links that have the same complement; the size of this family
is shown to grow exponentially with the number of link components. We also
prove that the fully augmented pretzel links are determined by their comple-
ments, within the class of FALs.

1 Introduction

Fully augmented links are a class of hyperbolic links that have been studied because
their geometric properties. Nested links are a generalization that preserve most of
these properties. We introduce these classes of links and some related structures in
Sections 1 and 2. There are some common questions that one can ask about link
complements. Magnum and Stanford state a few of these questions in [5].

The first question is “For a given link (or family of links) L1, can we characterize
the links L2 such that S3\L1 is homeomorphic to S3\L2.” In Section 3, we address
this by providing a sufficient condition for the complement of a nested link to be
homeomorphic to the complement of a fully augmented link. In Section 4.1, we also
look at a subclass of fully augmented links called fully augmented pretzel links, and
describe a family of nested links that have the same complement. We show that the
size of this family grows exponentially with the number of components of the fully
augmented pretzel link.

A second question that Magnum and Stanford ask is “Can we characterize those
links that are determined by their complements?” In Section 4.2, we prove that
within the class of fully augmented links, the fully augmented pretzel links are
determined by their complements.
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1.1 Fully Augmented and Nested Links

In this paper, we will discuss two related classes of hyperbolic links called fully
augmented links (FALs) and nested links. We’ll introduce these here, but a more
thorough introduction is given in [8] and [7]. To construct a fully augmented link,
start with a link diagram and around each twist of two strands, place an unknotted
component. Then, remove all full twists from the twist region, leaving either no
twist or a half twist, as in Figure 1.

Figure 1: Left: A link diagram. Center: Placing unknotted com-
ponents around twist regions. Right: Removing all full twists, cre-
ating an FAL.

Nested links are a generalization of fully augmented links. Twist regions can have
more than two strands if we can add unknotted components around the twist region
in such a way that every unknotted component bounds a twice punctured disk,
where these punctures may be strands in a twist or other unknotted components.
Notice that the term nested comes from the fact that if one of the punctures in
such a disk comes from an unknotted component, then that component must bound
another twice punctured disk. An example of this process is given in Figure 2.

Figure 2: Left: A twisted tangle. Center: Placing unknotted com-
ponents around twist regions. Right: Removing all full twists.

For both FALs and nested links, we’ll call the added unknotted components
crossing circles and we’ll call all other components knot circles. We’ll call the twice
punctured disks that are bounded by the crossing circles crossing disks. If there is a
half twist between the two strands that puncture a crossing disk, we will say that that
crossing region is twisted, and flat otherwise. In some circumstances we’ll discuss
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nested links with twisted crossing regions, but the majority of our discussion will
be concerning nested links where every crossing region is flat, which can be simply
called flat nested links or FALs.

1.2 Cell Decomposition

A link, L, is hyperbolic if its complement S3\L admits a hyperbolic structure.
This hyperbolic manifold may be decomposed into a collection of polyhedra with
associated instructions for gluing the faces. We examine a method of finding a cell
decomposition of the link complement, as described in [7]. The method for FALs is
a subcase. Figure 3 depicts the steps.

First, position the link so that all knot circles lie in a single plane and every
crossing disk is perpendicular to that plane. Then, we cut along this plane, creating
two symmetric regions above and below this plane which we’ll call P+ and P−
respectively. We’ll continue only looking at one of these regions, since the other
is symmetric and handled identically. Now, slice along the crossing disks, colored
gray in the figure, keeping track of what faces are glued. We then flatten these
disks into the plane, as in the second part of Figure 3. Then, shrink the arcs
corresponding to crossing circles, as in the third part of the figure. Finally, shrink
the arcs corresponding to the knot circles.

With each P+ and P− we can associate an ideal polyhedron. The vertices of
these polyhedron will be the vertices in the cell decomposition and the faces will
correspond to the shaded and unshaded regions in the decomposition. A reader
interested in this cell decomposition is referred to [8] for more details.

1.3 Crushtaceans

From the cell decomposition described in Section 1.2, we can obtain a graph which
Chesebro, DeBlois, and Wilton call the crushtacean [1]. To form this graph, we
will place a vertex in the center of each shaded region of the cell decomposition of
P+ (or P−) then add an edge connecting vertices corresponding to adjacent shaded
regions. This is depicted in Figure 4 where we continue the example from Figure 3.
The crushtacean is the dual graph to what is referred to as the nerve by Purcell [8].

We’ll now prove some combinatorial properties of the crushtacean. For our
purposes, a simple graph is one where each edge has distinct endpoints and no two
vertices are joined by more than one edge. Additionally, a trivalent graph is one
where every vertex has degree three.

Proposition 1.3.1. The crushtacean of a hyperbolic nested link is a simple planar
trivalent graph.

Proof. Let Γ be the crushtacean of a hyperbolic nested link. Since the cell de-
composition of P+ lies in the plane and since all our edges are between vertices
corresponding to adjacent shaded regions, it is clear Γ will be planar. Further, since
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Figure 3: The cell decomposition process for a nested link comple-
ment.

the upper half of each twice punctured disk has three edges, we know each shaded
region will be a triangle. Then, since we connect vertices of Γ through the corners
of these shaded regions, each vertex must be degree three.

Now, we’ll show that Γ must be simple. First, suppose both endpoints of one edge
in Γ are the same vertex. Then, for some shaded triangle in the cell decomposition,
two corners share a vertex. From the cell decomposition process, we can see that
this can only happen if for some crossing disk, both punctures came from the same
knot circle which cannot have intersected any other crossing disks in between, as in
the left image in Figure 5. We can see, however, that in such a case, our crossing
circle is not linked with any other components, so our link is splittable. Purcell
shows in [8] that our link must then not be hyperbolic, so we have a contradiction.

Finally, suppose that Γ has a pair of vertices with two edges between them. Then,
some pair of shaded triangles in the cell decomposition must share two corners. This
can only happen if a pair of knot circle strands go directly from one crossing disk to
another, as in the right image of Figure 5. Our link, however, is then not properly
augmented, since there must have been two crossing circles placed around one twist
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Figure 4: Constructing a crushtacean.

Figure 5: Left: A crossing disk with trivial punctures. Right: A
pair of crossing disks punctured by the same strands.

region. Thus, we have another contradiction. We can then conclude that Γ must be
simple.

A graph is maximal planar if it is simple and planar, but adding any edge would
destroy one of these properties. A triangulation of S2 is a simple planar graph such
that each face has three edges and no distinct faces share more than one edge.

Lemma 1.3.2. Suppose Γ is either a maximal planar graph or a triangulation of
S2. Then, if E and F are the number of edges and faces of Γ, respectively, then
3F = 2E.

Proof. We note that every face of a maximal planar graph must be a triangle, else
we would be able to add an edge connecting non-adjacent vertices of a face. Then,
it must be the case that every face of Γ is bounded by three edges, and every edge
is a boundary for two distinct faces. Thus, we indeed have 3F = 2E.

Lemma 1.3.3. Let Γ be a triangulation of S2. Then, Γ has at least 4 vertices and
is maximal planar.
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Proof. Note that if Γ has fewer than three edges, then it cannot bound a face. Now,
suppose Γ has exactly three vertices. Then, since it is simple, planar, and must have
more than one face, Γ must form a triangle, splitting S2 into exactly two faces, by
the Jordan Curve Theorem. These two faces must share more than one edge. This
is a contradiction, so Γ must have more than three edges. This proves the first half
of our statement.

Now, suppose Γ is not maximal planar. Then, we must be able to add some
edges e1, ..., en, creating Γ∗, such that Γ∗ is maximal planar. Suppose Γ∗ has F
faces and E edges. Then, by Lemma 1.3.2, we must have 3F = 2E. Now, note that
removing an edge from a planar graph also decreases the number of faces by one.
Then, since Γ is a triangulation of S2 and we can recover Γ from Γ∗ by removing the
n edges e1, ..., en, we must also have 3(F −n) = 2(E−n). Since, n 6= 0, this cannot
be the case, so we have a contradiction. Thus, Γ must be maximal planar.

A graph G is k-vertex-connected if G has more than k vertices and remains
connected when fewer than k vertices are removed. It is a common fact, stated in
[3], that maximal planar graphs with at least four vertices are 3-vertex-connected.
We have then shown that any triangulation of S2 is 3-vertex connected. A 3-vertex
connected, simple, planar graph is also known as a polyhedral graph.

Proposition 1.3.4. The crushtacean of a hyperbolic nested link is 3-vertex-connected.

Proof. In [8], Purcell proves that the crushtacean must be the dual graph of a
triangulation of S2. The dual to a polyhedral graph is unique, by [11], and is also a
polyhedral graph. Thus, the crushtacean must be 3-vertex-connected.

1.4 Balanced Spanning Forests

We’ll discuss one more structure related to the crushtacean. First, recall that a
tree is a connected graph that has no cycles and a forest is a collection of trees.
A balanced tree is a tree that admits an involution that fixes one edge, e∗. This
involution induces a coloring such that edges mapped to one another have the same
color. We’ll refer to the edge e∗ as the edge of symmetry. Now, given a graph G,
a balanced spanning forest on G is a collection of disjoint balanced trees in G such
that every vertex of G lies in some tree in this forest.

From the cell decomposition of the complement of a nested link, we can find a
unique balanced spanning forest on the crushtacean. This will be constructed in
such a way so that vertices mapped to each other by the involution correspond to
a pair of faces that are glued in the cell decomposition. This is shown in Figure
6. The existence this balanced spanning forest follows from the construction of the
cell decomposition. We’ll refer to the structure of a crushtacean with a balanced
spanning forest on it as a painted crushtacean.

We now state a proposition proven by Harnois, Trapp and Olsen in [4].
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Figure 6: Left: A cell decomposition. Center: A balanced spanning
forest on a crushtacean. Right: This crushtacean separate from the
cell decomposition.

Proposition 1.4.1. Let G be a simple, planar, trivalent, 3-vertex-connected graph.
Then, for each balanced spanning forest on G there is a hyperbolic nested link for
which this is the painted crushtacean. Further, there is a unique nested link with
this property if we require every crossing disk punctured by two knot strands is flat.

Note that in [4], this proposition is stated requiring that G be the dual of a
triangulation of S2, but the equivalence of these statements follows from Lemma
1.3.3 and the fact that the dual of a 3-vertex-connected graph is 3-vertex-connected.

We conclude this section with some definitions and one more proposition. A
matching of vertices refers to a tree composed of one edge. A balanced spanning
forest where every tree is a matching is called a perfect matching. The balanced
spanning forest corresponding to an FAL will be a perfect matching. Perfect match-
ings have been extensively explored in the context of planar trivalent graphs, for
example in [2]. We will say that a pair of vertices in a crushtacean are glued if they
are mapped to one another by the involution on a balanced tree, in connection to
the corresponding faces in the cell decomposition being glued. The gluing pattern
refers to the collection of information about which vertices are glued. Finally, a pair
of vertices will be said to be glued by a tree or forest if they are glued in the induced
gluing pattern.

Proposition 1.4.2. If two flat nested links have the same crushtaceans and the
balanced spanning forest for each induces the same gluing pattern, then these links
have homeomorphic complements.

Proof. Since the crushtaceans of these nested links are the same, the ideal polyhedra
associated with their complements must be isometric. Since the associated vertex
gluing patterns are the same, the gluing instructions on these polyhedra must be
the same. Thus, the complements must be homeomorphic.
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2 Balanced Trees

In this section we take a closer look at balanced trees. Subsection 2.1 introduces
binary trees as a subgraph of balanced trees. Binary trees are used to describe some
properties of balanced trees on crushtaceans, including determining if crossing disks
in an associated nested link are twisted.

2.1 Binary Subtrees

In this section, we would like to introduce some tools to examine the gluing patterns
induced by balanced trees on a trivalent graph.

A binary tree rooted at a vertex v∗ is a tree such that deg(v∗) ≤ 2 and every
other vertex has degree less than or equal to 3. We add additional structure to a
binary tree by adding directions to the edges in a way such that the edges connected
to v∗ are directed away from v∗ and every other vertex has exactly one edge directed
into it. Note that once a root vertex is fixed, there is a unique way to assign these
directions. Given any vertex v0, a vertex v1 such that there is an edge directed from
v0 to v1 is called a daughter of v0, and v0 will be called the parent of v1. We will say
that any vertex besides v∗ is either a right or left daughter vertex, and any vertex
may have at most one right daughter and at most one left daughter. The right -
or left - nature of a daughter vertex will be referred to as the handedness of the
vertex. An example of a binary tree is given in Figure 7. Note that in this figure,
the handedness of the daughter vertices corresponds to their directional relation to
their parent vertex, but for an abstract binary tree the handedness is simply a label.

Figure 7: An example of a binary tree.

We’ll describe a way to associate a pair of binary trees with a balanced tree, T ,
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embedded in a crushtacean. Let v1 and v2 be the endpoints of the edge of symmetry,
e, for T . Our first binary tree will be rooted at v1 and consist of all edges and vertices
connected to v1 in T\e. Note that this binary tree consists of one edge in each pair
of edges that are symmetric about e. We must now assign a handedness to each
daughter vertex, vi 6= v1. To do this we will directly utilize the embedding of the
crushtacean in S2 according to the following two rules, where “clockwise” is a fixed
direction to traverse an oriented loop in S2. If the parent of vi is vj , we will consider
a circle centered at vj , oriented clockwise, chosen to be suitably small so that the
circle intersects the three edges connected to vj exactly once. Then,

1. if vj = v1, we begin to traverse this circle starting at its intersection with e,
the edge of symmetry. If the edge connecting v1 to vi is encountered first out
of the other two edges, then we say vi is the right daughter of v1. Otherwise,
vi is the left daughter.

2. if vj 6= v1, we begin to traverse this circle starting at its intersection with the
edge oriented into vj . If the edge connecting vj to vi is encountered first out
of the other two edges, then we say vi is the right daughter of vj . Otherwise,
vj is the left daughter.

We define the binary tree rooted at v2 in the same way, replacing each v1 above
with v2.

We now state the following lemma.

Lemma 2.1.1. If two vertices glued with one another in a balanced tree on a crush-
tacean have opposite handedness in their respective binary trees, then the crossing
disk associated with their parent vertices is flat. If they have the same handedness,
then this crossing disk is twisted.

Proof. Equivalently, we will show that two vertices glued with one another in a
balanced tree on a crushtacean have opposite handedness in their respective binary
trees if and only if the crossing disk associated with their parent vertices is flat.
Note, however, that reversing the cell decomposition process leaves only ambiguity
concerning the twistedness of disks punctured by two knot circles; the vertices cor-
responding to a crossing disk of this sort will not have any daughters, so this is not
of concern here. Thus, it will suffice to show that if the crossing disk associated
with the parent vertices of a pair of glued vertices is flat, then these vertices will
have opposite handedness in their respective binary trees.

Consider the cell decomposition of the region local to a flat crossing circle. For
now, assume that both punctures come from other, coplanar, crossing disks. This
is depicted in the first diagram in Figure 8, where the two tubes represent the disk
punctures in the crossing disk. The second diagram then depicts the step in the cell
decomposition after we have cut along the plane of reflection and have sliced along
the crossing disk. We draw A and A′ separately, since our crossing disk may be

9



Figure 8: 1. A flat crossing circle. 2,3. Cell decomposition of
this crossing circle. 4. Subtrees of the binary trees associated with
crossing circle.

nested within another crossing disk; if it is not, then this gap will not be present,
but this distinction does not effect our discussion. Also, note that there may be more
crossing disks nested within the blue and green disks, so the regions B,B′, C, C ′ are
drawn without being closed to represent this ambiguity. Then, in the third image,
we have shrunk the crossing disks to single points and the shaded triangles related
to our disks are shown.

In the fourth diagram in Figure 8, we have drawn this portion of the crushtacean
along with the appropriate colors for the associated balanced tree. The way this is
depicted, these will in fact be subtrees of the binary trees associated with the two
sides of the balanced tree. In the top portion, we start traversing the depicted loop
from the dotted red edge. We reach the blue edge first, then the green edge, so
the vertices at the other end points are left and right daughters respectively. On
the bottom portion, we start traversing the loop at the red edge, and reach the
green edge, then the blue edge, so the vertices at the other end points are left and
right daughters respectively. Note that, as desired, the glued vertices have opposite
handedness.

Now, we need to address the case where it is not the case that both punctures
are from other crossing disks. We can disregard the case where both punctures
are knot circles, because then the vertices associated with our crossing disk have
no daughters. Now, we’ll again look at Figure 8, and without loss of generality
(by symmetry), assume the blue tube is actually a knot circle and the green tube
represents a puncture given by a crossing disk. Then, the regions labeled B and
B′ in the second and third diagrams should be replaced with a knot circle strand.
Then, in the portion of the crushtacean in the fourth diagram, the blue edges will
not be in this binary tree. This, however, does not effect the handedness of the
other daughter vertices in this diagram, so the result holds.
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3 Nested Links with the Complement of an FAL

This section focuses on describing a sufficient condition for the complement of a
nested link to be homeomorphic to that of a fully augmented link. Subsection 3.1
describes conditions for the gluing pattern on a nested link painted crushtacean to
be the same as that for an FAL painted crushtacean. The homeomorphism between
the complements of these nested links and FALs is then described. Subsection 3.2
introduces a family of crushtaceans called generalized ladder graphs that have the
properties described in Subsection 3.1. A complete description of this family is
given.

3.1 Ladder Subgraphs of Crushtaceans

Given a link, L, its complement S3\L is a 3-manifold. If a link L∗ is isotopic to L,
then S3\L is homeomorphic to S3\L∗, but the converse is not necessarily true.
Our goal is to address when nested links and fully augmented links have homeomor-
phic complements. The following theorem concerning simple planar trivalent graphs
can be used to address this question, in part.

Theorem 3.1.1. Given a simple trivalent graph with a balanced spanning forest,
there exists a perfect matching that induces the same gluing pattern if and only if all
vertices are glued to an adjacent vertex in the gluing pattern induced by the forest.

Proof. If the vertices glued by the balanced spanning forest are not adjacent, then
no perfect matching can induce the same gluing pattern, as all vertices glued by a
perfect matching are adjacent.

Now, to address the converse, we suppose that all pairs of glued vertices are
adjacent. We’ll show that the collection of these edges of adjacency give a perfect
matching on the crushtacean. First, notice that none of these edges of adjacency
can share a vertex, as every vertex is glued to exactly one other. Second, since every
vertex is glued to another, this collection of disjoint edges span the vertices of the
graph, hence is a perfect matching.

Now, we want to introduce a certain type of graph called a ladder graph, denoted
Ln, with 2n vertices and 3n − 2 edges. We depict L5 and the general structure of
Ln in Figure 9. We’ll call the edges of the type that are depicted as vertical in
Figure 9 the rungs of the ladder, and the other edges will be the rails. We want
to consider ladder graphs as subgraphs of crushtaceans. The perfect matching on a
ladder graph given by coloring all the rungs of the ladder will be refered to as the
canonical perfect matching on this ladder.

Proposition 3.1.2. Let F be a balanced spanning forest on a crushtacean that
induces the same gluing pattern as the perfect matching M . Let V be all the vertices
of G that lie in a single-edge tree of F. Then, either
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Figure 9: Left: Ladder Graph, L5. Right: Ladder Graph, Ln.

1. G is K4 or

2. the graph G′ = G\V is a disjoint union of ladder graphs.

In the second case, each ladder must be spanned by a single balanced tree for which
the edge of symmetry is one of the rungs of the ladder, and the other edges must be
the rails of the ladder.

Proof. We consider the subgraph spanned by one tree in F with more than one
edge. First, we note that one of the edges in M on this subgraph must be the
edge of symmetry for our balanced tree, since the edge of symmetry glues adjacent
vertices. The rest of the proof will be determining the structure of the remainder of
this subgraph and the accompanying balanced tree.

The edge of symmetry that is also in the perfect matching is colored red in
Figure 10. In this diagram, we have colored one adjacent edge blue to represent the
continuing tree. This tree must be balanced, so we must also color either e1 or e2
blue. We’ll look at these as two separate cases.

Figure 10: An edge of symmetry with one adjacent edge colored.

Case 1: Assume we color e1 blue. This tree must then glue the vertices v2 and
v4, but then our hypothesis and Theorem 3.1.1 tell us that there must be an edge
between v2 and v4, as depicted in the first diagram of Figure 11. Now, we have two
subcases: either v1 6= v4 or v1 = v4 (where equality here means that they are the
same point).
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If v1 6= v4, then there must be some subgraph T that v1 is connected to, as
shown in the second image of Figure 11. Then since our graph must be 3-vertex
connected, by Proposition 1.3.4, there must be an edge connecting T to each of v2
and v4, else there would be two vertices that we could remove and disconnect T
from the rest of the graph. Then, however, the crushtacean must be of the form in
the third diagram of Figure 11, so removing the edge e2 disconnects our graph, so
the crushtacean is not 3-vertex-connected. Thus, we cannot have v1 6= v4.

Figure 11: Addressing the case where e1 is colored and v1 6= v4.

Then, if v1 = v4, we must also have v3 = v2, as in the first diagram of Figure 12.
This follows since every other existing vertex is already degree 3, so there must be
some subgraph G that would be disconnected from the crushtacean by removing v2
and v5, as in the second diagram of Figure 12, which would again contradict that
the crushtacean is 3-vertex-connected. Thus, in this case, our crushtacean must be
K4.

Figure 12: Addressing the case where e1 is colored and v1 = v4.

Case 2: Now, assume we color e2 blue. Then, since our glued vertices must be
adjacent, there must be an edge connecting v2 and v3, as in the first diagram of
Figure 13. Now, if we extend the forest from the end of the blue edges, we must
color both e3 and e4, to maintain balance, and there must be an edge between
the endpoints of these edges, since we want glued vertices to be adjacent. This is
depicted in the second diagram in Figure 13.
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Figure 13: Construction of a ladder subgraph.

We can extend this argument to show that, in this case, if we have a balanced
tree such that all vertices are glued to an adjacent vertex, then the tree and this
portion of the crushtacean must have this structure shown in Figure 14, where the
sections labeled A and B may each contain arbitrarily many pairs of colored edges.
Note that the subgraph spanned by this tree is indeed a ladder graph. Further, the
edge of symmetry of this tree is a rung of the ladder and all other edges are rails.

Figure 14: A large ladder.

With a given ladder and balanced forest on this ladder we can associate a tangle,
which will be part of the nested link associated with the crushtacean. Figure 15 gives
some examples for a ladder with two rungs. Note that in general, a ladder with n
rungs with the canonical perfect matching will correspond to a chain with n crossing
circles. Figure 16 depicts this, along with the same ladder and an arbitrary balanced
tree that gives the same gluing pattern.

Let F be a fully augmented link such that the crushtacean has a ladder subgraph
with the canonical perfect matching. Now, consider a different balanced spanning
forest on this crushtacean such that a single balanced tree gives the same gluing
pattern on this ladder, and the rest of the forest coincides with the perfect matching
determined by F . Then, Proposition 1.4.2 tells us that F and the nested link
associated with this new forest will have the same complements. The next theorem
describes the homeomorphism between these two complements. In this theorem, F
will denote a flat FAL and N will denote a flat nested link.
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Figure 15: Top: A two rung ladder with the canonical perfect
matching and the associated tangle. Bottom: A two rung ladder
with a single balanced tree that gives the same gluing pattern as
above and the associated tangle.

Theorem 3.1.3. If F and N have the same crushtacean, other than K4, with the
same gluing pattern, then the homeomorphism h : S3\F → S3\N is given by a
sequence of Dehn twists.

Proof. By Proposition 3.1.2, the balanced forest associated with N must only dif-
fer from the perfect matching associated with F on a set of ladder subgraphs, on
each of which a single balanced tree gives the same gluing pattern as the perfect
matching. Since modifying a balanced spanning forest on a single ladder has only a
local effect on the associated link, we’ll assume without loss of generality that the
balanced forest associated with N only differs from the perfect matching associated
with F on a single ladder. The more general case will be a composition of such
homeomorphisms.

First, notice that we can also describe h as a composition of homeomorphisms
hi between the complements of nested links corresponding to iteratively removing
one perfect matching edge from the forest and extending the balanced tree on this
ladder by two rail edges that will then glue the same vertices as the removed edge.

Now, note that each homeomorphism hi will be isotopic to the identity every-
where except the region local to the tangle associated with this ladder, since the
links F and N must be identical on all other regions. We’ll now proceed inductively,
to show that each hi is given by a sequence of Dehn twists.

The base case will be replacing two rungs of a ladder with a balanced tree that
gives the same gluing pattern, as is depicted in Figure 15. By symmetry, examining
this case will also suffice to address the case where the edge of symmetry is on the
right of the colored rails. We will now use Figure 17 to depict the sequence of Dehn
twists that will give the homeomorphism h1. The first image in this figure gives a
sublink of F . For our current purposes, the green torus represents the left crossing
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Figure 16: Top: An n rung ladder with the canonical perfect match-
ing and the associated tangle. Bottom: An n rung ladder with a
single balanced tree that gives the same gluing pattern as above
and the associated tangle.

circle in the top image in Figure 15. It suffices to look at this sublink because we
will only perform Dehn twists about the blue and red components, and we have
included all components that are linked with these components.

In the second image, we perform a single Dehn twist about the red component,
which is punctured by the green and blue components. In the third image, we
perform a twist about the blue component, which is currently punctured by the red,
green, and black components. Notably, this unlinks the green and red components,
and we perform an isotopy in the fourth image to emphasize that these components
are indeed unlinked. Finally, in the fifth image, we do a single Dehn twist about the
red component, which unlinks the black and the blue components. One can then
confirm with Figure 15 that the result of these Dehn twists matches the expected
tangle.

Now, suppose hi is given by a sequence of Dehn twists for 1 ≤ i ≤ n. We’ll
show that hn+1 is also given by Dehn twists. We’ll again assume that the tree is
being extended on the right side, and the other case will be given by symmetry. We
will again reference Figure 17, however the green torus is interpreted differently this
time. The sublink we’ll look at this time is given in Figure 18. It will suffice to look
at this sublink because we have included all components that link with circles u and
v, which will be the only components that we perform Dehn twists about. In this
case, the meridian of the green torus will be the knot circle labeled c that lies in the
plane. The torus will then encompass the green, blue, and red crossing circles, in
addition to those that lie in the ellipsis. The red and blue components in Figure 17
will correspond to those labeled u and v in Figure 18, respectively.

We will again start by performing one Dehn twist about the red component.
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Figure 17: The Dehn twists described in the proof of Theorem
3.1.3.

Now, however, the components contained in the green torus will become twisted
with one another, but this is not the desired effect, so we perform an additional
Dehn twist, in the opposite direction as the last one, about the meridian of the
green torus. This untwists the components contained inside. We then continue
along as before, but every time we perform one of the depicted Dehn twists, we
must perform an additional one in the opposite direction about the meridian of the
green torus, to untwist the components contained inside. After this process, we
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can confirm that the result depicted in the fifth image of Figure 17 is indeed the
expected local structure of this link.

Figure 18: The sublink we’ll look at for addressing the homeomor-
phism hn+1.

3.2 Generalized Ladder Graphs

We would now like to take a closer look at the crushtaceans and associated balanced
forests that have a perfect matching inducing the same gluing pattern. Specifically,
we want to consider crushtaceans such that we can replace a perfect matching with
a balanced spanning forest consisting of trees that all have more than one edge,
but induces the same gluing pattern as that perfect matching. It follows from
Proposition 3.1.2 that each tree in this forest must span a subgraph given by the
ladder graph, Ln, for some n ≥ 2. Then, our crushtacean must have the structure
of a collection of ladder graphs with additional edges attached to the degree two
vertices in the ladders, which then connect these ladders. These additional edges will
be called feet (with the singular foot). An example of such a structure is depicted
in Figure 19, where the feet are colored blue.

Notice that if we replace any ladder (with two or more rungs) with one with
more rungs, our crushtacean will still have this property. For this reason, we will
not presently distinguish between ladders with different numbers of rungs; we will
just concern ourselves with the number of ladders in a crushtacean and how they
are connected to one another.

A generalized ladder graph is given by connecting some number of ladders Ln of
arbitrary length, n ≥ 2, by some collection of feet such that the result must be a
simple planar trivalent graph. We will also assume that all ladders in a generalized
ladder graph are maximal, in the sense that there are no pairs of consecutive ladders
that could be combined to form a larger ladder, as in Figure 20. The diagram in
Figure 19 is an example of a generalized ladder graph. We now want to describe
the set of generalized ladder graphs.
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Figure 19: A crushtacean given by attaching a collection of ladders.

Figure 20: A disallowed subgraph of a generalized ladder graph.

First, we define a bridge ladder of a generalized ladder graph as a ladder that if
removed disconnects the graph. Similarly, we’ll define a bridge edge of an arbitrary
graph as an edge that if removed disconnects the graph.

Lemma 3.2.1. A generalized ladder graphs with at least two ladders is 3-vertex
connected if and only if no foot edge connects vertices that lie in the same ladder
and there is no bridge ladder.

Proof. First, suppose there is a foot of a generalized ladder graph that connects two
vertices of the same ladder. We require that generalized ladder graphs be simple,
so this foot must not connect two verties that are already adjacent in the ladder
itself. This must then happen as depicted in Figure 21. We notice, however, that
since there is more than one ladder in our graph, the region labeled T is nontrivial.
Thus, if we remove the two vertices circled in red, then our graph will become
disconnected, so our graph is not 3-vertex-connected. Similarly, if there is a bridge
ladder, then removing a pair of vertices that are endpoints of the same rung will
clearly disconnect the graph.
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Figure 21: Subgraph of a generalized ladder graph where a foot
connects two vertices in the same ladder.

Now, to address the converse, suppose every foot connects vertices in two distinct
ladders and there is no bridge ladder. We’ll show that in this case no pair of two
vertices may be removed that disconnects our graph.

First, observe every ladder Ln is 2-vertex-connected (n ≥ 2). Thus, removing
one vertex from two distinct ladders cannot disconnect our graph. Now, suppose
we remove two vertices from the same ladder, L. If one or more of these are not
attached to feet of a ladder and the graph becomes disconnected, then this ladder
must be a bridge ladder.

The last case is removing two distinct vertices from L that are connected to feet.
Note, however, that there will be two feet attached to L that are not affected by
this removal. There is a path through L between these two feet and a path between
every other vertex in L to each of these feet. Thus, since every foot connects two
distinct ladders there is a path from every other ladder to one of these feet, our
graph cannot be disconnected by removing two vertices.

Proposition 3.2.2. There is a bijection between the set of 3-vertex-connected gen-
eralized ladder graphs with more than one ladder and the set of perfect matchings
on simple planar trivalent graphs without a bridge.

Proof. Consider one colored edge, e, in a perfect matching on a simple planar triva-
lent graph, G. Let v∗ and v′ be the endpoints of e. Let v1 and v2 be the other
vertices adjacent to v∗ and let v3 and v4 be the other vertices adjacent to v′. Now,
we remove e, v∗, and v′ from our graph. Then, we add in a ladder with an arbitrary
number of rungs such that there is a foot connecting each of v1, v2, v3, and v4 to
one of the degree 2 vertices in our ladder so that v1 and v2 are adjacent and v3
and v4 are adjacent. This should be done so that these new edges don’t cross; this
will always be possible by switching the ladder vertex that an vi is attached to, if
necessary.

We then repeat this process for all edges in the perfect matching. The result
will be planar and trivalent, by our construction. It will also be simple, because
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each ladder is simple and every foot edge must attach to two different ladders at
different vertices. Since our initial graph, G, is also simple, there also cannot be
any non-maximal ladders of the type shown in Figure 20. Thus, the result is a
generalized ladder graph. Further, there must be at least two ladders in this graph,
since G must have had at least two edges in its perfect matching. Then, since each
foot edge connects two distinct ladders, Lemma 3.2.1 tells us that our generalized
ladder graph must be 3-vertex-connected.

Now, note that given a 3-vertex-connected generalized ladder graph, this process
can be reversed to obtain a simple planar trivalent graph with a perfect matching,
without a bridge. The result will clearly be planar and trivalent. It will be simple
because the existence of an edge with the same endpoints would imply that some
foot edge of the generalized ladder graph had endpoints in the same ladder. The
existence of a pair of edges with the same endpoints would imply that either some
ladder wasn’t maximal, or again some foot connected vertices of the same ladder.
Finally, the existence of a bridge edge would imply that there was a bridge ladder
in the generalized ladder graph, but this cannot be the case, by Lemma 3.2.1, since
our generalized ladder graph is 3-vertex-connected.

An example of this correspondence between a generalized ladder graph and a
simple planar trivalent graph is shown in Figure 22.

Figure 22: The correspondence between a generalized ladder graph
and a simple planar trivalent graph with a perfect matching (in
red).

Recall that the set of crushtaceans is exactly the set of 3-vertex-connected simple
planar trivalent graphs. The preceding proposition then serves as a way to charac-
terize the set of crushtaceans that allow balanced spanning forests (with all trees
with more than one edge) that give the same gluing pattern as a perfect matching,
with a few minor exceptions. These exceptions are K4, as described in Proposition
3.1.2, and the case where our graph has a single ladder. The single ladder case is
addressed in the next section.
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Finally, we want to emphasize that this application of perfect matchings on
simple planar trivalent graphs is distinct from the application that describes the
balanced spanning forest associated with an FAL.

4 Prism Graphs and Pretzel Links

This section focuses on applications to a family of FALs called fully augmented
pretzel links. Subsection 4.1 describes a family of nested links with complements
homeomorphic to the fully augmented pretzel links. The size of this family is shown
to grow exponentially with the number of link components. In Subsection 4.2, we
show that the fully augmented pretzel links are determined by their complements,
within the class of fully augmented links.

4.1 Nested Links with the Complement of S3\Pn

In this section, we’ll look at the prism graphs, Pn with 2n vertices. These are of
interest because they are the only 3-vertex-connected generalized ladder graphs with
one ladder. The fully augmented link associated with Pn and the canonical perfect
matching is what is sometimes referred to as the fully augmented pretzel link with
n crossing circles, which we’ll denote Pn. Some properties of the fully augmented
pretzel links are explored by Meyer, Millichap and Trapp in [6]. The prism graph
Pn and the fully augmented pretzel link Pn are shown in Figure 23.

We would like to consider nested links with the same complement as Pn. We
must be able to determine when two balanced spanning forests on Pn that give
the same gluing pattern as the canonical perfect matching are associated with two
different links. We’ll introduce some tools that will help us do this.

Figure 23: Left: The prism graph Pn. Right: The fully augmented
pretzel link Pn.
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Figure 24: Example P6 Coloring

If c1 and c2 denote two components in a given link, let lk(c1, c2) denote the
linking number of c1 and c2, where linking number is defined in the usual way, as
in [9], where it is shown to be an isotopy invariant for corresponding components.
Then, given a link, we can associate a graph called the linking graph. In this graph,
each vertex vi corresponds to a link component ci, and there is an edge connecting
vertices vi and vj if and only if lk(ci, cj) 6= 0. Note that isotopic links must have
isomorphic linking graphs.

We also define the component linking number of a link component to be the
number of other components with which it is nontrivially linked. We denote the
component linking number of a component ci as cln(ci). We note that in our context
cln(ci) is equal to the degree of the the corresponding vertex in the linking graph.

We would like to consider balanced trees with three edges on Pn that give the
same gluing pattern as the canonical perfect matching. We assign one direction to
traverse the paths of rails as “clockwise.”. We’ll then use binary digits to distinguish
between the two types of trees with three edges: we associate a 0 with such a tree
where the edge of symmetry is on the counter-clockwise side of the rail edges in the
tree, and a 1 with such a tree where the edge of symmetry is on the clockwise side of
the rail edges in the tree. An example of coloring P6 in this way is given in Figure
24.

We’ll use the term primary crossing circle to refer to the crossing circles associ-
ated with the edge of symmetry in the tree on the crushtacean. When each tree has
three edges, these will be the only crossing circles whose associated crossing disks
are punctured by another crossing disk. We’ll also use the term primary knot circle
to refer to knot circles that link two different primary crossing circles. Alternatively,
the primary knot circles are the components associated with the feet that connect
distinct sub-ladders in Pn.

Lemma 4.1.1. Consider the link formed from a balanced spanning forest on Pn
that gives the canonical gluing pattern. Suppose that on some connected sub-ladder
two consecutive trees in the forest are composed of three edges. Then, the primary
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Figure 25: The four options for two consecutive trees with three
edges.

crossing circles associated with these trees each have a component linking number of
three. Further, if in clockwise order we have

i. a 0 tree followed by a 0 tree or a 1 tree followed by a 1 tree, then the associated
primary knot circle has component linking number 3.

ii. a 0 tree followed by a 1 tree, then the associated primary knot circle has com-
ponent linking number 4.

iii. a 1 tree followed by a 0 tree, then the associated primary knot circle has com-
ponent linking number 2.

Finally, any other components associated with this subgraph have a component link-
ing number of 2.

Proof. We’ll use Figure 25 to address all cases.
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The images in Figure 25 depict the four options for two consecutive trees, each
with three edges along with the tangles associated with each option. In the diagrams,
the primary crossing circles are in red and the primary knot circles are in green. In
each of these cases, since each tree corresponds to two pairs of vertices being glued,
we know that each primary crossing disk is punctured by one knot circle and one
crossing disk. Thus, each primary crossing circle links with the primary knot circle
in addition to each of the knot circles that puncture the nested crossing circle. Thus,
indeed, each primary crossing circle has component linking number 3.

We can also see that the non-primary knot circles each link with two crossing
circles and the non-primary crossing circles link with two knot circles.

Finally, we consider the primary knot circles. The diagrams clearly show that
the component linking numbers for each of these components is as expected.

Theorem 4.1.2. For even n, there are at least 2n/2/n distinct nested links whose
complement is homeomorphic to that of Pn.

Proof. Let Pn have a balanced spanning forest such that each tree has three edges
and the gluing pattern is the same as that given by the canonical perfect matching
in Pn.

By Lemma 4.1.1, the primary crossing circles must have a component linking
number of 3 and link with exactly two primary knot circles. Further, if any other
components have a component linking number of 3, each must be a primary knot
circle. Note that primary knot circles link with exactly two distinct primary crossing
circles and that the sublink composed of primary crossing circles and primary knot
circles forms a chain. Since component linking number is equal to the degree of the
associated vertex in the linking graph, we have shown that there is a unique cycle in
the linking graph where (at least) every other vertex has degree 3, given by vertices
associated with primary crossing circles and primary knot circles, alternating. We’ll
look at the degree sequence along this cycle, which has length n.

If every vertex along this cycle has degree 3, then the crushtacean must be
covered by all 0 trees or all 1 trees. Now, assume that not every vertex in this
cycle has degree 3. Then, the vertices associated with primary crossing circles can
be determined, since these all have degree 3 and alternate with the primary knot
circles. Let’s consider the subsequence given by the degrees of the primary knot
circles. This subsequence will have length n/2, since every other vertex along the
originally identified cycle is associated to a primary knot circle. We can traverse
this subsequence in two directions. In each direction, we can associate an n/2 length
cycle of binary digits, since the degree sequence of these vertices tells us when we
change between 0 trees and 1 trees. Further, every binary cycle has an associated
degree sequence of this form. There are 2n/2 binary strings of length n/2 and at
most n/2 can correspond to the same cycle, so there are at least 2n/2/(n/2) distinct
binary cycles. In general, traversing the degree sequence in different directions will
yield distinct binary cycles, so since there were two ways to traverse our degree
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sequence, we can say that there are at least 2n/2/n binary cycles associated with
distinct degree sequences.

Note that this lower bound is not sharp. This argument can easily be extended
by considering forests containing trees of depth other than two. Arguments can be
made related to integer partitions of n. In this way, we can also consider odd n.
The above argument is made to show that this value is at least exponential in n/2.

Theorem 3.1.3 tells us that all of these nested links are related by some sequence
of Dehn twists. By the work of Whitehead, we know that, in general, we can use
Dehn twists to generate infinitely many distinct links with homeomorphic comple-
ments. Note, however, that we cannot continue to perform Dehn twists indefinitely
and still be left with a nested link; this follows from the fact that there are only
finitely many nested links with the same number of components.

4.2 Fully Augmented Pretzel Links

We end this section by taking a closer look at the fully augmented pretzel links.

Lemma 4.2.1. The fully augmented pretzel links Pn are the only flat hyperbolic
FALs with the same number of crossing circles and knot circles.

Proof. First, note that there are no hyperbolic FALs with only one crossing disk.
Now, consider a hyperbolic FAL with two crossing disks. The crushtacean for this
link must have four vertices and must thus be K4. Up to a rotation or reflection,
there is only one perfect matching on K4. This painting gives the Borromean rings
which only has one knot circle. Thus, there are no flat hyperbolic FALs with one or
two crossing circles and the same number of knot circles.

Now, suppose we have a flat hyperbolic FAL with n crossing circles and n knot
circles, for n ≥ 3. The crushtacean of such an FAL must have 2n vertices and 3n
edges. The perfect matching associated with this crushtacean must have n edges,
and thus there must be 2n edges associated with knot circles. Recall that our
crushtaceans are all simple graphs, so there are no double edges. Therefore, a single
edge in the crushtacean of an FAL cannot correspond to a single knot circle. We can
then see that for each knot circle, there must be exactly two corresponding edges in
the crushtacean. In the crushtacean of a flat FAL, a pair of uncolored edges e, u can
correspond to a single knot circle only if each of the endpoints of e is glued to one
of the endpoints of u. This only occurs if e and u connect opposite ends of a pair of
edges in a perfect mathching, as in Figure 26. Every uncolored edge has a partner
uncolored edge that satisfies the same property as just described. The structure of
our graph then continues in this manner and forms Pn with the canonical perfect
matching, which is the painted crushtacean for Pn.

Note that this proof also tells us that Pn with the canonical perfect matching is
the unique crushtacean for Pn.
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Figure 26: Two edges corresponding to one knot circle.

Before proceeding to the statement and proof of the next theorem, we want to
recall that Mostow’s rigidity theorem tells us that geometric properties of finite-
volume hyperbolic 3-manifolds are in fact topological invariants. In particular, the
number of cusps and the volume of a hyperbolic link complement are topological
invariants.

Theorem 4.2.2. Within the class of hyperbolic flat FALs, the fully augmented pret-
zel links Pn are uniquely determined by their complements.

Proof. First, note that for each component in a hyperbolic link, there is an associated
cusp in the complement. The number of cusps of a hyperbolic 3-manifold is a
topological invariant, so if two hyperbolic links have homeomorphic complements,
they must have the same number of components.

Suppose we have a hyperbolic flat FAL F whose complement is homeomorphic
to that of Pn. Note that Pn has 2n components, so we have shown F must have 2n
components. We know that the number of crossing circles for any fully augmented
link must be greater than or equal to the number of knot circles, so if F is distinct
from Pn, then F must have at least n + 1 crossing circles, by Lemma 4.2.1. Our
goal is to show that this cannot be the case, given that S3\F is homeomorphic to
S3\Pn.

In [8], Purcell states that if F has c crossing circles, then the hyperbolic volume
of F is at least 2v8(c − 1) where v8 = 3.66386... is the volume of a regular ideal
tetrahedron. We note that this lower bound is increasing with the number of crossing
circles, so the lower bound for more than n + 1 crossing circles is greater than the
lower bound for n+ 1 crossing circles. We can then say that a fully augmented link
with at least n + 1 crossing circles has volume at least 2n · v8. We’ll denote this
lower bound lb(n+ 1) = 2n · v8.

Now, we want to consider the volume of S3\Pn. Let L (θ) = −
∫ θ
0 ln|2sin(x)|dx.

Then, Thurston proves in [10] that vol(S3\Pn) = 8n(L (π4 + π
2n) + L (π4 −

π
2n)). In

[6], Meyer, Millichap and Trapp use this formula to prove that vol(S3\Pn)
2n is strictly

increasing and limn→∞
vol(S3\Pn)

2n = v8. Clearly, lb(n+1)
2n = 2n·v8

2n = v8 for all n. This
shows that for all n, vol(S3\Pn) < lb(n+ 1). Thus, if L has n+ 1 or more crossing
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circles, then its complement cannot be homeomorphic to that of Pn.
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