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Abstract

The algebraic symmetries of the Riemann curvature tensor are well-known, and can be replicated
on a finite-dimensional vector space as algebraic curvature tensors. In this paper we investigate the
symmetries of the Riemann curvature tensor using methods from combinatorics and finite group theory.
We motivate the use of representation theory to study and generalize these symmetries. In Section (3) we
study the role of idempotent elements of the group algebra of a finite group, and how they provide elegant
ways to project onto spaces of tensors having certain symmetries. We then shift attention to studying a
certain generalization of curvature tensor symmetries to higher rank tensors called the Kulkarni-Nomizu
algebra, which has the structure of a graded, commutative algebra. We generalize the construction of
the Riemann curvature tensor from the metric, to provide a homogeneous map on the Kulkarni-Nomizu
algebra which raises degree, and takes into account the interesting symmetries of these tensors. Finally,
we examine the Kulkarni-Nomizu bundle on a smooth manifold, and the possibility of connecting these
findings to a variant of de Rham cohomology on the Kulkarni-Nomizu bundle.

1 Geometric Background

One goal of this paper is to classify algebraic curvature tensors. These are the algebraic analogies to the
Riemann curvature tensor on a Riemannian manifold. The source used for all of the geometric background
provided here is Lee’s [6]. The Riemann curvature tensor is constructed on a manifold (M, g) with smooth
metric g, and is a (0, 4)-tensor on each tangent space. Its explicit form is

Rm(X,Y, Z,W ) = g(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W ),

Where ∇ is an affine connection on (M, g).

Equivalently, we define a (1, 3)-tensor R by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

and then write

Rm(X,Y, Z,W ) = g(R(X,Y )Z,W ).

Meanwhile, algebraic curvature tensors on a vector space V are tensors R ∈ V ⊗4 that satisfy all of the
symmetries of the Riemann curvature tensor on a manifold.

The first symmetry of the tensorfield Rm is that

Rm(X,Y, Z,W ) = −Rm(Y,X,Z,W ).
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This is simply because the term

∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

is alternating in X and Y , since the Lie bracket, [X,Y ] = −[Y,X] is also alternating in X,Y , and the terms
involving ∇X ,∇Y acquire a negative sign when we reverse the order of these variables. So our algebraic
curvature tensor R should also satisfy:

R(x, y, z, w) = −R(y, x, z, w).

This is the only symmetry of the tensor field Rm that doesn’t exploit extra facts about the Levi-Civita
connection. The properties of the Levi-Civita connection are what uniquely determine it with respect to the
metric g on M , and give us two additional symmetries.

Definition 1.1. A connection ∇ on a manifold M is called torsion-free if for all vectorfields X,Y on M ,

∇XY −∇YX = [X,Y ].

Definition 1.2. A connection ∇ on a manifold M with metric g is called g−compatible if

∇g = 0

⇐⇒ ∇Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ),

for all vector fields X,Y, Z.

Definition 1.3. With these definitions in mind, a Levi-Civita connection on (M, g) is a torsion-free,
g−compatible connection ∇.

In fact, the Fundamental Theorem of Pseudo-Riemannian Geometry says that for any inner product g on
M , there is a unique Levi-Civita connection with respect to g.

When ∇ is g-compatible, we get the following symmetry of the Riemann curvature tensor:

Rm(X,Y, Z,W ) = −Rm(X,Y,W,Z),

so that Rm is alternating in Z and W .

When ∇ is torsion-free, we get the following symmetry:

Rm(X,Y, Z,W ) +Rm(Y,Z,X,W ) +Rm(Z,X, Y,W ) = 0,

which we call the the Bianchi Identity in X, Y , and Z.

Note that both of these symmetries are actually equivalent to each of the respective conditions on ∇. The
proof of the Bianchi identity is not too hard to show once you know the Jacobi identity for the Lie bracket:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

The full symmetries of the Riemann curvature tensor are thus all the symmetries generated by

Rm(X,Y, Z,W ) = −Rm(Y,X,Z,W ) = −Rm(X,Y,W,Z),

Rm(X,Y, Z,W ) +Rm(Y,Z,X,W ) +Rm(Z,X, Y,W ) = 0.

This includes a few other important symmetries:
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Lemma 1.1. The Riemann curvature tensor has swap symmmetry:

Rm(X,Y, Z,W ) = Rm(Z,W,X, Y )

This swap symmetry is actually a very useful symmetry of Rm and something we might want to salvage
even in the absence of the Bianchi identity, but more on that later. See [6] for a proof of this fact.

Lemma 1.2. The Riemann curvature tensor has Bianchi identity with respect to any three variables.

This removes some of the arbitrariness of the Bianchi identity, namely the fact that it involves the first three
variables.

An algebraic curvature tensor on a vector space V is then any (0, 4)-tensor with all three of the important
symmetries of the Riemann curvature tensor:

R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z),

R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0.

Note that all the symmetries generated by these still apply. Namely, R has swap symmetry as well as Bianchi
symmetry with respect to any three variables.

2 Representation Theory

It is useful to develop elegant language for talking about symmetries, especially symmetries of tensors
and tensor fields. The language most mathematicians use to describe symmetry is group theory, and the
language we use to describe symmetries of vector spaces is representation theory. A good reference for
representation theory, from which much of this discussion is sourced, is Fulton and Harris’ [3].

Definition 2.1 (Group Representation). Let G be a group. A representation of G is a vector space V
together with a homomorphism

% : G −→ GL(V ).

Equivalently, a representation of G is an action of G on a vector space by linear automorphisms, i.e. and
action Gy V, such that

g(v + w) = gv + gw,

g(cv) = cg(v), forallc ∈ F,

where F is the underlying field, which we will assume throughout is R or C. We usually suppress the
homomorphism % and think of representations as actions. Even though a representation of G is really a pair
(V, %), we often simply say % is the representation of G, and the underlying vector space V is sometimes
called the representation space of %, but is also called a representation of G itself. For abbreviation’s
sake, we sometimes refer to representations of G as “reps” of G or say that % or V is a “G−rep.”

Example 2.1 (Permutation Representations). Let G be any finite group and X any finite set with a G-
action, G y X. Let V = FX be the vector space spanned freely by X, so that V has a basis of the form
ex for x ∈ X. Then V is called the permutation representation over X, and the G−rep structure is
defined by:
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gex = egx.

More generally, a permutation representation of G is a rep V such that G permutes a basis of V .

Permutation representations are important for constructing examples of representations of groups, but not
every representation arises this way (The alternating representation of the symmetric group, which we will
discuss later, is not of this form).

Example 2.2 (The Regular Representation). Any finite group G naturally acts on a finite set, namely,
G y G by right multiplication. The permutation representation associated to this action is called the
regular representation of G. Explicitly, this is FG with the rep structure given by

geh = eg·h.

The regular representation, although it seems even more specialized permutation representation, is actually
the most important representation of G in a few ways. Not only does it contain all the basic (irreducible)
representations of G, but it also carries the structure of a ring, or really an algebra over F. This algebra
describes every representation of G through its universal property. We will present these facts in a moment.

Example 2.3 (Permuting Tensors). Return to algebraic curvature tensors. These are tensors in V ⊗4 defined
by a set of equations:

R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z),

R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0.

The space of these tensors is constructed out of a permutation representation as follows. Notice that each
equation involves permuting the variables x, y, z, w in some way, then adding signs or summing over per-
mutations. Permutations of these variables form a finite group, the symmetric group on four letters S4. In
general, the symmetric group on k letters Sk acts on V ⊗k in the same way: for σ ∈ Sk, define

(σT )(v1, v2, ..., vk) = T (vσ(1), vσ(2), ..., vσ(k)).

Then V ⊗k forms a representation of the symmetric group Sk. Note that the representation space of this rep
is not V , and Sk might not act on V itself, but it does act on V ⊗k in this manner. This is a permutation
rep of Sk: If e1, ..., en ∈ V is a basis for V , then there is a basis for V ⊗k consisting of elements of the form

ei1...ik = ei1 ⊗ ei2 ⊗ ...⊗ eik ,

where each i1, ...ik ranges from 1 to n. It is easy to see that Sk permutes these basis elements:

σei1...ik = eiσ(1)...iσ(k) .

Another way to express this as a permutation rep is to consider the set X = [n][k] consisting of functions I
from a set of k elements [k] to a set of n elements [n]:

[n][k] = {I : [1, 2, ..., k] −→ [1, 2, ..., n]},

I = (i1, i2, ..., ik) ∈ [n]k.

Then Sk acts on [n][k] by precomposition,
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σI = I ◦ σ = (iσ(1), iσ(2), ..., iσ(k)),

and if V has dimension n, then the basis for V ⊗k consisting of ei1...ik is indexed over the set [n][k], and the

two representations V ⊗k and F([n][k]) agree.

Definition 2.2 (Subrepresentation). Let V be a representation of a finite group G. A subrepresentation
of V is a vector subspace W ⊆ V which is carried into itself by the action of G. This means that for all
g ∈ G,

w ∈W =⇒ gw ∈W.

Notice that a subrep of V is actually a representation of G itself, with the G−rep structure being the one
inherited from V . We consider the rep W to be a “smaller” representation hiding inside the rep V .

Lemma 2.1 (Complete Reducibility). Let V be a representation of G, and let W be any subrepresentation
of V . Then there is a unique complementary subrepresentation W ′ of V such that W ∩ W ′ = {0} and
W +W ′ = V . Equivalently, V = W ⊕W ′ splits as a direct sum of G−reps.

Proof. There are two standard proofs of this fact, both of which rely on the idea of G−averaging, and can
be found in [3] but are paraphrased here to emphasize some of the ideas used. The first proof uses this to
find a G−invariant inner product: this is an inner product 〈·, ·〉 : V × V −→ R such that

〈gv, gw〉 = 〈v, w〉

For all v, w ∈ V . To do this, first take any inner product 〈·, ·〉 on V . Now consider its G−average, defined
by

〈v, w〉G =
1

|G|
∑
g∈G
〈gv, gw〉.

After checking this is indeed a positive definite inner product (whenever the original inner product is positive
definite), it is easy to show it is also G−invariant:

〈hv, hw〉G =
1

|G|
∑
g∈G
〈ghv, ghw〉 =

1

|G|
∑
g′∈G
〈g′v, g′w〉 = 〈v, w〉G,

since multiplying by h simply permutes terms in the sum and the total is unaffected. Now with respect to
any G−invariant inner product on V , and for W any subrep, take

W ′ = W⊥ = {w′ ∈ V |〈w′, w〉 = 0∀w ∈W}

to be the orthogonal complement with respect to this inner product. Then V = W ⊕W ′ as vector spaces,
and W ′ is a subrep of V : for all w′ ∈W ′ and w ∈W ,

〈gw′, w〉 = 〈g−1gw′, g−1w〉 = 〈w′, g−1w〉 = 0

because g−1w ∈W, and so gw′ ∈W ′.

The other proof of this fact relies on a statement from ordinary linear algebra: If W is simply a subspace of
a vector space V , then there is a (non-unique) function P : V −→ V called a projection onto W that satisfies
any one of the following equivalent properties:
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• The image of P is all of W and P ◦ P = P.

• P : V −→ W and if iW : W ↪→ V is the inclusion of W into V , then P ◦ iW = 1W : W −→ W is the
identity function on W.

• The image of P is W and the restriction of P to W is 1W .

• P(v) = v if and only if v ∈W , and if W ′ is any complementary vector subspace, then P(W ′) = {0}.

The important algebraic equation to notice here is that P ◦ P = P. When we consider P ∈ End(V ) as a
matrix, we can rewrite this as P2 = P. Elements of an algebra satisfying the equation e2 = e are called
idempotent and play an important role in the theory.

Now with some P defined, consider 1 − P. This element is also idempotent, and is a projection onto some
complementary subspace W ′, V = W⊕W ′. Averaging 1−P over G, we obtain a G− equivariant projection
onto some subspace W ′′. Now we can check that this new subspace is also subrep, and is complementary to
W. �

There are two important things to notice in this proof:

• Sums of the form
1

|G|
∑
g∈G

gv, and

• Idempotent (projection) operators.

In the next section, we elaborate on these averaging methods and their significance. First, a corollary.

Definition 2.3. An irreducible representation is one which has no proper nonzero subrepresentations.

Corollary 2.1.1. Every representation of G splits as a direct sum of irreducible subrepresentations.

Proof. Let V be a vector space of dimension n. If V contains a nonzero proper subrep W, let W ′ ≤ V be the
complementary subrep. Then V = W ⊕W ′. Now since both W,W ′ are nonzero and dim(V ) = dim(W ) +
dim(W ′), we can apply induction on the dimension of the representation. The trivial one-dimensional
representation is already irreducible. �

3 The Group Algebra

We have seen that “averaging” over elements of G in some representation can prove useful. These averages
are always well-defined in characteristic zero: if V is any representation of any finite group G, and v ∈ V
any vector, the quantity

1

|G|
∑
g∈G

gv

always makes sense. In fact, expressions that look like

∑
g∈G

agg,

for any coefficients ag ∈ F, always make sense, without even appealing to elements of V , since these are just
linear combinations of endomorphisms of V , and have a well-defined action as an endomorphism of V . Now
return to
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FG = {a : G −→ F}.

Adopting the basis {δg | g ∈ G} defined by

δg(h) = 0, h 6= g,

δg(g) = 1,

we can say that any expression of the form

∑
g∈G

agg

is really a vector in the regular representation:

∑
g∈G

agδg.

The multiplicative structure on FG is defined to agree with the multiplicative structure on G:

δgδh(v) = δgh(v)

And it should extend by linearity to any elements of the regular representation:

∑
g∈G

agδg

(∑
h∈G

bhδh

)
=
∑
k∈G

∑
gh=k

agbh

 δk.

This agrees with the action of the regular representation on G−reps: For any a, b ∈ FG,

a(b(v)) = ab(v).

Definition 3.1. The regular representation, together with the multiplicative structure

∑
g∈G

agδg

(∑
h∈G

bhδh

)
=
∑
k∈G

∑
gh=k

agbh

 δk,

is called the group algebra of G, and is denoted F[G]

Lemma 3.1 (Universal Property). There is a natural correspondence between group homomorphisms
from G to the group of invertible linear transformations GL(V ) and algebra homomorphisms from the
group algebra F[G] to the algebra of linear transformations End(V ).

Proof. Any vector space V with the structure of a G−rep can be extended linearly to a F[G]−module as
described:

∑
g∈G

agg

 v =
∑
g∈G

agg(v),
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and conversely any F[G]−module V becomes a G−rep by restricting to the multiplicative subgroup {δg} :
define g(v) = δg(v). One can check that these operations are mutually inverse.

�

In fact, everything we can say about G−reps translates into a statement about F[G]−modules. For example,
subrepresentations are simply F[G]−submodules.

This statement is actually true replacing End(V ) with any F-algebra A, and GL(V ) with its group of units
A×. This more general result is the universal property of group rings. Thus there is a natural bijection (or
more fancily, equivalence of categories):

G−reps←→ F[G]−modules.

We know that any G-rep decomposes as a direct sum of irreps. Thus if V is finite dimensional, there are
irreps V1, ..., Vr and multiplicities d1, ..., dr such that

V ∼=
r⊕
i=1

V ⊕dii .

Here is how the group algebra decomposes.

Theorem 3.2. Every irreducible representation of G is a subrepresentation of the group algebra F[G]. If
V is an irreducible representation, then V appears in F[G] with multiplicity dim(V ). This means that
there are only finitely many finite-dimensional irreps of G, and if V1, ..., Vr is a complete list of irreducible
representations of G, then

F[G] ∼=
r⊕
i=1

V
⊕dim(Vi)
i

as G-reps.

This theorem says that any irrep of G is actually a submodule of F[G]. But the submodules of a ring
(considered as a module over itself) are precisely the ideals of that ring (where we must specify left or right
submodules to arrive at left or right ideals, respectively). Thus we arrive at the statement that any irrep of
G is a minimal ideal of F[G]. We must specify minimal ideals because the sum of two distinct irreps of G
is also an ideal in F[G], for example.

We can actually be more specific about the decomposition above. More than just finding how F[G] decom-
poses as a G-rep, we can describe its algebra structure in terms of the irreps of G.

Theorem 3.3. If V1, ..., Vr is a complete list of irreducible representations of G, then there is an isomorphism
of algebras

F[G] ∼=
r⊕
i=1

End(Vi).

Proof. See [3]. �

This tells us about the ring structure of F[G].

Corollary 3.3.1. F[G] is a semisimple algebra.
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This is a somewhat technical condition (either being a direct sum of simple algebras, or having a Jacobson
radical equal to zero), but it is important because it highlights the role of idempotents. The following
result describes this, and for now, it can function as a definition of a semisimple algebra.

Lemma 3.4. In any finite-dimensional semisimple algebra A, every left or right ideal is generated by an
idempotent element e ∈ A :

l = Ae, or r = eA, for right ideals.

This lemma is very important to our work. These idempotent generators of ideals are also idempotent
endomorphisms of any representation of the group. Thus they are projection operators, and since they
correspond to ideals, the spaces they project onto tell us interesting things about the representation. We
should remark now that ACT(V ) is one of these spaces.

4 Algebraic Curvature Tensors

We should now apply some of the language of representation theory to the study of algebraic curvature
tensors. More generally, we will explore how the symmetries of tensors can be described through idempotents
in the group algebra.

Consider the equation

R(x, y, z, w) = −R(y, x, z, w).

The second term in this equation is in the orbit of the first term under the action of the symmetric group.
The permutation that takes one to the other is σ = (1, 2) in cycle notation. Thus we can rewrite this equation
as

σR = −R.

The second important symmetry of algebraic curvature tensors is swap symmetry :

R(x, y, z, w) = R(z, w, x, y).

The permutation here is given by τ = (1, 3)(2, 4) because we are sending x 7→ z 7→ x and y 7→ w 7→ y. We
can rewrite this equation as

τR = R.

To unify these somewhat different-looking symmetries, consider the sign of each permutation: σ is a trans-
position (2−cycle) and thus has sign −1. Meanwhile τ is the product of two transpositions so it has sign 1.
We can thus rewrite these equations as:

σR = −R = sign(σ)R,

τR = R = sign(τ)R.

The trick now is to consider this as a different rep of S4 derived in a particular manner from V ⊗4. This is a
general construction that works with any representation of any symmetric group:
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Definition 4.1 (Conjugate Representation). Let (W,%) be a representation of the symmetric group Sk.
Then the conjugate of (W,%) is another representation (W, %̄) with the same rep space W but with rep
structure given by

σ·̄w = sign(σ)σw,

or equivalently,

%̄(σ) = sign(σ)%(σ).

The conjugate representation “twists” the action of Sk by the sign homomorphism.

Returning to the equations defining the first two algebraic curvature tensor symmetries, we now write

σ·̄R = τ ·̄R = R,

That is, these permutations preserve the tensor R, but in the conjugate representation. We can show that if
elements g, h preserve some vector v in a representation, then so does any expression involving g and h, and
so do the inverses of g and h. In particular, since all these expressions fix v, the entire subgroup generated
by these elements must also fix v.

Definition 4.2 (G−fixed subrep). Let V be any representation of any group G. The subspace consisting of
vectors fixed by every element of G is called the G−fixed subspace and is a subrep of V . We use the notation

V G = {v ∈ V | gv = v ∀g ∈ G}.

The elements σ and τ defined above generate a subgroup D of S4. The statement that σ, τ fix R (in the
conjugate representation) is equivalent to R being D-fixed.

Remark 4.1. The subgroup D ≤ S4 is isomorphic to the dihedral group D4. One can check that σ2 = τ2 =
(στ)4 = 1, so at the very least D is a factor of D4, and it is not hard to find more than four elements,
showing that it is the whole dihedral group. In fact, this is the largest subgroup of S4 which acts on ACT(V )
in the permutation representation. This result, and its generalization, will be shown in the section on the
Kulkarni-Nomizu algebra.

We describe the projection onto the space of vectors fixed by a group.

Lemma 4.1. Let V be any rep of any finite group G. Then

AvG =
1

|G|
∑
g∈G

g

is projection V −→ V G.

Proof. This fact is straightforward once we consider that:

• If v ∈ V G then AvG(v) = v, because each term in the above sum is equal to v, and

• For any v ∈ V, AvG(v) is in V G. In particular,AvG is idempotent:

AvG(AvG(v)) = AvG(v),

Av2
G = AvG.
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So the two symmetries of R are equivalent to the statement that R is in the image of AvD, where D is the
subgroup generated by σ, τ as above. In fact, AvD is the projection of V ⊗4 onto the space of tensors with
alternating and swap symmetries. We can now rewrite both of these symmetries simultaneously as

AvD(R) = R.

The Bianchi identity is different from this kind of symmetry. Instead of the tensor R being fixed by some
subgroup (which we’ve shown is equivalent to it being fixed by averaging over this subgroup), R is instead
annihiliated by averaging over some subgroup. The permutation involved in the Bianchi identity cyclically
permutes the first three variables, so it is given by h = (1, 2, 3). Let

H = 〈h〉 = {1, (1, 2, 3), (1, 3, 2)}

By the theory we’ve developed, AvH is idempotent. But if R is an algebraic curvature tensor, then instead
of being fixed by AvH , we have

AvH(R) = 0,

so R is in the kernel of AvH . However, we can still rewrite this so that R is fixed by an idempotent.

Lemma 4.2. If P is an idempotent, so is 1− P, where 1 denotes the identity. If P is projection of V onto
W, then 1− P is projection of V onto some complementary subspace W ′.

Proof. Let

W ′ = Ker P.

Then 1 − P restricted to W ′ is just 1 since P vanishes. Also, 1 − P restricted to W is zero since P = 1 on
W . The proof that 1− P is idempotent is a simple calculation:

(1− P)2 = 1
2 − 2P + P2 = 1− 2P + P = 1− P.

�

Now the Bianchi identity is equivalent to R being fixed by the idempotent

1−AvH .

In order to combine this with the other two symmetries of R, we could naively say that R is fixed by the
product of these two idempotents AvD and 1−AvH . This would mean that AvD◦(1−AvH) is the projection
of V ⊗4 onto the space of algebraic curvature tensors. In order to verify that this works, we prove a lemma
regarding averaging operators over subgroups of a finite group G.

Lemma 4.3. Let G be a finite group and A be the group algebra. Let H,K be subgroups of G and AvH ,AvK ∈
A be the averages over H,K. Then AvH commutes with AvK if and only if HK = KH are commuting
subgroups. This in turn is true if and only if HK = L is also a subgroup of G, and we have

AvH ◦AvK = AvK ◦AvH = AvL.
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Proof. Write these averaging operators out explicitly and then compose them using linearity:

AvH ◦AvK = (
1

|H|
∑
h∈H

h) ◦ (
1

|K|
∑
k∈K

k)

=
1

|H||K|
∑
k∈K

(
∑
h∈H

h ◦ k),

AvK ◦AvH =
1

|H||K|
∑
h∈H

(
∑
k∈K

kh).

These two operators are equal if and only if each of the elements in each sum appears with the same
multiplicity in the other sum. But this would imply that

HK = KH

as sets, since each element of the form hk for h ∈ H, k ∈ K also appears in the form kh. Thus if the
two sums commute, then H,K are commuting subgroups, and so the product HK = L is also a subgroup,
equivalently. The converse is true if and only if each element hk appears with the same multiplicity in either
sum. However, from the general theory of finite groups, if H,K are commuting subgroups, then there are
precisely |H ∩K| ways to write any element g ∈ HK as a product g = hk with h ∈ H, k ∈ K. Thus

1

|H||K|
∑
h∈H

(
∑
k∈K

hk) =
1

|H||K|
∑
g∈HK

|H ∩K|g =
|H ∩K|
|H||K|

∑
g∈HK

g =
1

|L|
∑
g∈L

g = AvL,

Where the last equality is true because

|HK| = |H||K|/|H ∩K|

For commuting subgroups H,K.

�

Corollary 4.3.1. The above lemma is true for signed averages as well:

ĀvH ◦ ¯AvK = ĀvK ◦ ¯AvH ⇐⇒ HK = KH.

Proof. This is true because sign is a homomorphism and it distributes over products in the group algebra.
It can also be derived by considering these averages as taking place over the conjugate representation of the
regular representation, and then using the lemma. �

Now returning to the space of algebraic curvature tensors, we can apply the preceding lemma and deduce
that ¯AvD commutes with ¯AvH , where D ≤ S4 is generated by antisymmetry (1, 2) and swap symmetry
(1, 3)(2, 4), and H is generated by the 3−cycle (1, 2, 3), because these two groups commute; in fact:

DH = S4 = HD,

because D has order 8, H has order 3, and D∩H is trivial, so their product DH is a subset with 24 elements,
which is the order of the symmetric group S4, and thus must be the whole group S4. So the composition

¯AvD ◦ (1− ¯AvH) = ¯AvD − ¯AvS4

12



is idempotent, and is the projection of V ⊗4 onto the space ACT(V ) of algebraic curvature tensors. This
comes from the following lemma:

Lemma 4.4. Suppose P1 and P2 are idempotent projection operators V −→ V which project onto subspaces
W1 and W2 respectively. Suppose also that P1 and P2 commute. Then P1 ◦ P2 is also idempotent, and is the
projection onto W1 ∩W2.

Proof. This composition is idempotent when these commute:

(P1 ◦ P2) ◦ (P1 ◦ P2) = P1 ◦ (P2 ◦ P1) ◦ P2 = P1 ◦ (P1 ◦ P2) ◦ P2 = P2
1 ◦ P2

2 = P1 ◦ P2.

Thus this composition defines some projection operator. Since the image of P1 is W1 and the image of P2 is
W2, the image of P1 ◦P2 must be contained in W1∩W2. Since P1 fixes pointwise every element of W1, and P2

fixes pointwise every element of W2, their composition is the identity on W1 ∩W2. By the characterization
of projection operators from earlier, this shows that P1 ◦ P2 is the projection onto W1 ∩W2.

�

Corollary 4.4.1. The element

¯AvD ◦ (1− ¯AvH) = ¯AvD − ¯AvS4

Is indeed projection onto ACT(V ).

5 Forcing Symmetries of Tensors

We have seen how the space ACT(V ) is constructed from the two idempotent symmetry operators

ĀvD, 1−AvH

by taking their product,

ĀvD ◦ (1−AvH) = (1−AvH) ◦ ĀvD = ĀvD − ĀvS4
.

This is done because we want to consider the subspace of V ⊗4 which is fixed by both of these idempotent
operators. Since these two operators happen to commute, we can say that the projection onto this space is
simply the product (in the group algebra) or composition (as endomorphisms of V ⊗4) of the projection onto
either space. The following subsection describes methods to find the space fixed by two or more idempotents
that may or may not commute.

Consider the group algebra F[Sk]. Recall that this algebra is semisimple; this implies that every ideal is
generated by an idempotent, and that result is true for left or right ideals: any right ideal r ⊆ F[Sk] is one of
the form r = eF[Sk] for some idempotent e ∈ F[Sk], and any left ideal l ⊆ F[Sk] is one of the form l = F[Sk]e.
The converse is also true: any idempotent element e generates a right ideal eF[Sk] and a left ideal F[Sk]e
(really, any element generates such an ideal, but the important thing is that every ideal is principal, or
generated on the left or right by a single element, and we can choose that element to be idempotent). In
the language of projection operators, this says that given any semisimple algebra A, and any ideal I ⊆ A,
the projection P : A −→ I can be realized as an element of the algebra A, so that P(a) = ea or P(a) = ae
(depending on whether the ideal is left or right) for some element of the algebra e ∈ A. The fact that e is
idempotent corresponds to the fact that P is a projection operator (which are really just idempotents in an
endomorphism ring).
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However, these idempotent generators are not unique! As we will see in a moment, there are certain finite
subsets of idempotents which can describe all ideals by taking multiplicity-free linear combinations of these
idempotents, so that any ideal is generated by a sum of some collection of these; but not every idempotent
can be described in this form.

What is the purpose of all this? Consider again the space of algebraic curvature tensors as a subspace
ACT(V ) ⊂ V ⊗4. Recall that this subspace has the projection operator

e := ¯AvD ◦ (1− ¯AvH) = ¯AvD − ¯AvS4
∈ F[S4].

As a linear map V ⊗4 −→ V ⊗4, e is a projection operator; as an element of the group algebra, e is idempotent.
This means it corresponds to some right ideal

I = eF[S4] = {ea | a ∈ F[S4]}.

We constructed ACT (V ) earlier as the space of elements fixed by this idempotent, because those are precisely
the elements invariant under the symmetries we described. However, because this is an idempotent, this is
equivalent to the space of elements in the image of this idempotent:

eV ⊗4 = {ev | ∈ V ⊗4}.

But since F[S4] is a unital algebra, meaning it contains an identity element 1, this is equivalent in turn to
the image of V ⊗4 under the whole ideal I,

IV ⊗4 = {i(v) | i ∈ I, v ∈ V ⊗4}

= eF[S4]V ⊗4 = {ea(v) | a ∈ F[S4], v ∈ V ⊗4},

because the image of all of V ⊗4 under all of F[S4] is still all of V ⊗4, since the element 1(v) = v is in this
subspace for every v ∈ V ⊗4.

We have constructed the idempotent e as the product of two commuting idempotents. The image of this
product is the intersection of the images of these two idempotents; that is, the image of e is precisely all
the tensors fixed both by ĀvD as well as 1 − AvH . In order to find the intersection of the fixed sets of
noncommuting idempotents, we must develop some more theory.

Let A = F[Sk]. Really, any finite group works in place of Sk, and for most purposes, any finite-dimensional
semisimple algebra works in place of A, but we will only prove the results when A is the group algebra of a
finite group. For now, we will work only with left ideals, including possibly two-sided ideals (which are both
left and right ideals), and call them “ideals” with the understanding that they are left ideals. Everything
that we might say about left ideals can also be paraphrased about right ideals. This is because of the
anti-involutive map x∗ which extends linearly from the map

δg 7→ δg−1 .

This turns F[G] into a ∗-algebra. This means that the operation x∗ satisfies

(x∗)∗ = x,

(xy)∗ = y∗x∗,
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as well as being linear. Thus ∗ interchanges left and right ideals bijectively,

(Ae)∗ = e∗A

and is self-inverse. The ambiguity involved in exclusively discussing left ideals is resolved by this operator.

Now we develop some terminology and results about idempotents.

Two idempotents e1, e2 are commuting if e1e2 = e2e1. It is easy to see that if this is the case, then their
product e1e2 is also idempotent. In fact, if the commuting idempotents e1, e2 correspond to ideals I1, I2
respectively, then the idempotent e1e2 corresponds to the ideal I1 ∩ I2.

As a special case, two idempotents are orthogonal if e1e2 = e2e1 = 0, so that they are commuting and have
product equal to zero. If this is the case, then their sum e1 + e2 is also idempotent, and corresponds to the
sum of ideals

I1 + I2 = {i1 + i2 | i1 ∈ I1, i2 ∈ I2},

And in fact, this sum is direct :

I1 ∩ I2 = {0}

Because e1e2 = 0 is the generator of this ideal.

An idempotent e is primitive if it cannot be written as

e = e1 + e2,

for two nonzero, orthogonal idempotents e1, e2. Let I ⊆ A be the ideal generated by e. Because the sum of
orthogonal idempotents gives the direct sum of the ideals they generate, this means that the ideal I cannot
be written

I = I1 ⊕ I2,

for two nonzero ideals I1, I2 ⊂ I. Suppose there were a nonzero proper ideal I ′ ⊆ I. Because I is a
representation of the group algebra, we can apply complete reducibility and say that there is a complementary
subrepresentation I ′′ ⊆ I, such that I ′ ⊕ I ′′ = I. But this would imply that e is not primitive, which is a
contradiction. Thus the ideal I contains no proper nonzero ideals, and is called a minimal ideal. So primitive
idempotents correspond to minimal ideals.

Finally, a set {e1, ..., em} of idempotents is called a complete if each idempotent is primitive, every pair of
idempotents is orthogonal, and every ideal is generated by a linear combination of its elements, where all
the coefficients are 1 or 0.

Proposition 5.1. Let {e1, ..., em} be a set of primite, pairwise orthogonal idempotents. Then it is complete
if, and only if,

e1 + e2 + ...+ em = 1,

where 1 ∈ F[Sk] is the identity.

Proof. The algebra A = F[Sk] is an ideal of itself, and is generated by the idempotent 1. But as a represen-
tation, it splits into a direct sum of irreducible subrepresentations,
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A =
⊕

Ii,

Where the Ii are all irreducible subrepresentations. Subrepresentations of the group algebra are equivalently
submodules, which are equivalently ideals of the group algebra. Thus the group algebra A is the direct sum of
its minimal ideals. These are generated by primitive idempotents ei, Ii = Aei. These primitive idempotents
are pairwise orthogonal, eiej = ejei = 0, because the ideals satisfy Ii ∩ Ij = 0. Finally, because the sum of
orthogonal idempotents generates the direct sum of their ideals, we must have

e1 + e2 + ...+ em = 1,

since

A = I1 ⊕ I2 ⊕ ...⊕ Im.

�

A complete set of orthogonal, primitive idempotents {e1, ..., em} will be called an idemsystem.

Let {e1, ..., em} be an idemsystem. Let I ⊆ A be an ideal. Then I is generated by some element of the form

e(I) = eI1 + ...+ eIk ,

Where we decompose I as a direct sum of mininal subideals

I = I1 ⊕ ...⊕ Ik,

And then find the corresponding generators in our idemsystem, so that

I1 = Ae1, . . . , Ik = Aek.

Thus there is a correspondence

{subsets of the idemsystem e1, e2, ..., em} ←→ {ideals in the algebra A}

given by the composition

S 7→ e(S) =
∑
es∈S

es,

e(S) 7→ I(S) = Ae(S) =
⊕
es∈S

Aes.

Lemma 5.1. This map is a bijection. Furthermore, the intersection of subsets maps to the intersection of
ideals, the union of subsets maps to the sum of ideals, and the complement of subsets maps to the orthogonal
complement of ideals (which exist thanks to complete reducibility).

Proof. The fact that this is a bijection has already been proved: we can decompose any ideal I uniquely into
a direct sum of minimal ideals Ii and then find the generators ei for these ideals in the idemsystem, which
gives a subset of {e1, ..., em}. The inverse to this map sends a subset S of {e1, ..., em} to the ideal I(S)
generated by e(S).
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Now we show that the intersection S∩T maps to the intersection I(S)∩I(T ). We know that for any two ideals
I, J generated by commuting idempotents eI , eJ , an idempotent generator for I ∩J is given by eIeJ = eJeI .
Thus it suffices to show that

e(S)e(T ) = e(T )e(S) = e(S ∩ T ).

The fact that the elements e(S), e(T ) commute is clear: all linear combinations of {e1, ..., em} commute,
because the elements e1, ..., em are orthogonal and thus commute. Now writing e(S), e(T ) explicitly,

e(S)e(T ) = (
∑
i∈S

ei)(
∑
j∈T

ej)

=
∑

i∈S, j∈T
eiej ,

but the product eiej vanishes unless i = j, so that this sum is equal to

∑
i∈S, i∈T

eiei

=
∑
i∈S∩T

e2i =
∑
i∈S∩T

ei = e(S ∩ T ),

where the middle equality holds because ei = e2i are idempotent.

Now we prove that the complement of a subset maps to the orthogonal complement of its corresponding
ideal. Let S be a subset of {e1, ..., em}, and let I be the ideal it generates. It suffices to show this on the
level of idempotents, i.e.,

e(Sc) = 1− e(S),

Because if I⊥ is the unique ideal of A complementary to I, then

A = I ⊕ I⊥,

And A is generated by 1, I is generated by e(S), and the sum of orthogonal idempotents generates the direct
sum of their ideals, so that I⊥ is generated by 1− e(S). The equation

e(Sc) = 1− e(S)

is easy to derive from the completeness equation,

1 = e1 + e2 + ... + em

=
∑

i=1, ..., m

ei = (
∑
i∈S

ei) + (
∑
j /∈S

ej) = e(S) + e(Sc).

Finally, it remains to show the correspondence between unions of subsets and sums of ideals. It is not true
in general that
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e(S ∪ T ) = e(S) + e(T ),

Because this holds if and only if S and T are disjoint : Any element i ∈ S ∩ T appears with multiplicity 1 in
e(S ∪ T ) and with multiplicity 2 in e(S) + e(T ). However, the following holds for any two subsets:

e(S ∪ T ) = e(S) + e(T )− e(S)e(T ),

Because

e(S) = e(S\T ) + e(S ∩ T ),

e(T ) = e(T\S) + e(S ∩ T ),

e(S) + e(T ) = e(S\T ) + e(T\S) + 2e(S ∩ T ),

e(S) + e(T )− e(S ∩ T ) = e(S\T ) + e(T\S) + e(S ∩ T ) = e((S\T ) ∪ (T\S) ∪ (S ∩ T )) = e(S ∪ T ),

Where the last and second-to-last equalities in the last line follow by decomposing S ∪ T into the three
disjoint subsets S\T, T\S, and S ∩ T . Because the last three terms are orthogonal,

Ae(S ∪ T ) = Ae(S\T )⊕Ae(T\S)⊕Ae(S ∩ T )

= (
⊕
s∈S\T

Is)⊕ (
⊕
t∈T\S

It)⊕ (
⊕
i∈S∩T

Ii)

= ((
⊕
s∈S\T

Is)⊕ (
⊕
i∈S∩T

Ii)) + (
⊕
i∈S∩T

Ii)⊕ (
⊕
t∈T\S

It)

= (
⊕
s∈S

Is) + (
⊕
t∈T

It) = I(S) + I(T ),

as desired.

�

Corollary 5.1.1. The set of all multiplicity-free combinations of an idemsystem {e1, ..., em} is a Boolean
algebra under the operations

a ∧ b = ab,

a ∨ b = a+ b− ab,

ac = 1− a.

This is isomorphic to the algebra of subsets of {e1, ..., em} under intersection, union and complement,
and this in turn is isomorphic to the algebra of ideals of A under taking intersection, sums, and orthogonal
complements.
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We can also introduce partial orders on each of these sets. The partial ordering on the algebra of subsets
of a finite set is simply

S ≤ T ⇐⇒ S ⊆ T.

The partial ordering on the algebra of ideals of A is the same,

I ≤ J ⇐⇒ I ⊆ J.

The third partial ordering is on the set of all idempotents, not just the ones generated as multiplicity-free
sums of an idemsystem. We say

e1 ≤ e2

if there is another idempotent e′ such that e1e
′ = e′e1 = 0 and e2 = e1 + e′.

Lemma 5.2. The following are equivalent:

1. e1 ≤ e2

2. e1e2 = e2e1 = e1

3. e1 and e2 commute and e2 − e1 is idempotent.

4. There is an idemsystem {f1, ..., fm} such that e1 = e(S) and e2 = e(T ) for subsets S, T ⊆ {f1, ..., fm}
such that S ⊆ T .

Proof. First notice that the orthogonal idempotent e′ is unique, since it must equal e2 − e1.

We show (1) implies (2). Since e1 and e′ are orthogonal, they commute, and so e1 commutes with e2 = e′+e1.
Then by orthogonality,

e1e2 = e1(e′ + e1) = e1e
′ + e21 = e1.

Now we show (2) implies (3). Obviously if (2) holds then e1 and e2 commute. Now we compute

(e2 − e1)2 = e22 − 2e1e2 + e21 = e2 − 2e1 + e1 = e2 − e1

so that e2 − e1 is idempotent. Now we show (3) implies (2). Since e1, e2 commute,

(e2 − e1)2 = e22 − 2e1e2 + e21 = e2 − 2e1e2 + e1 = e2 − e1,

since this element is idempotent, and this is true if and only if

−2e1e2 = −2e1.

Now we show (2) implies (1). Let

e′ = e2 − e1.

It suffices to check that e′ is orthogonal to e1 because it obviously holds that e2 = e1+e′, and e′ is idempotent
since (2) is equivalent to (3). But
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e1e
′ = e1(e2 − e1) = e1e2 − e21 = e1 − e1 = 0,

so these idempotents are orthogonal.

The proof of (4) is as follows. First notice that e ≤ 1 for any idempotent because of the characterization
(2). Thus we decompose orthogonally

1 = e2 + e3, e3 = 1− e2.

Now decompose orthogonally

e2 = e1 + e′.

If the idempotents e1, e
′, e3 are primitive, then they are also orthogonal and complete and form an idemsys-

tem. If not, keep decomposing them orthogonally until we can write each as a sum of orthogonal primitive
idempotents. Then this new set of orthogonal primitive idempotents is complete since e1 + e′ + e3 = 1, and
we are done. �

We can actually adjust this partial ordering as follows. Instead of considering e1 and e2 on the level of the
group algebra, consider them on the level of ideals. Then define e1 ≤

′
e2 whenever the ideal I1 = Ae1 is

contained in the ideal I2 = Ae2.

Lemma 5.3. Suppose e1 ≤
′
e2. Then e1 ≤ e2 if and only if e1 commutes with e2.

Proof. e2 is the projection onto some subspace, e1 is the projection onto some smaller subspace. If these two
projection operators commute, then e1e2 is the projection onto their intersection, which is just the projection
onto the image of e1 since this is contained in the image of e2. But this means that e1e2 = e2e1 = e1 and
then part (2) of the above lemma shows that e1 ≤ e2. The converse is straightforward. �

The convenient thing about this new ordering is that it is more general than the old ordering, and encodes
everything on the level of ideals in terms of idempotent generators.

The purpose of doing all this is as follows. Consider the action of Sk on V ⊗k. We would like to study subspaces
that generalize ACT(V ) in their construction. More specifically, say we have idempotents e1, ..., er in the
group algebra F[Sk]. Then what is the subspace of V ⊗k fixed by all of these idempotents? And what is the
projection of V ⊗k onto this space?

In the special case when all these idempotents commute, the projection operator is simply

e = e1e2...er.

When these idempotents do not commute, however, we must take care in constructing the projection operator
out of these.

For any two elements a, b in a partially ordered set, define a least upper bound to be any element c with
a ≤ c and b ≤ c, such that for any other d ≥ a, b, we have d ≥ c. Similarly define a greatest lower bound
to be an element c with c ≤ a and c ≤ b, such that for any other d ≤ a, b, we have d ≤ c. In general, greatest
lower bounds and least upper bounds need not exist, nor be unique.

In our particular Boolean algebra, however, these elements do exist. Consider this on the level of ideals of
the group algebra. A lower bound of I, J is an ideal K such that K ⊆ I,K ⊆ J. Thus K ⊆ I ∩ J. Since
I ∩ J ⊆ I, I ∩ J ⊆ I, and I ∩ J is an ideal, we conclude that I ∩ J is a greatest lower bound of I and J , and
is in fact unique. Similarly, the least upper bound of I and J is the ideal I + J . On the level of the subset
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algebra of a finite set (really, of a set consisting of an idemsystem), the greatest lower bound of S and T is
the subset S ∩ T, while the least upper bound is the subset S ∪ T.

In the Boolean algebra of multiplicity-free combinations of elements of an idemsystem, the least upper bound
and greatest lower bound operation correspond to intersections and unions, which can be written in terms
of the algebraic structure as e1e2 for the greatest lower bound and e1 + e2 − e1e2 for the least upper bound,
by our correspondence from earlier.

However, greatest lower bounds and least upper bounds also exist for any two idempotents, but are not in
general unique. Let e and f be idempotents, and suppose these generate ideals I and J . Then a greatest
lower bound of e and f is an idempotent generating I ∩ J, and a least upper bound is an idempotent
generating I + J. Notice that in the case where e, f are commuting, these idempotents can be chosen as ef
and e+ f − ef respectively, but this process still works when e, f do not commute.

Now finally we can return to the question of “forcing” tensors to have symmetries. The definition of greatest
lower bounds and least upper bounds can be generalized to make sense for an arbitrary finite number of
elements of the poset: the greatest element which they all cover, or the least element which covers all of them,
respectively. In our setup, we are given several idempotents e1, ..., er and we want to find the projection
operator from V ⊗k onto the subspace fixed by all of these. Notice that when all the ei commute, their
greatest lower bound is given by their product

e = e1e2...er,

and this projects onto the subspace fixed by all of these idempotents. When the ei fail to commute, let

Ii = eiA

be the ideals generated by these, and let

I =

r⋂
i=1

Ii

be their intersection, and then let

I = eA,

for some idempotent generator e. The the idempotent element e is the projection of V ⊗k onto the subspace
fixed by all of e1, ..., er.

Now we derive some results specifically about averaging over subgroups, using the language of the group
algebra and idempotents that we have developed. We have seen an important results from earlier that will
be stated again here now:

Lemma. Let G be a finite group and A be the group algebra. Let H,K be subgroups of G and AvH ,AvK ∈ A
be the averages over H,K. Then AvH commutes with AvK if and only if HK = KH are commuting
subgroups. This in turn is true if and only if HK = L is also a subgroup of G, and we have

AvH ◦AvK = AvK ◦AvH = AvL.

When G is the symmetric group, this result also holds when we replace all of the averages by conjugate
(signed) averages.

We use this lemma to state and prove a result about the partial ordering of idempotents.
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Corollary 5.3.1. Let H,K be subgroups of some finite group G and let A = F[G] be the group algebra. Let
AvH ,AvK ∈ A be the averages over H,K. Then AvH ≤ AvK if, and only if, K ≤ H as subgroups. Thus
the map

Av : {subgroups of G} −→ A,

H 7→ AvH

Is an order-reversing inclusion.

The same result hold when replacing all averages by conjugate averages, when G is a symmetric group. The
proof is simple.

Proof. As we have seen from earlier, two idempotents e1, e2 satisfy e1 ≤ e2 if and only if

e1e2 = e2e1 = e1.

The two idempotents AvH ,AvK commute if and only if HK = KH = L is a subgroup of G. When this is
true,

AvH ◦AvK = AvK ◦AvH = AvL.

Thus AvH ≤ AvK if and only if HK = KH = H. But this is equivalent to K ⊆ H, as desired. The proof
with signed averages is identical.

�

Example 5.1. Consider again the space of algebraic curvature tensors. This has idempotent generator

¯AvD ◦ (1− ¯AvH) = ¯AvD − ¯AvS4
.

We can see easily that this idempotent is “built” out of two other idempotents, namely,

ĀvD, ĀvS4 .

Now D ≤ S4 is a subgroup of S4, and so our general theory tells us that

ĀvS4
≤ ĀvD,

and this is exactly why the element

ĀvD − ĀvS4

is also idempotent. The image of V ⊗4 under ĀvD is precisely the space

Sym2(Λ2(V )).

These are all the (0, 4)−tensors on V that satisfy

R(x, y, z, w) = −R(y, x, z, w),
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R(x, y, z, w) = −R(x, y, w, z),

R(x, y, z, w) = R(z, w, x, y).

However, this space also contains the space of all alternating tensors. These in addition satisfy

R(x, y, z, w) = −R(x, z, w, y),

or more generally,

R(xσ(1), xσ(2), xσ(3), xσ(4)) = sign(σ)R(x1, x2, x3, x4).

Then because

Λ4(V ) ⊆ Sym2(Λ2(V )),

there must be an idempotent projection operator e : Sym2(Λ2(V )) −→ Λ4(V ). We already know that the
idempotent projecting onto Sym2(Λ2(V )) is ĀvD, while the idempotent projecting onto Λ4(V ) is ĀvS4 . The
gap between the two groups D ≤ S4 is precisely the complementary subgroup H = 〈(1, 2, 3)〉 generated
by cyclic permutations of the first three variables, because

HD = DH = S4

⇐⇒ ĀvHĀvD = ĀvDĀvH = ĀvS4
,

and so e = ĀvH is the projection of Sym2(Λ2(V )) onto Λ4(V ). Because of the general theory, we know there
must be a complementary subspace of Sym2(Λ2(V )). This can be realized as either

• A subspace W of Sym2(Λ2(V )) such that W + Λ4(V ) = Sym2(Λ2(V )) satisfying additional properties
(W is a subrepresentation of the group GL(V )),

• The kernel of ĀvH in Sym2(Λ2(V )),

• The image of the complementary idempotent 1− ĀvH in Sym2(Λ2(V )).

From the third characterization, the projection onto this space must be the idempotent

ĀvD − ĀvS4
.

From the first characterization, we derive the following result:

Theorem 5.4. Sym2(Λ2(V )) splits as the direct sum of GL(V )-reps:

Sym2(Λ2(V )) = ACT(V ) + Λ4(V ).
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6 Kulkarni-Nomizu Products and the Algebra KN(V )

We now might want to ask how to generalize the symmetries of the Riemann curvature tensor, or really,
how to generalize the space of algebraic curvature tensors. One approach that has been studied thoroughly
is to characterize the covariant derivatives ∇iRm. The symmetries of the first covariant derivative are well-
known: ∇R satisfies all the symmetries of R in the first 4 variables, plus the (differential) Bianchi identity
in the last three variables:

∇R(x, y, z, w;u) = −∇R(y, x, z, w;u) = ∇R(x, y, w, z;u) = ∇R(z, w, x, y;u),

∇R(x, y, z, w;u) +∇R(y, z, x, w;u) +∇R(z, x, y, w;u) = 0,

∇R(x, y, z, w;u) +∇R(x, y, w, u; z) +∇R(x, y, u, z;w) = 0.

This actually implies that the space ∇R over V forms an irreducible GL(V ) subrepresentation of V ⊗5,
which in the language of [2] is called a symmetry class and can be described using more language from the
representation theory of symmetric groups.

However, this approach presents obstacles when we get to the second covariant derivative∇2R(x, y, z, w;u, v).
This tensor still has all the symmetries of ∇R in the first 5 variables. But symmetries of ∇2R in the last
two variables involve the tensor R. This is due to the Ricci identities:

∇2R(x, y, z, w;u, v)−∇2R(x, y, z, w; v, u) = R(R(u, v)x, y, z, w) +R(x,R(u, v)y, z, w)

+R(x, y,R(u, v)z, w) +R(x, y, z,R(u, v)w).

These symmetries might not be intractible, but there are certainly not any visible symmetries to exploit
here; that is, any symmetries coming from the Ricci identities are hard to deduce from this, and it appears
that the current literature does not have much to say on whether there are algebraic symmetries of ∇2R
which do not involve R itself.

We now consider an alternative approach to generalizing the symmetries of algebraic curvature tensors.

The swap symmetry of the Riemann curvature tensor is an important feature that we might want to recover
in the absence of Bianchi symmetry. The geometric reasons for this symmetry come from how we construct
an algebraic curvature tensor out of canonical algebraic curvature tensors. These are tensors of the form

Rφ(x, y, z, w) = φ(x, z)φ(y, w)− φ(x,w)φ(y, z),

where φ ∈ Sym2(V ) is a symmetric tensor. There is a theorem due to Gilkey that every algebraic curvature
tensor can be realized as a sum of these canonical tensors, that is, these span the space ACT(V ), see [4].
This operation taking φ to Rφ can be extended to a product of two symmetric tensors, which is called the
Kulkarni-Nomizu product, and is written with a circle-wedge symbol:

(φ©∧ ψ)(x, y, z, w) = φ(x, z)ψ(y, w)− φ(x,w)ψ(y, z) + φ(y, w)ψ(x, z)− φ(y, z)ψ(x,w).

Notice that φ©∧ ψ is antisymmetric in x, y and in z, w, and also has swap symmetry in (x, y) ←→ (z, w),
which we can tell from its symmetries. Thus φ©∧ ψ ∈ Sym2(Λ2(V )).

Another important fact is that the space of algebraic curvature tensors is equivalently generated by all
Kulkarni-Nomizu products of symmetric tensors, not just KN-products of a tensor with itself. This is a
general fact about commutative algebras: the subspace spanned by all elements of the form x2 is equal to
the subspace spanned by all elements of the form x · y, because the elements
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x · y =
1

4
((x+ y)2 − (x− y)2)

are all in the linear span of the set of squares. Because each Rφ has Bianchi symmetry, and these are precisely
the squares of elements, each KN-product has Bianchi symmetry as well. So the subspace of Sym2(Λ2(V ))
spanned by the KN-products of symmetric tensors is precisely the space ACT(V ) consisting of algebraic
curvature tensors:

Sym2(V )©∧ Sym2(V ) = ACT(V ) ⊆ Sym2(Λ2(V )).

The Kulkarni-Nomizu product is even more general than this. It extends to a product taking φ ∈ Sym2(Λk(V ))
and ψ ∈ Sym2(Λ`(V )) to φ©∧ ψ ∈ Sym2(Λk+`(V )) as follows. When both φ and ψ can be written as sym-
metric products of alternating tensors, this product takes the form

(α · β)©∧ (γ · δ) = (α ∧ γ) · (β ∧ δ),

where · denotes the symmetric product, and ∧ is the exterior product; and the general product is defined
by extending this bilinearly (see [1] for this description of the KN-product, and [5] for Kulkarni’s original
construction, which makes it clear that this product is well-defined and removes some of the ambiguity in
taking the wedge product in the order written). Notice that this turns the direct sum

KN(V ) =
⊕

Sym2(Λk(V ))

into a graded algebra, called the Kulkarni-Nomizu algebra over V, where the term graded means that the
algebra is a direct sum of the factors

KNk(V ) = Sym2(Λk(V ))

and that the multiplication takes the graded factors of degree k and ` into the factor of degree k + `:

©∧ : KNk(V )⊗KN`(V ) −→ Sym2(Λk+`(V )).

The result that each product φ©∧ ψ has Bianchi symmetry implies that the subspace

KN1©∧ KN1 ⊂ KN2

is contained properly, so not all elements of the higher graded factors are generated by products from lower
graded factors (in particular, Sym2(Λ2(V )) contains Λ4(V ), which is orthogonal to ACT(V ) and is the
subspace fixed by the Bianchi average, instead of killed by it).

Now we describe this algebra rep-theoretically. Consider the group of permutations generating the symme-
tries of KNk(V ) = Sym2(Λk(V )). If R ∈ KNk(V ) is a (0, 2k)−tensor in the Kulkarni-Nomizu factor of degree
k, and σ, τ ∈ Sk are any two permutations, then these symmetries can be written as

R(x1, x2, ..., xk; z1, z2, ...zk) = sign(σ)R(xσ(1), ...xσ(k); z1, ..., zk) = sign(τ)R(x1, ..., xk; zτ(1), ..., zτ(k)),

R(x1, ..., xk; z1, ..., zk) = R(z1, ..., zk;x1, ..., xk).
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The permutations fixing R (in some representation of the symmetric group S2k) can be written as a (signed)
permutation of the xi, followed by a (signed) permutation of the zj , then possibly followed by the permuation
that takes xi 7→ zi for all i. Call this last permutation α:

α(xi) = zi,

α(zi) = x1.

The group generated by the first two kind of permutations is Sk×Sk, since R is invariant under permutations
of the xi alone and the zj alone. The whole group is a semidirect product (Sk×Sk)oS2, where the permutation
α described above acts on a pair of permutations σ, τ via

α(σ, τ) = (τ, σ).

Call this the Kulkarni-Nomizu group and write it as KNk ≤ S2k. Although it will not be used in the
remainder of this paper, we now provide two alternative realizations of the Kulkarni-Nomizu group.

Lemma 6.1. The Kulkarni-Nomizu group is the wreath product of Sk with S2 over S2 y [2].

Proof. This follows directly from the definition of the wreathe product, since in the specified semidirect
product (Sk × Sk) o S2, the group S2 acts by taking the pair (σ1, σ2) to the pair (σα(1), σα(2)).

�

Lemma 6.2. The Kulkarni-Nomizu group is the graph automorphism group Aut(Kk,k) of the complete
bipartate graph Kk,k on the set of vertices [k]× [k].

Remark 6.1. Notice how this generalizes the group D when k = 2. The complete bipartate graph on [2]× [2]
is just a square, and the group of graph automorphisms of a square is D4.

Proof. When k 6= m, the automorphism group of Kk,m = K([k] × [m]) is just the direct product Sk × Sm,
since we can permute any vertices in [k] and any vertices in [m] and preserve the graph structure, but we
cannot send a vertex in [k] to a vertex in [m] or vice versa, because the vertices in [k] have degree m (they
all are connected to every element of [m]) while the vertices in [m] have degree k and k 6= m. So the
automorphism group of Kk,k should at least contain the subgroup Sk × Sk.

However, when k = m there is an additional automorphism of the complete bipartate graph Kk,k = K([k]×
[k]′), where we use the notation [k]′ = {1′, 2′, ..., k′} to distinguish from elements of [k] = {1, 2, ..., k}. This
is the automorphism

α : [k]× [k]′ −→ [k]′ × [k],

α(i) = i′, α(i′) = i,

Which interchanges the two subsets of vertices.

�
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7 The Map D

In this section, we move from finite-dimensional vector spaces to vector bundles on manifolds. We will use
the Kulkarni-Nomizu algebra of the last section extensively. On a geometric level, the spaces

KNk
p(M) := Sym2(Λk(T ∗pM)) = Sym2(Ωkp(M)),

Defined over the cotangent space at every point, form a vector bundle over M , which we simply denote
KNk(M). The direct sum

KN(M) =
⊕

KNk(M)

Is also a vector bundle, which we call the Kulkarni-Nomizu bundle or KN-bundle over M . This carries
the structure of an associative, commutative unital graded algebra, defined by taking the Kulkarni-Nomizu
product at every point. The KN-bundle with this structure will be called the Kulkarni-Nomizu algebra
of M or simply the KN-algebra of M.

We will construct a degree-raising map on the KN-bundle of M which carries geometric significance. In
order to motivate this construction, consider how we construct Rm out of R and g on the manifold level:

Rm(X,Y, Z,W ) = g(R(X,Y )Z,W ).

The tensor field Rm then is alternating in X,Y becauseR(X,Y ) has this property. The other two symmetries
(the Bianchi identity and swap symmetry) follow from geometric properties of∇ (zero torsion and compatible
with g). But this is not enough for us: We would like for Rm to have full Kulkarni-Nomizu symmetry,
regardless of the torsion-free connection ∇ and its compatibility with the symmetric tensor g. Using the
theory of averaging, Rm is alternating in Z,W if and only if

Rm(X,Y, Z,W ) =
1

2
(Rm(X,Y, Z,W )−Rm(X,Y,W,Z)),

so if we instead define the curvature tensor as

Rm(X,Y, Z,W ) =
1

2
(g(R(X,Y )Z,W )− g(R(X,Y )W,Z)),

Then Rm is automatically alternating in Z,W as well, and this agrees with the usual definition of Rm in
the special case that ∇ is g−compatible. Similarly, Rm is symmetric in (X,Y )←→ (Z,W ) if and only if

Rm(X,Y, Z,W ) =
1

2
(Rm(X,Y, Z,W ) +Rm(Z,W,X, Y ).

Now combining these two symmetries, we arrive at the new definition

Rm(X,Y, Z,W ) =
1

4
(g(R(X,Y )Z,W )− g(R(X,Y )W,Z) + g(R(Z,W )X,Y )− g(R(Z,W )Y,X)),

Where the first two terms force Rm to be antisymmetric in Z,W, and the second two terms force Rm to be
symmetric in (X,Y )←→ (Z,W ).

This is a more useful definition of Rm for a number of reasons. First we should notice that this agrees with
the usual definition of Rm when ∇ is Levi-Civita with respect to g. But this definition highlights all of the
important symmetries of Rm - in fact, even when ∇ is neither torsion-free nor g−compatible, Rm still lives
in Sym2(Ω2(M)), because we have forced this to be true.
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In fact, even when g is not a metric, but an arbitrary symmetric tensor, we still have Rm ∈ Sym2(Ω2(M)). In
other words, fixing an affine connection ∇ and corresponding curvature operator R, then for any symmetric
bilinear form g ∈ Sym2(M), we can define

(Dg)(X,Y, Z,W ) = Rm(X,Y, Z,W )

=
1

4
(g(R(X,Y )Z,W )− g(R(X,Y )W,Z) + g(R(Z,W )X,Y )− g(R(Z,W )Y,X)),

Then D is a well-defined map

D : Sym2(T∗M) −→ Sym2(Ω2(M)),

Taking the degree 1 elements of the KN-algebra to the degree 2 elements of the KN-algebra. In the special
case where g is a metric, and ∇ is its Levi-Civita connection, we have

Rm = Dg.

We would like to generalize this construction so that we can perform the same kind of operation on algebraic
curvature tensors and produce 6−tensors in Sym2(Ω3(M)). That is, we would like to construct a map that
takes tensors in the degree k graded factor of the KN-algebra, to tensors in the degree k+ 1 factor, or a map

D : Sym2(Ωk(M)) −→ Sym2(Ωk+1(M)).

This map D should somehow involve replacing one variable of a tensor R with R(A,B)C, since this gives
the right rank; and then forcing symmetries using idempotents.

The general construction will follow quickly once we figure out the case k = 2,

D : Sym2(Ω2(M)) −→ Sym2(Ω3(M)).

Let R ∈ Sym2(Ω2(M)) so that R satisfies

R(A,B,C,D) = −R(B,A,C,D) = −R(A,B,D,C) = R(C,D,A,B).

Notice that any two variables we put in the last two positions must be alternating because of the sym-
metries of R, and any two variables we put into R(−,−) must also be antisymmetric. Now DR is a
6−tensor (DR)(X,Y, U, Z,W, V ) which is alternating in X,Y, U , alternating in Z,W, V , and symmetric in
(X,Y, U)←→ (Z,W, V ). We want to construct this new tensor out of terms of the form

R(R(−,−)−,−,−,−)

Where we replace dashes with variables. Since the arguments of R must be alternating, they must both be
in X,Y, U or both in Z,W, V, and similarly for the last two arguments of R. Start by defining

DR(X,Y, U, Z,W, V ) = R(R(X,Y )U,Z,W, V ).

While this appears to be the most logical choice of ordering variables, this is not the correct way to proceed.
The reason is that once we apply full alternating symmetries in X,Y, U we get a sum of the form

R(R(X,Y )U,Z,W, V ) +R(R(U,X)Y, Z,W, V ) +R(R(Y, U)X,Z,W, V )
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−R(R(Y,X)U,Z,W, V ) +R(R(X,U)Y, Z,W, V ) +R(R(U, Y )X,Z,W, V ).

Then applying symmetries of R, this is

2(R(R(X,Y )U,Z,W, V ) +R(R(U,X)Y,Z,W, V ) +R(R(Y,U)X,Z,W, V ))

= 2R(R(X,Y )U +R(U,X)Y +R(Y, U)X,Z,W, V )

= 2R(0, Z,W, V ) = 0,

because R(X,Y )U satisfies the Bianchi identity. So instead we start by defining

DR(X,Y, U, Z,W, V ) = R(R(X,Y )V,U, Z,W ).

Now we simply force full KN-symmetries. This means we permute all of X,Y, U and apply signs, then
permute all of Z,W, V and apply signs, then permute (X,Y, U)←→ (Z,W, V ), and finally add these together.
This gives a sum with 18 terms: first apply alternating symmetry in Z,W, V :

R(R(X,Y )V,U, Z,W )−R(R(X,Y )Z,U, V,W )−R(R(X,Y )W,U,Z, V )

Now combine this with alternating symmetry in X,Y, Z:

−R(R(U, Y )V,X,Z,W ) +R(R(U, Y )Z,X, V,W ) +R(R(U, Y )W,X,Z, V )

−R(R(X,U)V, Y, Z,W )−R(R(X,U)Z, Y, V,W )−R(R(X,U)W,Y,Z, V )

This produces a tensor in Ω3(M)⊗Ω3(M). Finally, we swap the triple of variables (X,Y, U)←→ (Z,W, V )
in each of these terms:

R(R(Z,W )U, V,X, Y )−R(R(Z,W )X,V, U, Y )−R(R(Z,W )Y, V,X,U)

−R(R(V,W )U,Z,X, Y ) +R(R(V,W )X,Z,U, Y ) +R(R(V,W )Y, Z,X,U)

−R(R(Z, V )U,W,X, Y ) +R(R(Z, V )X,W,U, Y ) +R(R(Z, V )Y,W,X,U).

Why are there 18 terms? The reason is that the Kulkarni-Nomizu group has order 2(k!)2 which for k = 3 is
equal to 72. Averaging over the full KN-group should produce a sum with 72 terms. However, only 1 in 4 of
these terms is explicitly written, because there are already symmetries in the tensor R(R(X,Y )V,U, Z,W ),
which is alternating in X,Y and in Z,W . These symmetries generate a group of order 4, the symmetry
group of R, which is a subgroup of the KN-group, and

72/4 = 18,

which explains the number of terms.

This generalizes to higher degrees k as follows. Let R ∈ Sym2(Ωk(M)). Then
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DR(x1, x2, ..., xk, xk+1; z1, z2, ..., zk, zk+1) ∈ Sym2(Ωk+1(M))

Is constructed by first replacing the first variable of R with R(x1, xk+1)zk+1, then applying full KN-
symmetries:

DR(x1, ..., xk, xk+1; z1, ..., zk, zk+1) = KNR(R(x1, xk+1)zk+1, x2, ..., xk; z1, ..., zk),

Where KN denotes the projection onto Sym2(Ωk+1(M)).

8 Cohomology, Areas for Further Study

One very special feature of the Kulkarni-Nomizu bundle is that it has a natural structure of a cochain
complex. There is a coboundary map

Sd : Sym2(Ωk(M)) −→ Sym2(Ωk+1(M))

Defined by taking the symmetric square of the Cartan differential (also known as the exterior derivative),
which is the unique map

d : Ω(M) −→ Ω(M)

satisfying the following four properties:

• d is homogeneous of degree 1. This means that for each k, d takes

d : Ωk(M) −→ Ωk+1(M).

• d agrees with the differential of smooth functions, where we consider functions f ∈ C∞(M,R) as
0−forms, and their differentials df ∈ T ∗M as covectorfields or 1−forms. In other words,

df(X) = X(f)

for any smooth f ∈ C∞(M) and vector field X on M.

• d is a coboundary, so that

d(d(α)) = 0

For any differential form α.

• d is an anti-derivation, that is, if α ∈ Ωk(M) is a k−form and β ∈ Ω(M) is any differential form, then

d(α ∧ β) = d(α) ∧ β + (−1)kα ∧ d(β).

(For more on the de Rham differential including proofs of these properties and explicit construction, see [7].)

The map Sd is constructed from d via universal properties. In particular, for any linear transformation
T : V −→ W of vector spaces, there are induced linear transformations SkT : Symk(V ) −→ Symk(W )
defined by
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SkT (v1v2...vk) = T (v1)T (v2)...T (vk).

Thus Sd is, explicitly,

Sd(α · β) = d(α) · d(β).

This makes it clear from the first property of d that Sd is homogeneous of degree 1 on the KN-algebra of
M, and from the third property of d, it is clear that

Sd ◦ Sd = 0,

That is to say, Sd is a coboundary on the KN-algebra of M .

Notice that Sd is not a derivation on the KN-algebra of M . However, we can compute the coboundary of a
KN-product to get a relation between the coboundaries of the factors. Let α, β ∈ Ωk(M), and γ, δ ∈ Ω`(M).
Then

Sd[(α · β)©∧ (γ · δ)] = Sd[(α ∧ γ) · (β ∧ δ)]

= d(α ∧ γ) · d(β ∧ δ)

= (d(α) ∧ γ + (−1)kα ∧ dγ) · (d(β) ∧ δ + (−1)kβ ∧ d(δ))

= (d(α) ∧ γ) · (d(β) ∧ δ) + (α ∧ d(γ)) · (β ∧ d(δ)) + (−1)k[(d(α) ∧ γ) · (β ∧ d(δ)) + (α ∧ d(γ)) · (d(β) ∧ δ)]

And the first two terms in this sum can be written as KN-products. They are equal to

(d(α) · d(β))©∧ (γ · δ) + (α · β)©∧ (d(γ) · d(δ))

= Sd(α · β)©∧ (γ · δ) + (α · β)©∧ Sd(γ · δ).

This is exactly what we would expect to get if Sd were a derivation. But the two terms

(d(α) ∧ γ) · (β ∧ d(δ)) + (α ∧ d(γ)) · (d(β) ∧ δ)

Are not expressible as KN-products in an obvious way. This is because d(α) is of degree (k + 1) while β is
of degree k, and γ is of degree ` while d(δ) is of degree `+ 1.

The cohomology of the chain complex KN(M) with the coboundary Sd may yield interesting results. This
cohomology theory has not yet been investigated by the author. The relationship to de Rham cohomology
has not been investigated either, nor has the relationship to curvature. We conjecture that the map D play
an important role in all of this. In particular, we conjecture either that the tensors g,Dg = R,DR,DDR, ...
play an interesting role in describing cohomology classes as we let g vary over metrics on M ; or that the
map D is itself a coboundary or derivation, which may yield an interesting alternative cohomology theory.
The algebraic and rep-theoretic symmetries of various cohomology classes, as well as the pure KN-products,
should also play an interesting role.
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