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Abstract

Our goal is to understand the role of kernels in linear dependence

relationships between canonical algebraic curvature tensors. In this

paper, we study such linear dependence relationships by analyzing

different types of weighted directed graphs. We present the back-

ground information necessary for motivating our work. We then state

our conclusions about linear dependence with respect to the differ-

ent weighted directed graphs. Lastly, we present directions for future

study.

1 Introduction and Motivation

First and foremost, in order to fully understand this study, there are a handful

of definitions that one must know. Those definitions are provided here.

Definition 1.1. Let V be a finite-dimensional, real vector space. A multi-

linear function R : V × V × V × V → R is an algebraic curvature tensor if it

satisfies the following properties:
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1. R(x, y, z, w) = −R(y, x, z, w),

2. R(x, y, z, w) = R(z, w, x, y), and

3. R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0.

The third property is known as the Bianchi Identity, and the vector space of

all algebraic curvature tensors on V is denoted by A(V ).

Definition 1.2. Let V be a real vector space. An inner product is a function

〈·, ·〉 : V × V → R which satisfies the following properties:

1. 〈·, ·〉 is symmetric: for all ~v, ~w ∈ V, 〈~v, ~w〉 = 〈~w,~v〉,

2. 〈·, ·〉 is bilinear: for all ~v, ~w, ~u ∈ V, and for all a, b ∈ R, we have

〈a~v + b~w, ~u〉 = a〈~v, ~u〉+ b〈~w, ~u〉, and

3. 〈·, ·〉 is nondegenerate: for all ~v ∈ V such that ~v 6= ~0, there exists ~w ∈
V such that 〈~v, ~w〉 6= 0.

In this paper, we will only be working with inner products which are positive-

definite. That is, for all ~v ∈ V , we have 〈~v,~v〉 ≥ 0, and 〈~v,~v〉 = 0 if and

only if ~v = ~0. Thus, from now on, we will assume that all inner products are

positive-definite.

Definition 1.4 describes an algebraic curvature tensor that is defined in

terms of a linear transformation A. This algebraic curvature tensor is denoted

RA. It is also possible to define an algebraic curvature tensor in terms of a

symmetric bilinear form (such as an inner product), but for this paper, we

only consider algebraic curvature tensors that are defined in terms of linear

transformations [3]. However, before we can state such a definition, we need

to understand some more terminology regarding the linear transformations.

Definition 1.3. Let 〈·, ·〉 be the inner product on the vector space V and

let A : V → V be a linear transformation. The adjoint of A, denoted A∗, is
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characterized by the following equation:

〈Ax, y〉 = 〈x,A∗y〉.

A is called self-adjoint when A = A∗, and A is called skew-adjoint when

A = −A∗. For this paper, we will only consider self-adjoint linear operators.

We can now define RA.

Definition 1.4. Let A : V → V be a linear operator on the vector space V .

Let 〈·, ·〉 be the inner product on V. A canonical algebraic curvature tensor

RA is defined as follows:

RA(x, y, z, w) = 〈Ax,w〉〈Ay, z〉 − 〈Ax, z〉〈Ay,w〉.

It is crucial to note here that there are two types of builds of a canonical

algebraic curvature tensor: symmetric and anti symmetric. In fact, the build

of RA is dependent on whether A = A∗ or A = −A∗. Specifically, when RA

is symmetrically built, then RA is an algebraic curvature tensor if A = A∗,

and when RA is anti symmetrically built, then RA is an algebraic curvature

tensor if A = −A∗ [1]. In this paper, we will only consider symmetrically

built RA.

Definition 1.5. Let V be a vector space, and let R be an algebraic curvature

tensor on V. If V = V1 ⊕ V2, and R(v1, v2, ·, ·) = 0 for v1 ∈ V1 and v2 ∈ V2,
then R is decomposable, meaning that R = R1 ⊕ R2 where R1 ∈ A(V1) and

R2 ∈ A(V2).

Let V be an n−dimensional vector space, and let R be an algebraic cur-

vature tensor on V. If {e1, . . . , en} is a basis for V, then R is determined

by R(ei, ej, ek, el) = Rijkl. These ei, ej, ek, el are called the curvature entries

of R, and the number of independent combinations of curvature entries is

dependent on n. Specifically, If dimV = n, then dimA(V ) = n2(n2−1)
12

.
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Definition 1.6. Let R be an algebraic curvature tensor. The kernel of R is

defined as follows:

Ker(R) = {x ∈ V |R(x, y, z, w) = 0 for all y, z, w ∈ V }.

In fact, it has been proven in [2] that Ker(R) does not depend on entry

position. That is,

Ker(R) = {y ∈ V |R(x, y, z, w) = 0 for all x, z, w ∈ V }

= {z ∈ V |R(x, y, z, w) = 0 for all x, y, w ∈ V }

= {w ∈ V |R(x, y, z, w) = 0 for all x, y, z ∈ V }.

The kernel of an algebraic curvature tensor is an especially crucial component

of our study. In the next definition, we begin to see how the objects described

above relate to one another in the context of linear dependence. But first,

we will define linear dependence itself.

Definition 1.7. Let V be a real vector space and let A1, . . . , An : V →
V be linear operators on V . We say that the algebraic curvature tensors

RA1 , . . . , RAn are linearly dependent if the following equation holds:

n∑
i=1

εiRAi
= 0,

where εi ∈ {1,−1}.

At a first glance, this definition may not appear correct, because εi cannot be

just any real number and thus
n∑

i=1

εiRAi
does not represent just any arbitrary

linear combination. However, Diaz and Dunn explain that, for any real

number c, the multilinearity of algebraic curvature tensors gives us cRA =

εR√cA, where ε = sign(c) = ±1. Thus, if we let ci be any real number and

εi = sign(ci), we can simply let Bi =
√
cAi, which means that the following
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is true. [3]
n∑

i=1

ciRAi
=

n∑
i=1

εiRBi
.

Remark 1. Note that, because εi ∈ {−1, 1}, then without loss of generality,

we can multiply any linear dependence equation through by any εi so that the

corresponding RBi
need not have any coefficient (because (±1)2 = 1). For the

sake of simplicity, we will always multiply through by εi so that the first tensor

in our linear dependence equation can be written with no coefficient. Thus,

without loss of generality, we can rewrite any linear dependence equation as

follows:

RB1 +
n∑

i=2

εiRBi
= 0.

Some previous results about linear dependence of algebraic curvature ten-

sors come from the study of chain complexes. We now provide the definition

of a chain complex.

Definition 1.8. Let V be a vector space, and let A1, . . . , An : V → V

be linear transformations on V. Suppose that for 1 ≤ i ≤ n − 1, we have

Im(Ai) ⊆ Ker(Ai+1). Then the following diagram is called a chain complex :

A1 Ai Ai+1 Ak

V −→ ... −→ V −→ ... −→ V.

It is important to note here that, given a chain complex, since Im(Ai) ⊆
Ker(Ai+1), then Rank(Ai+1Ai) = 0 for all i such that 1 ≤ i ≤ n − 1.

In their studies of linear dependence using chain complexes, McMahon and

Williams both examined compound chain complexes, which are collections of

chain complexes [5]. Some of the compound chain complexes they used had

diagrams that were shaped as n-gons. For example, McMahon studied the

linear dependence relation RA + ε1RB + ε2RC + ε3RD = 0 with respect to the
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following diagram:

A

V −→ V

D
x y B

V ←− V

C

By Definition 1.7, This diagram yields the following information:

Im(A) ⊆ Ker(B)⇒ Rank(BA) = 0,

Im(B) ⊆ Ker(C)⇒ Rank(CB) = 0,

Im(C) ⊆ Ker(D)⇒ Rank(DC) = 0, and

Im(D) ⊆ Ker(A)⇒ Rank(AD) = 0.

While numerous interesting results about linear dependence arise from the

study of chain complexes, one might observe that the fact thatRank(Ai+1Ai) =

0 for all i such that 1 ≤ i ≤ n−1 is actually quite restrictive. In other words,

studying linear dependence relations using chain complexes illustrates only

one specific type of linear dependence relation: a relation which requires

Rank(Ai+1Ai) = 0 in all cases. In this paper, we entertain the more general

case where, for one or more i such that 1 ≤ i ≤ n−1, Rank(Ai+1Ai) > 0. This

vast collection of scenarios can be illustrated by what are known as weighted

directed graphs. Weighted directed graphs are quite similar in appearance to

chain complexes, but the information they provide is much more specific. In

fact, there does not exist a linear dependence relation that cannot be mod-

eled using a weighted directed graph. Hence, by studying linear dependence

relations using weighted directed graphs, not only are we generalizing some

of the linear dependence results that arise from the use of chain complexes,

but we are generalizing the concept of linear dependence as a whole.
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The key difference between a chain complex and a weighted directed graph

is that, instead of V connecting the arrows, there is a circle with a number in

it. This circle is known as a weight, and the number is the upper bound on

Rank(Ai+1Ai). Thus, for example, if we were to translate McMahon’s chain

complex above into a weighted directed graph, we would get the following

diagram.

0 0

00

A

B

C

D

Additionally, in this paper, just as McMahon did, we will only be considering

cyclic weighted directed graphs. The vast majority of this paper focuses on

the following diagram, which illustrates a relation between RA, RB, and RC :

z

x

y

A B

C

Figure 1: A weighted directed graph that illustrates a relation between linear
operators A,B, and C and can be used to find out information about linear
dependence relations between RA, RB, and RC .

where x, y, and z can each take on any nonnegative value. This diagram is

meant to hypothesize the following information:

Rank(BA) ≤ x, Rank(CB) ≤ y, and Rank(AC) ≤ z.
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Note that because x, y, and z can take on positive values, the assumptions

that Im(A) ⊆ Ker(B), Im(B) ⊆ Ker(C), and Im(C) ⊆ Ker(A) are no

longer necessarily assumed.

2 Preliminaries

Now that we have defined all of the terminology we need to know, we now

state a handful of lemmas that will help us understand and prove our main

results. The first result that we state is crucial to our understanding of how

algebraic curvature tensors behave with respect to the linear operators that

define them.

Lemma 2.1. [4] Let V be a real, finite-dimensional vector space, and let A :

V → V be a linear transformation on V. Then Rank(A) ≤ 1 if and only if RA =

0.

Lemma 2.2. [4] Let V be a real, finite-dimensional vector space, and let A :

V → V be a linear transformation on V. If Rank(A) ≥ 2, then Ker(RA) =

Ker(A).

When considering the linear dependence relation RA + εBRB + εCRC = 0

illustrated by Figure 1, Lemma 2.1 gives rise to the question of replacing all

of x, y, and z in our weighted directed graph with 1. In this case, we know

immediately that

Rank(BA) ≤ 1⇒ RBA = 0,

Rank(CB) ≤ 1⇒ RCB = 0, and

Rank(AC) ≤ 1⇒ RAC = 0,

but what does this tell us about the individual algebraic curvature tensors

RA, RB, and RC? It is the linear dependence relation RA + εBRB + εCRC = 0

that we are most interested in, after all. Is it the case that these algebraic
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curvature tensors are all trivial? Because if so, not only would the scenario

where all of x, y, and z are 0 yield only trivial solutions, but so would the

scenario where all x, y, and z are 1 (because of Lemma 2.1). How can we

use Rank information about the matrix combinations BA,CB, and AC to

derive more specific information about A,B, and C by themselves? The next

definition provides a useful method for doing so.

Definition 2.3. Let V be a vector space and let A,B : V → V be linear

transformations on V. Let RA be the algebraic curvature tensor defined in

terms of A. Precomposition by B, written B∗RA, is defined as follows:

B∗RA(x, y, z, w) = RA(Bx,By,Bz,Bw).

Precomposition allows us to see how we can relate algebraic curvature tensors

to one another. The following lemma clarifies this concept.

Lemma 2.4. [5] B∗RA = RBAB.

Proof. Given that B∗RA(x, y, z, w) = RA(Bx,By,Bz,Bw), we can then ap-

ply Definition 1.4 to get

RA(Bx,By,Bz,Bw) = 〈ABx,Bw〉〈ABy,Bz〉 − 〈ABx,Bz〉〈ABy,Bw〉.

In fact, since we are making the additional assumption in this paper that

A∗ = A and B∗ = B, we can apply Definition 1.3 to the above, which yields

RA(Bx,By,Bz,Bw) = 〈ABx,Bw〉〈ABy,Bz〉 − 〈ABx,Bz〉〈ABy,Bw〉

= 〈B∗ABx,w〉〈B∗ABy, z〉 − 〈B∗ABx, z〉〈B∗ABy,w〉,

which, again by Definition 1.4, is equal to

RB∗AB(x, y, z, w),

which equals
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RBAB(x, y, z, w).

Hence, B∗RA = RBAB.

Thus, with precomposition, we can begin to see how we can relate the tensors

RBA, RCB, and RAC to RA, RB, and RC . Precomposition is a very powerful

tool for understanding the algbraic curvature tensors with which we are work-

ing. But before we can answer our question about x, y, and z all being equal

to 1, we must state two more results.

Lemma 2.5. [6] Let V be a vector space and let A : V → V be a self-adjoint

linear operator on V. If Rank(Ak) = p, then Rank(A) = p.

Lemma 2.6. Let V be a vector space and let A,B, : V → V be two linear

operators on V. Suppose Rank(AB) ≤ p. Then Rank(ABA) ≤ p.

We can now state and prove the following theorem.

Theorem 2.7. Given that RA + εBRB + εCRC = 0 and x = y = z = 1, there

are no solutions such that RA, RB, and RC are all nonzero.

Proof. we have:

Rank(BA) ≤ 1⇒ RBA = 0,

Rank(CB) ≤ 1⇒ RCB = 0, and

Rank(AC) ≤ 1⇒ RAC = 0.

First, we will precompose our linear dependence equation with A :

A∗RA + εBA
∗RB + εCA

∗RC = 0.

By Lemma 2.3, we get

RA3 + εBRABA + εCRACA = 0.
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But since Rank(BA) ≤ 1 and Rank(AC) ≤ 1, then by Lemma 2.6, we know

that Rank(ABA) ≤ 1 and Rank(ACA) ≤ 1. Thus, by Lemma 2.1, we have

RABA = RACA = 0. Thus, we are left with

RA3 = 0.

By Lemma 2.1, we have Rank(A3) = 0, which by Lemma 2.5, means that

Rank(A) ≤ 1, which again by Lemma 2.1 means that RA = 0. If we repeat

this process and precompose the equation by B, we get RB = 0, and pre-

composing by C will yield RC = 0 by the same logic. Therefore, we have

confirmed that not only does having all vertices of our weighted directed

graph equal to 0 yield trivial results, but so too does having all vertices

equal to 1.

Thus, we wish to examine weighted directed graphs in which at least one

of x, y, and z is strictly greater than 1, so as to have a chance of finding

nontrivial linear dependence.

We are just about ready to move onto the main results section of this

paper. But before we do so, we state a few more general results.

Theorem 2.8. (The Spectral Theorem) Let V be a vector space, let 〈·, ·〉
be a positive-definite inner product on V, and let A : V → V be a self-adjoint

linear operator on V. Then there exists an orthonormal basis B of eigenvectors

of A. That is, there exists B = {e1, . . . , en} such that for every ei ∈ B, we

have Aei = λiei, where λi is the associated eigenvalue for eigenvector ei.

Lemma 2.9. Let V be a vector space, let 〈·, ·〉 be a positive-definite inner

product on V, and let T : V → V be a self-adjoint linear transformation on

V. Let A be the n×n matrix that represents T with respect to an orthonormal

basis for V. Then A is symmetric.

Proof. Observe that by the Spectral Theorem, we know that there exists

an orthonormal basis B of eigenvectors of T. Suppose that the matrix A is
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the matrix representation of T with respect to the basis B. Because B is an

eigenbasis for T and is orthornomal, we know that the matrix A with respect

to B is a diagonal matrix. Thus, because A is a square, diagonal matrix, we

know that A = AT , and is therefore a symmetric matrix.

Hence, because we are assuming throughout this paper that all linear opera-

tors are self-adjoint, all inner products are positive-definite, and all bases we

will use are orthonormal, then we know that the matrices representing those

linear operators are all symmetric. This brings us to our next preliminary

result.

Lemma 2.10. Let V be a vector space and let A,B : V → V be linear

operators on V. In this paper, Rank(BA) = Rank(AB).

Proof. By assumption in this paper, we know that A and B are self-adjoint

and that the matrices A and B are symmetric. Thus, we have

Rank(BA) = dimension of the column space of BA

= dimension of the row space of BA

= dimension of the column space of (BA)T

= dimension of the column space of ATBT

= dimension of the column space of AB

= Rank(AB).

Lemma 2.11. Let V be a vector space and let A and B be linear transfor-

mations on V such that Rank(A) ≥ 2 and Rank(B) ≥ 2. Then Ker(A) ∩
Ker(B) ⊆ Ker(RA ±RB).

Proof. Let ~v ∈ V such that ~v ∈ Ker(A) ∩ Ker(B). Then A(~v) = 0 and

B(~v) = 0. By Lemma 2.2, we know that Ker(A) = Ker(RA) and Ker(B) =
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Ker(RB). Therefore, ~v ∈ Ker(RA) ∩Ker(RB). Observe:

RA(~v, x, y, z)±RB(~v, x, y, z)

= 0± 0

= 0.

Thus, ~v ∈ Ker(RA ±RB).

3 Main Results

3.1 The 2-0-0 Diagram

In this section, we only alter the weighted directed graph slightly to see if we

can find a nontrivial solution to the linear dependence relation RA + εBRB +

εCRC = 0. Consider the following diagram.

0

2

0

A B

C

Figure 2: The 2-0-0 Diagram.

Theorem 3.1. If the 2-0-0 diagram holds, then there do not exist any non-

trivial RA, RB, and RC that satisfy the linear dependence relation RA +

εBRB + εCRC = 0.
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Proof. The 2-0-0 diagram allows us to deduce the following information:

Rank(BA) ≤ 2⇒ Rank(ABA) = Rank(BAB) ≤ 2 (by Lemma 2.6),

Rank(CB) = 0⇒ CB = 0⇒ Rank(BCB) = Rank(CBC) = 0, and

Rank(AC) = 0⇒ AC = 0⇒ Rank(CAC) = Rank(ACA) = 0.

To gather more information about RA, RB, and RC , we will begin by pre-

composing the equation with C :

C∗RA + εBC
∗RB + εCC

∗RC = 0

RCAC︸ ︷︷ ︸
0

+εB RCBC︸ ︷︷ ︸
0

+εCRC3 = 0

RC3 = 0.

By Lemmas 2.1 and 2.5, this means that Rank(C3) = Rank(C) ≤ 1. Thus,

RC = 0, and there are no nontrivial solutions to this linear dependence

equation in the 2-0-0 case.

3.2 The 2-0-1 Diagram

To see if anything changes when we replace one of the 0’s in the above case

to a 1, we examine the following diagram.

1

2

0

A B

C

Figure 3: The 2-0-1 Diagram.
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Theorem 3.2. If the 2-0-1 diagram holds, then there do not exist any non-

trivial RA, RB, or RC that satisfy the linear dependence relation RA+εBRB +

εCRC = 0.

Proof. The 2-0-1 diagram allows us to deduce the following information:

Rank(BA) ≤ 2⇒ Rank(ABA) = Rank(BAB) ≤ 2 (by Lemma 2.6),

Rank(CB) = 0⇒ CB = 0⇒ Rank(BCB) = Rank(CBC) = 0, and

Rank(AC) ≤ 1⇒ Rank(CAC) = Rank(ACA) ≤ 1⇒ RCAC = RACA = 0.

We precompose the equation with C :

C∗RA + εBC
∗RB + εCC

∗RC = 0

RCAC︸ ︷︷ ︸
0

+εB RCBC︸ ︷︷ ︸
0

+εCRC3 = 0

εCRC3 = 0.

By Lemmas 2.1 and 2.5, we know that RC = 0. Thus, the 2-0-1 case fails to

yield any nontrivial solutions.

Hence, in order to find nontrivial solutions to our linear dependence equation,

we must consider weighted directed graphs with two or more values that are

strictly greater than 1.

3.3 The 2-2-0 Diagram

In this section, we attempt to find a nontrivial solution to the linear depen-

dence relation RA + εBRB + εCRC = 0 by examining the weighted directed

graph below.
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0

2

2

A B

C

Figure 4: The 2-2-0 Diagram.

This gives us the following information:

Rank(BA) ≤ 2⇒ Rank(ABA) = Rank(BAB) ≤ 2 (by Lemma 2.6),

Rank(CB) ≤ 2⇒ Rank(CBC) = Rank(BCB) ≤ 2 (by Lemma 2.6), and

Rank(AC) = 0⇒ AC = 0.

Theorem 3.3. If the 2-2-0 diagram holds, then there do not exist any nonzero

RA, RB, or RC that satisfy RA + εBRB + εCRC = 0.

We will prove this theorem by contradiction. That is, we will assume to the

contrary that none of RA, RB, or RC are the zero tensor. For the remainder

of this section, we will be operating under that assumption. Thus, before we

prove this theorem, we state and prove some helpful lemmas.

Lemma 3.4. Given the 2-2-0 diagram, Rank(B) ≥ 2.

Proof. Precomposing RA + εBRB + εCRC = 0 with A yields:

A∗RA + εBA
∗RB + εCA

∗RC = 0

RA3 + εBRABA + εC RACA︸ ︷︷ ︸
0

= 0

RA3 = −εBRABA.

Given that we are working in an n-dimensional vector space V andRank(ABA) ≤
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2, we have:

Rank(ABA) ≤ 2⇒ dimKer(ABA) ≥ n− 2

⇒ dimKer(RABA) ≥ n− 2 (by Lemma 2.2)

⇒ dimKer(RA3) ≥ n− 2

⇒ dimKer(A3) ≥ n− 2 (by Lemma 2.2)

⇒ Rank(A3) ≤ 2

⇒ Rank(A) ≤ 2 (by Lemma 2.5).

We will now precomspose the original equation with C :

C∗RA + εBC
∗RB + εCC

∗RC = 0

RCAC︸ ︷︷ ︸
0

+εBRCBC + εCRC3 = 0

εCRC3 = −εBRCBC .

We can now operate as follows:

Rank(CBC) ≤ 2⇒ dimKer(CBC) ≥ n− 2

⇒ dimKer(RCBC) ≥ n− 2 (by Lemma 2.2)

⇒ dimKer(RC3) ≥ n− 2

⇒ dimKer(C3) ≥ n− 2 (by Lemma 2.2)

⇒ Rank(C3) ≤ 2

⇒ Rank(C) ≤ 2 (by Lemma 2.5).

Thus, since we have Rank(BA) ≤ 2 and Rank(CB) ≤ 2, it follows that

Rank(B) ≥ 2.

Notice that in order for none of our tensors to equal the zero tensor, we would

need Rank(A) = 2 and Rank(C) = 2. But does this stricter assumption con-
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tradict any previous known information about this weighted directed graph?

For instance, if Rank(A) = 2, Rank(C) = 2, and Rank(B) ≥ 2, we certainly

have Rank(BA) = 2, but do we still have Rank(ABA) = 2? It turns out

that we do.

Lemma 3.5. Given the 2-2-0 diagram,

1. If Rank(BA) = 2, then Rank(ABA) = Rank(BAB) = 2, and

2. if Rank(CB) = 2, then Rank(BCB) = Rank(CBC) = 2.

Proof. 1. Suppose for contradiction that Rank(BA) = 2 and Rank(ABA) <

2. By precomposing our linear dependence equation with A, we get

Rank(A3) < 2. By Lemma 2.5, it follows that Rank(A) < 2. This implies

that Rank(BA) < 2, which is a contradiction.

2. Suppose for contradiction that Rank(CB) = 2 and Rank(BCB) <

2. By precomposing our linear dependence equation with B, we get

Rank(C3) < 2. By Lemma 2.5, it follows that Rank(C) < 2. This implies

that Rank(CB) < 2, which is a contradiction.

Therefore, we can continue to assume that Rank(A) = Rank(C) = 2, and

Rank(B) ≥ 2. This leads us to our next result.

Lemma 3.6. Given the 2-2-0 diagram, dimV ≥ 4.

Proof. Suppose for contradiction that dimV = 3. Then both A and C are

3× 3 matrices. However, we know from the 2-2-0 diagram that Rank(A) =

Rank(C) = 2, and Im(C) ⊆ Ker(A). Since Rank(A) = 2 and dimV = 3,

this means that dimKer(A) = 1, which implies that Rank(C) ≤ 1. This

contradicts the fact that Rank(C) = 2. Thus, dimV cannot be less than

4.

In fact, we can generalize this result.
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Theorem 3.7. Given that A and C are linear transformations on V such

that Im(C) ⊆ Ker(A), we have dimV ≥ Rank(A) +Rank(C).

Proof. Since Im(C) ⊆ Ker(A), then, Rank(C) ≤ dimKer(A), which means

that Rank(C) ≤ dimV − Rank(A). Adding Rank(A) to both sides gets us

Rank(A) +Rank(C) ≤ dimV, as desired.

We are now ready to prove the main theorem of this section, Theorem 3.3.

But first, we must state the following lemma.

Lemma 3.8. [4] Let V be a vector space and let B be a linear transformation

on V. Given that Rank(B) ≥ 2, if there is a decomposition V = V1⊕ V2 with

RB = R1⊕R2 (where R1 ∈ A(V1) and R2 ∈ A(V2)), then either V1 ⊆ Ker(B)

or V2 ⊆ Ker(B).

We now prove Theorem 3.3.

Proof. Under our assumption that none of RA, RB, or RC are the zero tensor,

by Lemmas 3.4 and 3.5, we know that Rank(A) = Rank(C) = 2, and that

Rank(B) ≥ 2. Because Lemma 3.6 tells us that dimV ≥ 4, we will let

dimV = 4. From here, we can see that there exists a decomposition V =

V1 ⊕ V2 where V1 = Ker(C) and V2 = Ker(A). This is because the 2-2-

0 diagram tells us that Im(C) ⊆ Ker(A), so AC = 0, but because all of

the matrices we are considering in this paper are symmetric, we know that

CA = 0 and thus Im(A) ⊆ Ker(C). Now, observe that

RA + εBRB + εCRC = 0

implies that

RB = −εBRA − εBεCRC .

So, if we let v1 ∈ V1 and v2 ∈ V2, then by Definition 1.6, we know that

RA(v1, v2, ·, ·) = 0 (because v2 ∈ V2 = Ker(A)), and RC(v1, v2, ·, ·) = 0
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(because v1 ∈ V1 = Ker(C)). Thus,

RB(v1, v2, ·, ·) = −εBRA(v1, v2, ·, ·)− εBεCRC(v1, v2, ·, ·)

RB(v1, v2, ·, ·) = 0.

By Definition 1.5, this means that RB = R1 ⊕ R2, where RA ∈ A(V1) and

R2 ∈ A(V2). Thus, by Lemma 3.8, we can let V1 ⊆ Ker(B). This means

that V2 cannot be contained in Ker(B). And since dimV = 4 and V =

V1 ⊕ V2 where V1 = Ker(C) and V2 = Ker(A), and dimV1 = dimV2 =

2, then Rank(B) ≤ 2. So, since Rank(B) ≥ 2 by Lemma 3.4, we know

that Rank(B) = 2. Note that because A and C commute, then they are

simultaneously diagonalizable on an orthonormal basis {e1, e2, e3, e4}, which

we can arrange so that V1 = span{e1, e2} and V2 = span{e3, e4}. This means

that RA(e1, e2, e2, e1) = a1a2, where a1 and a2 are the nonzero eigenvalues of

A (this arises from the Spectral Theorem). However, observe that

RA + εBRB + εCRC = 0

implies

RA = −εBRB − εCRC .

So, because V1 is contained in both Ker(B) and Ker(C), then we have

RA(e1, e2, e2, e1) = −εB RB(e1, e2, e2, e1)︸ ︷︷ ︸
0

−εC RC(e1, e2, e2, e1)︸ ︷︷ ︸
0

a1a2 = 0.

This is a contradiction, because we had arranged our basis for V so that

a1a2 6= 0. Therefore, given the 2-2-0 diagram, there do not exist any nonzero

RA, RB, or RC that satisfy the linear dependence equation RA + εBRB +

εCRC = 0.
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3.4 The 2-2-1 Diagram

In this section, we examine the equation RA + εBRB + εCRC = 0 alongside

the following diagram.

1

2

2

A B

C

Figure 5: The 2-2-1 Diagram.

This gives us the following information:

Rank(BA) ≤ 2⇒ Rank(ABA) = Rank(BAB) ≤ 2 (by Lemma 2.6),

Rank(CB) ≤ 2⇒ Rank(CBC) = Rank(BCB) ≤ 2 (by Lemma 2.6), and

Rank(AC) ≤ 1⇒ Rank(CAC) = Rank(ACA) ≤ 1⇒ RCAC = RACA = 0.

Lemma 3.9. Given the 2-2-1 diagram, Rank(B) ≥ 2.

Proof. Precomposing RA + εBRB + εCRC = 0 with A yields:

A∗RA + εBA
∗RB + εCA

∗RC = 0

RA3 + εBRABA + εC RACA︸ ︷︷ ︸
0

= 0

RA3 = −εBRABA.

Given that we are working in an n-dimensional vector space V andRank(ABA) ≤
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2, we have:

Rank(ABA) ≤ 2⇒ dimKer(ABA) ≥ n− 2

⇒ dimKer(RABA) ≥ n− 2 (by Lemma 2.2)

⇒ dimKer(RA3) ≥ n− 2

⇒ dimKer(A3) ≥ n− 2 (by Lemma 2.2)

⇒ Rank(A3) ≤ 2

⇒ Rank(A) ≤ 2 (by Lemma 2.5).

We will now precomspose the original equation with C :

C∗RA + εBC
∗RB + εCC

∗RC = 0

RCAC︸ ︷︷ ︸
0

+εBRCBC + εCRC3 = 0

εCRC3 = −εBRCBC .

We can now operate as follows:

Rank(CBC) ≤ 2⇒ dimKer(CBC) ≥ n− 2

⇒ dimKer(RCBC) ≥ n− 2 (by Lemma 2.2)

⇒ dimKer(RC3) ≥ n− 2

⇒ dimKer(C3) ≥ n− 2 (by Lemma 2.2)

⇒ Rank(C3) ≤ 2

⇒ Rank(C) ≤ 2 (by Lemma 2.5).

Thus, since we have Rank(BA) ≤ 2 and Rank(CB) ≤ 2, it follows that

Rank(B) ≥ 2.

Theorem 3.10. Given the 2-2-1 diagram, there do not exist any nonzero

RA, RB, or RC that satisfy the equation RA + εBRB + εCRC = 0.
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Proof. Notice that if we let dimV ≥ 4, we could run into the same con-

tradiction that we found in the previous theorem, which involves decom-

posability. So, given that Rank(AC) ≤ 1 in this case, we need not have

Im(C) ⊆ Ker(A) and Im(A) ⊆ Ker(C). Thus, we may let dimV = 3. So,

given that dimV = 3 and all of our matrices A,B, and C are symmetric by

assumption, we can visualize the matrices as follows.

A =

a11 a12 a13

a12 a22 a23

a13 a23 a33

 , B =

b11 b12 b13

b12 b22 b23

b13 b23 b33

 , C =

c11 c12 c13

c12 c22 c23

c13 c23 c33

 .
In fact, without loss of generality, we can choose a basis for V such that A

is diagonalizable. Thus, we have

A =

a11 0 0

0 a22 0

0 0 0

 (letting Rank(A) = 2).

Then, we have

AC =

a11 0 0

0 a22 0

0 0 0


c11 c12 c13

c12 c22 c23

c13 c23 c33

 =

a11c11 a11c12 a11c13

a22c12 a22c22 a22c23

0 0 0

 .
From this, we can see that Rank(AC) = 1. We now have the following cases

for C.

Case 1. c11 6= 0, c12 = 0, c22 = 0, and c23 = 0. This means that

C =

c11 0 c13

0 0 0

c13 0 c33

 .
Now, given that dimV = 3, we are considering six different combinations of
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curvature entries: 1221, 1331, 2332, 1231, 2132, and 3123. We now construct

the following table, which provides a method of organizing the values of

RA, RB, and RC with respect to each of the six curvature entry combinations.

RA RB RC

1221 a11a22 b11b22 − b212 0

1331 0 b11b33 − b213 c11c33 − c213
2332 0 0 0

1231 0 0 0

2132 0 0 0

3123 0 0 0

Observe that the information in this table yields the following system of

equations. Our goal is to find a B which satisfies this system of equations:

RB(1221) = b11b22 − b212 = −εBa11a22
RB(1331) = b11b33 − b213 = −εBεC(c11c33 − c213)

RB(2332) = b22b33 − b223 = 0

RB(1231) = b11b23 − b13b21 = 0

RB(2132) = b22b13 − b23b12 = 0

RB(3123) = b33b12 − b23b13 = 0.

However, solving this system of equations is a long and tedious process, the

details of which are spared in this paper. It turns out that there is no solution

to this system of equations.

Case 2. c11 = 0, c12 = 0, and c22 = 0. This means that

C =

 0 0 c13

0 0 c23

c13 c23 c33

 .
Using the same method as we did for Case 1, we construct the following table
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for this case.

RA RB RC

1221 a11a22 a11a22 + εB(b11b22 − b212) 0

1331 0 εB(b11b33 − b213)− εC(c213) −c213
2332 0 εB(b22b33 − b223)− εC(c223) −c223
1231 0 0 0

2132 0 0 0

3123 0 εB(b33b12 − b23b13)− εC(c23c13) −c23c13
Again, observe that the information in this table yields a system of equations

that we wish to solve. However, just as in Case 1, this system of equations

is very tedious to solve, and it turns out that there are no solutions.

Case 3. c11 = 0, c12 = 0, and c13 = 0. This means that

C =

0 0 0

0 c22 c23

0 c23 c33

 .

Case 4. c11 6= 0 and c12 6= 0.

Case 5. c11 = 0 and c12 6= 0.

We continue analyzing cases 3, 4, and 5 in a similar manner, and we find

that there is never a solution in any of these cases.

4 Directions for Future Study

1. In addition to finding that there are no nonzero solutions to the equation

RA + εBRB + εCRC = 0 with respect to the 2-2-1 diagram, in the case where

Rank(AC) = 1, this problem gives rise to a new and interesting concept

called k−decomposability. That is, rather than dimKer(AC) = n, where

n = dimV, we have dimKer(AC) = n − k, where k > 0. So, in the case

where Rank(AC) = 1, we have dimKer(AC) = n− 1. But in the 2-2-0 case,
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when Rank(AC) = 0, we had complete decomposability. Now, we appear

to have what we might call ”1-decomposability.” Problems for future study

involve examining the concept of k−decomposability and its implications in

the context of linear dependence.

2. In addition to the diagrams that we studied in this paper, I looked at the

following two diagrams.

0

3

2

A B

C

Figure 6: The 3-2-0 Diagram.

1

3

2

A B

C

Figure 7: The 3-2-1 Diagram.

I conjecture that, so long as there is at least one 0 or 1 in the diagram,

then there will always be no nonzero RA, RB, or RC that satisfy the linear

dependence equation RA + εBRB + εCRC = 0. One problem for future study

is to prove this conjecture, or to disprove it and find the number that causes

this conjecture to break.
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3. Another diagram that I examined but ran out of time to perform an

in-depth study on is the following diagram.

2

3

2

A B

C

Figure 8: The 3-2-2 Diagram.

I was unable to arrive at any interesting conclusions about this diagram, but

I suspect that because there is no 0 or 1 in this diagram, we may get nonzero

RA, RB, and RC that satisfy the equation RA + εBRB + εCRC = 0. Another

problem for future study involves examining this diagram and determining

if anything changes about RA, RB, and RC .
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