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Abstract

One way to simplify complicated hyperbolic links is through belted
sum decompositions. Belted sum decompositions separate hyperbolic
link complements into simpler pieces which in turn create more tractable
geometry. Belted sum decompositions of Fully Augmented Links (FALs)
are understood. This project extends known results on belted sum de-
compositions of FALs to a more general class of links, called nested
links. In particular, a classification of belted sum prime nested links is
given by analyzing 3ps in their complements.

1 Introduction

There are many important concepts in Knot Theory but this paper will only
look at Fully Augmented Links, better known as FALS, and Nested Links,
which are a subclass of generalized FALS. A knot can be thought of as pick-
ing up a string with two ends, twisting and turning it, and then gluing the
two end pieces together. A series of tangles and crossing will most likely
occur and this is called a knot. A link is just multiple knots that are con-
nected together. An FAL is a link where every twist of two strands in the
knot circle are augmented via a trivial component called a crossing circle.
Figure 1 illustrates this notion of augmenting all the twist regions and being
left over with either half twist or no twist in all the twist regions.
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Figure 1. The original link diagram (Top). Placing the trivial crossing
circle components on each twist region (Middle). Aftermath of untwisting
each twist region (Bottom).

2 FALs, Generalized FALs, and Nested Links

One can view a link complement as the stuff that is left over if a worm
entered an apple and ate a maze within the apple. If a link has a hyperbolic
metric, it is said to be a hyperbolic link. FALs is one example of a hyperbolic
link. Another example of a hyperbolic link is a generalized FAls, also know
as GFALs. GFALs are similar to FALs in the sense that they both are fully
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augmented. However, GFALs are different from FALs because they can have
more than two strands per twist region. This paper will focus on a specific
type of GFALs called nested links. For more detail concerning FALs and
how augmentation works, refer to John Harnios’ 2015 paper [5]. Nested
links get their name from the idea of nesting one crossing circle into the
same plane as another crossing circle. The nested crossing circle becomes
a crossing circle puncture for the larger crossing disk. When dealing with
nested links, there are exactly 3 ways for any crossing disk to have its two
punctures:

• Two knot circle punctures

• Two crossing circle punctures

• One knot circle puncture and one crossing circle puncture

Figure 2. GFALs (Left). Nested Link (Right).
More detail can be found in Harios’ paper [5].

3 Belted Sum Decomposition

A BSD occurs when a link diagram can be split into two separate parts.

Figure 3. Link diagram with one crossing circle (Top). The two separate
components that result from the act of slicing and gluing along the

crossing disk (Bottom).
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Link diagrams can be useful to view in some scenarios, but at other times
it can be better to have a different perspective. Cell decompositions offer
different perspective on the link diagram that can potentially shed light on
something that would have otherwise been difficult to notice. Cell decom-
positions first work by creating what is known as a ”pita-bread” slice and
”bow-tie” configuration. Then, shrink each knot circle into their own point
and notice where the regions are at. Changing the unshaded regions into
circle packings and shaded regions into shaded triangles is known as the
circle packing. Regions should be more clear with their circular shapes and
the last step is determining the crushtacean. The crushtacean can be deter-
mined by putting a vertex in the center of each unshaded region in the circle
packing. Then connect each vertices through points of tangency. The final
product is the crushtacean. Shaded edges in the crushtacean correspond to
crossing circles in the link diagram. These steps can all be seen in Figure
4-6.

Figure 4. Original link diagram (Top). Aftermath of pita-bread slice and
bow-tie configuration (Bottom Left). Shrinking all edges to a single point

(Bottom Right).

Figure 5. Bottom right of figure 4 (Left). Vertex in center of all shaded
regions and placing an edge piece through all points of tangency (Right).
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Figure 6. This is the painted crushtacean of our original link diagram.
Note that the blue painted edges correspond to the crossing circles in our

original link diagram.

Olson defines a specific type of crushtacean called a edge symmetric forest
as ”An edge-symmetric graph is a connected graph such that for one edge
a, each edge b1 is related to one edge b2 by symmetry about a. An edge-
symmetric spanning forest is a spanning forest such that each tree is an
edge-symmetric graph” [4].

Figure 7. Example of a edge symmetric forest.

The red painted edge is called the edge of symmetry as everything can be
thought as revolving around it. Both the green and blue painted edges are
called leaves of the tree. The two yellow painted edges are simply two sep-
arate crossing circles. If there was a painted edge between either the red
painted edge and the green or blue painted edges, that newly added painted
edge is said to be interior to the tree.

Lemma 3.1 The edges in a non-trivial 3-edge-cut are incident with dis-
tinct vertices.

Non-trivial implies all can’t go to same vertex or else a trivial, non-hyperbolic
3-edge-cut occurs. If two vertices are connected there now exist a 2-edge-cut
which is also not hyperbolic.
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Lemma 3.2 In a trivalent graph,

2e =
∑

degrees of vertices = 3v

Make the RHS into 1 vertex. This is a trivalent graph so there are even
number of total vertices. Since RHS is odd, LHS must also have an odd
total number of vertices. Mirror proof to show why RHS must have an odd
total number of vertices. Thus there must be a odd total number of vertices
in both RHS and LHS.

To understand the similarities and differences of having two separate
components in either the link diagram or crushtacean, it is important to
know what is going on behind the scene.

Figure 8.

Given the crushtacean, it is possible to go straight to the circle packing.
By sending the blue vertex to infinity it forces the outer edges of the P+/−
diagram to be blue. The non-standard 3-edge-cut results in two pieces.
However, when gluing the shaded triangles to their corresponding colors,
it connects the two together and thus only one component. The P+ green
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triangle on the left glues to the P+ green triangle on the right. Ultimately
resulting in one piece and is not a valid BSD. Connecting this back to the
crushtacean, this did not form a valid SD because there was more than one
pair of associated vertices in different sides of the non-standard 3-edge-cut.

Figure 9.

Figure 9 offers a visual of slicing along a crushtacean with a non-standard
3-edge-cut and failing to form a valid BSD. In regards to the crushtacean, it
is not a valid BSD because there is more than one pair of associated vertices
in two separate components. In regards to the link diagram, it is not a valid
BSD because it does not separate the link diagram into two components.
The opening from the green and blue crossing disks prevent it from being a
valid BSD because one could travel through the path that is left open with
these two crossing circles.

Figure 10.

Figure 10 offers a visual of slicing along a crushtacean with a non-standard 3-
edge-cut and succeeding to form a valid BSD. In regards to the crushtacean,
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it is a valid BSD because there is exactly one pair of associated vertices in
two separate components. In regards to the link diagram, it is a valid BSD
because it does separate the link diagram into two components. The two
components are the outside and inside of the non-standard 3ps.

4 Belted Sum Decompositions of Nested Links

Pairing Non-Standard 3PS with a Standard 3PS

4.1 Once-Painted 3-Edge-Cut

Theorem 4.1 A 3ps corresponding to a once-painted 3-cut pairs with a
standard 3ps to form a valid BSD iff it is not interior to a tree.

Let G be a planar trivalent graph where one 3-edge-cut has exactly one
painted edge. Then there are 3 ways for any graph to have a painted edge:

CASE 1: The painted edge is the entire tree.

CASE 2: It is a leaf of a larger tree.

CASE 3: It is interior to the tree, not a leaf.

We will look at each case one at a time, starting with case 1. Now con-
sider the link that is associated to this graph.

The only possible pair of vertices that could be on two different compo-
nents are the corresponding vertices on the painted edge. Thus, the only gap
that could ever form must be made from the painted crossing disk. However,
we can simply choose our standard 3ps to be the crossing disk associated
with the painted edge. This will close the gap created from the non-standard
3ps and will create a valid belted sum decomposition.

Figure 11. The painted edge is the entire tree.
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Case 2 looks at if the painted edge is a leaf in a tree. Now consider the
link that is associated to this graph. By definition, since the painted edge is
a leaf in a tree then the painted edge is a 3ps with one longitudinal crossing
disk puncture and two knot circle punctures. This means that there cannot
be any other crossing disk nested within the painted edge. Thus it follows,
the only possible pair of vertices that could be on two different components
are the corresponding vertices on the painted edge. Thus, the only gap that
could ever form must be made from the painted crossing disk. However, we
can simply choose our standard 3ps to be the crossing disk associated with
the painted edge. This will close the gap created from the non-standard 3ps
and will create a valid belted sum decomposition.

Figure 12. The painted edge is a leaf of a larger tree.

Now let us consider case 3. The painted edge is interior to the tree, not
a leaf. Now consider the link that is associated to this graph. Since the
painted edge is not a leaf on a tree, that means that it has at least one
crossing circle puncture. This one crossing disk will have two vertices, one
in each component. It is now known that a valid BSD must have one pair of
associated vertices that are in different components. However, we know that
the interior painted edge will give us one pair of associated vertices that are
in two different components and we get at least one more pair of associated
vertices in two different components from the one crossing circle punctures
in the interior painted edge of the tree.

Figure 13. The painted edge is the edge of symmetry.
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Figure 14. The painted edge is interior to the tree.

4.2 Twice-Painted 3-Edge-Cut

Theorem 4.2 A 3ps corresponding to a twice-painted 3-cut pairs with a
standard 3ps to form a valid BSD iff the two painted edges are adjacent to
each other.

Recall that there exist a 2-edge-cut when at least two edges in a 3-edge-
cut share a vertex. This is bad because it allows for either a trivial cut to
occur or it forces the link to be non-hyperbolic. Thus, we continue with this
in mind and force all edges to have distinct vertices. Since we won’t con-
sider any cases where the edges in 3-edge-cut are connected, we only need
to look at the cases when the edges in 3-edge-cut are not connected. We are
then split into two scenarios. Either both painted edges in our twice-painted
3-edge-cut are the same color or they are different colors.

Figure 15. Twice-painted 3-edge-cut with two different colors.

10



Figure 16. Twice-painted 3-edge-cut with same color.

Let us first tackle on the scenario when both painted edges are the same
color. Since both painted edges are the same color, we know that color can-
not be the edge of symmetry. Since we know the that cannot be the edge
of symmetry, the edge of symmetry must be in one of the two components.
WLOG, assume it is on the left component. Since the edge of symmetry is
on the left side we have at least 2 vertices on the left. The only way we can
add more vertices is by either having more leaves, we can add more vertices
is by either having more leaves, interiors, and/or other trees in the form of
crossing circles. However, both painted edges in our twice painted 3-edge-
cut are taken. This means there cannot be a painted edge that travels from
one component to the other. Thus, any other vertex on the left must also
have its corresponding vertex on the left side as well. This means we have
a minimal of 2 the left side as well. This means we have a minimal of 2
vertices and we add in vertices in sets of 2, thus the total number of vertices
on the left component will always be even. However, this is a contradiction
to Lemma 3.2 and thus a valid BSD cannot form.

Figure 17. Both painted edges are the same color.

Now consider the scenario when the two painted edges in the 3-edge-
cut are different colors. Recall that different colors corresponds to different
crossing circles. If it is possible to form a VBSD, both crossing circles are
in the same nesting which implies both edges are in the same tree. Since
we know they are in the same tree there are now two possible sub-cases to
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look into. The first sub-case is when the vertices that corresponds to each of
the painted edges in the 3-edge-cut are in the same component. The second
sub-case is when they are in different components. However, the only way
for this to happen is if each painted edge in our 3-edge-cut is in its own
tree. However, this is impossible for the reasons we stated earlier. Thus,
the only sub-case we shall look at is when the vertices that correspond to
the painted edges in the 3-edge-cut are in the same component. There are
now two things to consider with this sub-case, whether or not the painted
edges in the 3-edge-cut are edges of one another.

Figure 18. Painted edges are different colors and on separate trees

Assume the painted edges in the 3-edge-cut are not edges of one another.
We already know that neither of the two can be the edge of symmetry so
they are each have a choice of being interior or a leaf. Since neither of these
two painted edges can be the edge a symmetry that means the edge of sym-
metry must be in one of the components. WLOG, assume it is on the right.
We also know that one of these painted edges must be further away from the
edge of symmetry in terms of number of edges. WLOG, assume the middle
painted edge from the 3-edge-cut is further away from the edge of symme-
try. Since the edge of symmetry is on the right component and the middle
painted edge in our 3-edge-cut is further away from the edge of symmetry,
we know that the top painted edge in the 3-edge-cut has at least one painted
edge that is placed directly after it and before the painted- painted in the
3-edge-cut that is further away from the edge of symmetry. This fact forces
it to be impossible to form a VBSD because we get at least two pairs of
corresponding vertices that are in two different components. Once from the
painted edge in the 3-edge-cut that is closer to the edge of symmetry and one
from the painted edge that separates the two painted edges in the 3-edge-cut.
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Figure 19. Different colors and on same tree but are not adjacent to each
other.

Now assume the painted edges in the 3-edge-cut are edges of each other.
This means the painted edge from the 3-edge-cut that is further away from
the edge of symmetry has both of its vertices on the left component. The
painted edge from the 3-edge-cut that is closer to the edge of symmetry will
have one edge in each component. Now we can simply choose our standard
3ps to be the crossing disk that is associated with the painted edge in the
3-edge-cut that is closer to the edge of symmetry.

Figure 20. Different colors, on same tree, and are adjacent to each other.

4.3 Thrice-Painted 3-Edge-Cut

Theorem 4.3 A 3ps corresponding to a thrice-painted 3-cut pairs with a
standard 3ps to form a valid BSD iff the 3-edge-cut has two different colors
(2 same and 1 diff) and the single different colored edge is a leaf.

Thrice-painted 3-edge-cut has exactly two main cases that each have
multiple sub-cases. The first main case is when two of the painted edges in
the 3-edge-cut are the same color and the last painted edge in the 3-edge-cut
is a different color. The second main case is when all three painted edges
in the 3-edge-cut are different colors. Note that it is impossible to have all
three painted edges in the 3-edge-cut be the same color because there are
only two sides to each crossing disk, front or back.
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Figure 21. Thrice-painted 3-edge-cut with two same colors and one
different color.

Figure 22. Thrice-painted 3-edge-cut with three different colors.

The first main case forces one condition. The edge of symmetry must be
on either one of the components and cannot be the last painted edge in the
3-edge-cut. This now breaks down the first main case into two sub-cases.
The first sub-case is when the last painted edge in the 3-edge-cut is not
connected to the tree associated with the two same painted edges in the
3-edge-cut. The second sub-case is when it is connected.

Starting off with the first sub-case, it is known that the edge of symmetry
for the tree associated with the two same colored painted edges in the 3-
edge-cut is in one of the two components. WLOG, let the edge of symmetry
be on the left component. Any vertices before the two same colored painted
edges in the 3-edge-cut will have its mate also on the left component. Any
vertices after the same colored painted edges in the 3-edge-cut will have its
mate also on the right component. Now that the different colored painted
edge in the 3-edge-cut has its own tree it is important to note that a valid
BSD will only form if the different colored painted edge in the 3-edge-cut is
a honest to goodness FAL crossing disk. When this occurs, we can simply
choose the standard 3ps to be the crossing disk associated with the different
colored painted edge in the 3-edge-cut. If the different colored painted edge
in the 3-edge-cut is not an honest to goodness FAL crossing disk that means
that it has at least extra one pair of painted edges on both sides that would
total everything up at least 2 pairs of corresponding vertices that are in
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different components.

Figure 23. 2 same colored, 1 different colored, and separate trees.

Looking at the second sub-case the same condition of the edge of sym-
metry being in one of the components is also true. WLOG, assume the edge
of symmetry is on the left component. A VBSD will only form if the dif-
ferent colored painted edge in the 3-edge-cut is an honest to goodness FAL
crossing disk. This can be shown by the same reasoning from the previous
sub-case.

Figure 24. 2 same colored, 1 different colored, and same trees.

To start off on the case when all three painted edges in the 3-edge-cut
are different color it is important to note that all painted edges must be
on the same tree. It is also important to note that all the painted edges
in the 3-edge-cut must have distinct vertices and cannot connect with each
other. This forces the middle painted edge in the 3-edge-cut to be the edge
of symmetry. However, it has been shown that there must be at least one
more painted edge in between the middle painted edge in the 3-edge-cut and
with each of the remaining painted edges in the 3-edge-cut. However, this
forces at least two more pairs of corresponding vertices to be in two different
components. The total number of corresponding vertices in different com-
ponents is at least 3, one from the edge of symmetry and at least two from
the painted edges that connect the middle painted edge in the 3-edge to the
remained painted edges in the 30-edge-cut. This minimum of 3 clearly fails
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from the fact that there has to be exactly pair of corresponding vertices in
two different components.

Figure 25. 3 different colored edges and same tree.

5 OPEN QUESTIONS

When will a once-painted non-standard 3-edge-cut pair with a non-standard
3ps to form a valid BSD? (Look at Madison Howard’s paper)

When will a twice-painted non-standard 3-edge-cut pair with a non-standard
3ps to form a valid BSD? (Look at Madison Howard’s paper)

When will a thrice-painted non-standard 3-edge-cut pair with a non-standard
3ps to form a valid BSD?
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Rolly sleeping next to me as I’m typing this paper. I bet he is
dreaming of FALS and Nested Links!!! :)


