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Abstract

We investigate potential uses of graph theoretical tools in determining a measure of connectivity in
links of a particular construction. Considering only fully augmented links in specific families, we find
some results regarding how we can use graph theoretical tools to bound a measure of connectivity.

1 Fully Augmented Links: Forming FALs, circle packings, and
Crushtaceans

In this paper, we will explore the connection between fully augmented links (FALs) and their crushtaceans.
More specifically, we will explore how the Cheeger Constant of the FAL’s crushtacean and the Cheeger
Constant of the FAL itself are related.

Starting with a link diagram, we will now define how to form the Crushtacean. We identify the sections
of the link diagram that are twist regions, or two strands that alternate passing over and under one another
without interacting with other strands. We place an unknotted component around each of these twist regions.
We then count the crossings in each twist region. If there are an even number of crossings, we remove the
crossings and replace them with two parallel strands passing through the unknotted component. If there are
an odd number of crossings, we replace the them with a single crossing where the overstrand is the same as
it is in the outer two crossings. Our new link diagram is an FAL, call it F . We also label two distinct types
of components in this diagram.

Definition 1.1. A crossing circle in an FAL is any of the unknotted components that we added around the
twist regions.

Definition 1.2. A knot circle in an FAL is any of the components in our FAL that is not a crossing circle.

From an FAL, we can create a circle packing. We first color each of the crossing circles so that we can
identify them later. We then identify three line segments on each side of the crossing circle. That is, we
have a segment from the edge of the crossing circle to the point where a knot circle intersects the crossing
disk, another from that point to the other point where a knot circle the crossing disk, and another from this
point to the edge of the crossing disk. This is shown in Figure 1.

Figure 1: The Top Half of a Crossing Disk: Note that the line segments along the left side of the crossing
disk alternate in color. This differentiates the three different line segments that we will use below to create
our triangles.
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From here, we will make two semicircles where the crossing disk is, with the colored line segments on
each side. Then we can shrink the arcs of the semicircles, making two triangles that are incident at a single
vertex. This creates a bowtie shape, as shown in Figure 2.

Figure 2: The next two steps of creating a circle packing from a link diagram. Note that we still keep the
triangles shaded as we will use that later.

We will shrink the black components, those from our knot circles, until our shaded triangles are all
connected to other shaded triangles on each of their 3 vertices. Each of our unshaded regions becomes a
circle, including the ambient unshaded region. Each circle should be tangent with other circles that originated
from regions that share a vertex. We also ensure that we mark which regions are shaded from the original
crossing circle. In particular, we note which points of tangency would be the middle vertex of the bowtie
shape created from each crossing disk. This new diagram is the circle packing of the FAL. The circle packing
is the footprint of an associated polyhedron in H3 where the points of tangency between two circles is an
ideal vertex in the polyhedron. This polyhedron is often called the manifold of our FAL. For a more in-depth
treatment of these associated polyhedra, please refer to [1].

We will now place a vertex in each interstice between the circles. We connect these vertices through the
points of tangency between circles. We paint the edges that pass through the points of tangency that were
the middle vertices of a bowtie. The final graph that we have is known as the Painted Crushtacean of the
FAL F .

For an example of going from an FAL to a Crushtacean, see Figure 3.

2 Pretty Edge Cuts

In the Crushtacean, some edge cuts represent non-trivial cuts on an FAL using an n punctured sphere
together with some number of crossing disks. Since this type of cut, cutting along a surface that divides the
volume of the polyhedron in two sections, is valuable for determining the Cheeger constant of the polyhedra
corresponding to an FAL, we will give this type of edge cut a name.

Definition 2.1. Consider some trivalent connected graph G = {V,E} with connected subgraphs G1 =
{V1, E1} and G2 = {V2, E2} such that V1 and V2 partition V and |V1|, |V2| ≥ 2. Then an edge cut consisting
of all edges connecting some v1 ∈ V1 to some v2 ∈ V2 is a pretty edge cut.

When considering the Crushtacean of a given FAL, we often use painted Crushtaceans since they in-
clude information on which edges of the Crushtacean correspond to crossing disks versus knot circles. This
information also affects the Cheeger constant of the corresponding polyhedron for some FAL.

Definition 2.2. A perfect matching is some set of unordered pairs of vertices that matches each vertex to
exactly one other vertex. Moreover, matched vertices must be connected via an edge.

Definition 2.3. A painting of a graph G is some set of edges that includes all edges that connect matched
vertices in a particular perfect matching on G. We will call such edges painted edges.
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Figure 3: The FAL of the Borromean Rings to its Crushtacean

Note that, in most cases, a perfect matching or a painting of a graph is not the only perfect matching
or painting on that graph. We also know that, based on the way we construct Crushtaceans, a painted
Crushtacean falls into the category of a painted graph, hence its name.

Theorem 2.4. Consider the trivalent graph G with vertices V , edges E, and some painting. If we take some
k-pretty edge cut on G, the parity of the painted edges in the k-edge cut is the same as the parity of k.

Proof. Recall that the sum of degrees of vertices in any graph must be even. From here, we can note that
since all vertices in a trivalent graph have degree three, the sum of degrees of vertices in a trivalent graph is
3|V |. For 3|V | to be even, |V | must be even.

Let’s consider one of the two connected subgraphs of G obtained after removing the edges in our k-edge
cut, call it G1 and its set of vertices V1. Add k-many additional vertices to G1, connecting each new vertex
to exactly one vertex in G1 until all vertices from G1 have degree three. From here, arbitrarily number the
k vertices not in G1 1 through k. Then, connect sequential vertices with an edge, and connect vertex 1 with
vertex k. We clearly have a new trivalent graph composed of our new vertices and edges together with G1.
The number of vertices in this new trivalent graph must be even, so |V1|+ k is even. For this to be the case,
|V1| and k must have the same parity. Now, let’s consider two cases.

First, if k is odd, then G1 has an odd number of vertices. The perfect matching on G must connect pairs
of vertices, so the total number of vertices in V1 matched with another vertex in V1 must be even. Then there
must be an odd number of vertices in V1 that are paired with vertices outside of V1. The edges connecting
such vertices would be painted. Thus, there are an odd number of painted edges in our k-edge cut.

Next, assume that k is even. Then G1 must have an even number of vertices. The number of vertices
in V1 matched to another vertex in V1 is even, so we have an even number of vertices matched to vertices
outside of V1. Then the edges connecting these vertices to their match must be both painted and involved
in the k-edge cut. Thus, there are an even number of painted edges in our k-edge cut.
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3 Triangle Vertex Expansion

In order to determine how relationships between Crushtaceans affected the Cheeger Constant of the graph,
we first will define an operation on graphs along with an inverse-like operation and then define how to
determine the Cheeger Constant of a graph.

Definition 3.1. We will define an operation on trivalent graphs called triangle vertex expansion. To perform
a triangle vertex expansion, we will select a vertex in our trivalent graph. We will place three vertices such
that each one is connected to a different vertex that our selected vertex was incident with. We will then
connect each of our new vertices to each other new vertex. Finally, we will remove our selected vertex and the
three edges incident with our selected vertex. Note that in our trivalent graph, this operation will produce
a new graph that is also trivalent. This is demonstrated in Figure 4.

Figure 4: Triangle Vertex Expansion: When we perform a triangle vertex expansion, the red vertex is
replaced with the red vertices and edges on the right.

This operation also has something that can act as an inverse in most cases.

Definition 3.2. We will define an operation called a triangle vertex contraction. To perform this operation,
we will find a 3 cycle bounding a face in a trivalent graph. Then, since the graph is trivalent, each vertex in
the 3 cycle is connected to each other vertex in the 3 cycle as well as one vertex not in the 3 cycle. We will
then remove the 3 cycle and replace it with a single vertex connected to each of the vertices that one of the
vertices in the 3 cycle was connected to.

Definition 3.3. If we have a perfect matching on a trivalent graph and perform triangle vertex expansion,
the obvious matching on this new graph is the one where we match all vertices from the parent graph as they
were in the parent graph. Then the vertex that was matched with the expanded vertex will be matched with
the new vertex from the triangle expansion that it is connected to via an edge and the other two vertices
from the triangle vertex expansion are matched with each other.

Due to this obvious perfect matching, when we perform triangle vertex expansions, we can see that there
will be a painting such that if the parent graph has a k edge cut with n painted edges, we can find an
analogous k edge cut with n painted edges after triangle vertex expansion.

Definition 3.4. The Cheeger Constant of some graph G = {V,E} is the minimal

k

min{V ol(A), V ol(B)}

where A and B are two partitioning subsets of V , an edge cut of k edges separates these two subsets, and
V ol(U) where U is some set of vertices is the sum of the degrees of all vertices in U.

Now that we have this operation, our next goal was to find how the Cheeger constants of a graph before
and after triangle vertex expansion were related.

Theorem 3.5. The graph resulting from a triangle vertex expansion of some trivalent graph G can have a
Cheeger constant no greater than the Cheeger constant of G.
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Proof. Let G = {V,E} be a trivalent graph and choose some vertex v ∈ V to perform triangle vertex
expansion. We will call this new graph G′ = {V ′, E′} and the three new vertices in this graph v1, v2, and v3.
We know that the Cheeger constant of G is determined by some k-edge cut on G that divides the vertices
of G into two partitioning subgraphs of V, call them V1 and V2. Because G is trivalent, the volume of any
set of vertices in G is three times the number of vertices in the set. Then we find that the Cheeger constant
of G can be written as

k

3 ·min{|V1|, |V2|}
Consider an analogous k-edge cut in G′ where we cut the edges in G′ corresponding to the cut edges in G.
If one of the cut edges in G were connected to v and some u ∈ V we instead cut the edge connecting u to
one of our vis. If this occurs more than once, repeat this. Then we have partitioning subsets V ′

1 and V ′
2 of

V ′. One of these subsets will have 3 vertices where there was only 1 in the corresponding subset of V , so its
cardinality will increase by two. Then we get that there is some k-edge cut that divides G′ into V ′

1 and V ′
2

such that 3 ·min{|V ′
1 |, V ′

2 |} ≥ 3 ·min{|V1|, |V2|}. Then we find that

k

3 ·min{|V1|, |V2|}
≥ k

3 ·min{|V ′
1 |, V ′

2 |}

Thus, the Cheeger constant of G provides an upper bound for the Cheeger constant of G′.

Note 3.6. By the argument used in the above theorem, we can see that for a k-cut in some trivalent graph
G, there is an analogous k-cut in any graph that results from a triangle vertex expansion on G.

Notation 3.7. Define the elements of a set of graphs B4 in the following manner: Starting with K4, find a
4-cut that divides the graph into two subgraphs with two vertices each. Then, choose one vertex from each
of these subgraphs and perform triangle vertex expansion on the selected vertices. Continue choosing one
vertex on each side of the 4-cut and performing triangle vertex expansions.

Theorem 3.8. For any graph G = {V,E} ∈ B4, the upper bound of the Cheeger Constant of G is

4
3
2 |V |.

Proof. By performing a triangle vertex expansion on each side of the 4-cut in G, we ensure that we have an
equal number of vertices on each side of the 4-cut. This, together with the trivalency of the graph, gives

us that the volume of each side of the edge-cut is
3

2
|V |. Then, we know that since we are looking for the

minimum fraction consisting of the number of edges removed over the minimum volume of the sides of the
edge cut, the Cheeger Constant of this graph cannot be more than

4
3
2 |V |.

Note 3.9. The bound given in Theorem 3.8 is not always the Cheeger Constant of a graph in this family of
graphs. Take, for example, the graph in Figure 5.

The upper bound given by Theorem 3.8 is 4
18 ≈ 0.2222. However, the 3-edge cut colored pink yields a

Cheeger Constant of 3
15 = 0.2. Thus, the 4-edge cut described in Theorem 3.8 does not necessarily realize

the Cheeger Constant, and we cannot say that the Cheeger Constant of such a graph is strictly equal to
4

3
2 |V |

.

We must now consider how a triangle vertex expansion affects the types of edge cuts in a graph. In
particular, we want to see if a triangle vertex expansion can create a new 1 or 2 edge cut, or disconnect the
graph entirely.
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Figure 5: Graph of K4 after a particular set of 4 triangular expansions.

Conjecture 3.10. For some 3-edge connected trivalent graph G together with some triangle vertex expan-
sion on G that produces a graph G′, we find that G′ is also 3-edge connected.

Proof. In a 3-edge connected graph, we can remove any pair of edges without disconnecting the graph.
Moreover, any trivalent graph is at most 3-edge connected, so showing that we can remove any pair of edges
without disconnecting the graph is sufficient to say that a trivalent graph is 3-edge connected.

First, let’s take the case where both edges removed are not in the 3-cycle between the three new vertices.
Then, if the path that existed in between two vertices in G did not go through the expanded vertex, we
are done. Otherwise, we can follow the path in G until we reach one of our new vertices. This vertex is
connected to each other new vertex, one of which, call it v′, is connected to the next vertex from the path in
G. We will take the edge to v′ before continuing along the original path from G. The new vertices also are
connected to the rest of the graph. If one of the vertices is new, we can take the path for the expanded vertex
after going around the three cycle until it is connected to a vertex in the path from G and then following
the path from G. If both vertices are new, then they are connected by a single edge by construction.

Next let’s take the case where one of the removed edges is in the three cycle. The new vertices are still
connected to one another, either directly by an edge or with an intermediary visit to the other new vertex.
Then we will consider a path from G that is possible when the edge from G is removed. If the path includes
the expanded vertex, we can do the same thing as we did in the previous case since we established that the
new vertices are still connected to one another.

The final case is the one where both edges removed are in the 3-cycle. In this case, we will have two of
our new vertices connected to one another via an edge and the third new vertex, call it u that is not incident
with the other two. In G, we can consider the path that we would take if we removed the edge connecting
the expanded vertex to the only vertex that u is still incident with after the edge cut. That is, looking at
Figure 6, we consider the path we would take if we removed the pink edge.

Then, to find a path where no more than one vertex is one of the new vertices, we can take the original
path from G, and if we arrive at the new section, we can go to the new vertex connected to the old vertex.
Then we can go from there to a new vertex that connected to the vertex that followed the expanded vertex
in G. If both vertices are in the new vertices and are directly connected by an edge, we are done. Otherwise,
we know that each of the new vertices is connected to one of the vertices in G. Then we can take the path
described above to get to the other vertex.

In every case, removing 2 edges of G′ produces a connected graph. Thus, G′ is 3-edge connected.

Notation 3.11. Define the following graphs as members of some set of graphs B3 : Starting with K4, perform
triangle vertex expansion on one vertex. Note that the choice of vertex does not impact the resulting graph
since K4 is a complete graph and thus any vertex we select will result in isomorphic graphs. Then, we can
conceptualize this as two sections, one from the expansion and one from the original graph. Expand the
same number of times in each section of this graph.
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Figure 6: If we expand the red vertex in the right graph and then consider the two edge cut shown on the
left, we consider paths in the graph on the left that do not require the vertical pink edge.

Theorem 3.12. The Cheeger constant of any G = {V,E} ∈ B3 will be

2

|V |
.

Proof. Note that by the above theorem, we have that all graphs in this family are 3-edge connected. Then
clearly a 3-cut will be the minimum needed to separate the graph. Then we can see, by the construction of
the graph, that there is a 3-edge cut that separates the new section from the old section. Since we started
out with 3 vertices on each side, we add the same number of vertices to each side, and each vertex is of
degree 3, we are dividing the volume of the entire graph in half when we perform the 3-edge cut. Then
we have maximized the denominator and minimized the numerator of the fraction that forms the Cheeger
Constant candidate. That is to say, we have found an edge cut that must result in the Cheeger Constant.
Then our Cheeger Constant is

3
1
2 · 3 · |V |

=
2

|V |
.

4 Tying Painted Crushtaceans Back to the Associated Polyhedra

Using the previous section on k-edge cuts in painted triangle vertex expansions of K4, we can note a pattern
and make a generalization. Each pretty edge cut corresponds to a surface in H3 that cuts the associated
manifold. Moreover, we can find the area of this cutting surface. Each k-edge cut corresponds to some k
punctured sphere. For this k pretty edge cut, we will call the number of painted edges n. This n corresponds
to the number of crossing disks that will be needed to complete the cutting of our manifold. Then, since we
know that the area of a k punctured sphere is 2(k − 2)π and the area of a crossing disk is 2π, we find that
the area of the cutting surface is

n(2π) + 2(k − 2)π.

This cutting surface is valuable due to the method by which we find the Cheeger Constant of a manifold.

Definition 4.1. Let C be some surface in H3 that cuts a manifold M into two pieces. Then the Cheeger
Constant of the manifold M is the minimal

A(C)

min{V (A), V (B)}

where A(C) is the area of our cutting surface, V (A) is the volume of one of the pieces, and V (B) is the
volume of the other piece.
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Figure 7: Painted Crushtacean of the Borromean Rings

Let’s consider an example family of graphs discussed in Theorem 3.8. We can find the Crushtacean of
the Borromean Rings as shown in Figure 7.

In Figure 7, we can perform a pretty edge cut consisting of 4 unpainted edges that gives us subgraphs with
half of the volume of the graph each. Interestingly, we find that the corresponding cut in the corresponding
manifold also divides the volume in half. In this case, the reason for this comes down to what we see in the
circle packing of the Borromean Rings. The circle packing of the Borromean rings can be seen in Figure
3. The 4 edge cut corresponds to a 4 punctured sphere. When we form the manifold that corresponds to
this circle packing, we can see that we are cutting along a surface across which our octahedron has reflective
symmetry. This is because the surface passes through each vertex in the circle packing that corresponds to
the edges we cut. The only surface to go through each of these vertices is the surface across which we have
reflective symmetry. Since we have this reflective symmetry across our cutting surface, the cut in H3 that
corresponds to our four edge cut divides the volume of our manifold in half. In [2] Purcell’s use of central
subdivision in the nerve corresponds directly to our use of triangle vertex expansion in the Crushtacean.
Purcell finds that each central subdivision in the nerve results in two additional octahedra in the associated
manifold. For more details, see section 3.3 of [2]. Since all regular ideal octahedra have the same volume,
and since for the family of graphs described in Theorem 3.8 we perform triangle vertex expansions on either
side of our edge cut, we have a family of graphs for which a 4 punctured sphere can divide the volume of the
associated manifold in half. Note that this is assuming that we use the obvious matching when we perform
triangle vertex expansions, since otherwise we may need to use a 4 punctured sphere together with some
crossing disks to cut our manifold.

From here, we can determine an upper bound on the Cheeger Constant of the manifolds associated
with FALs that correspond to a graph in the family from Theorem 3.8. Since we perform triangle vertex
expansions in pairs, we will add 4 octahedra to our manifold each time we perform a pair of triangle vertex
expansions. Moreover, since each regular ideal octahedron has the same volume, call it v8, we find that the
following is an upper bound on the Cheeger Constant of our manifold that results after n pairs of triangle
vertex expansions

4π

min{V (A), V (B)}
.

However, V (A) = V (B) and are half the volume of the total manifold. Since the total manifold is comprised
of 4n+ 2 octahedra, we can then find that our upper bound becomes

4π
1
2 (4n+ 2)v8

=
4π

(2n+ 1)v8
.

5 Future Work

We explored some elements of how the Cheeger Constant of a Crushtacean could relate to the Cheeger
Constant of the FAL, but there are a few other questions to consider:
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1. Is there an upper or lower bound on the Cheeger Constant of the FAL in terms of the Cheeger Constant
of the FAL?

2. Given some Crushtacean, can we determine the type of surface that would produce the optimal cut
that gives us the Cheeger Constant in the FAL?

3. We only considered FALs in depth that were triangle vertex expansions on K4. How do they behave
when we allow other types of graphs?

4. Removing the necessity to start with K4, can we define families of Crushtaceans that have a certain
formula for their Cheeger Constant or a bound on their Cheeger Constant?

5. Can we find other interesting operations on trivalent graphs that give us some relationship between
the Cheeger Constant of the parent graph and the resulting graph?
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