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Abstract

In this paper we construct two spanning sets for the affine algebraic
curvature tensors. We then prove that every 2-dimensional affine algebraic
curvature tensor can be represented by a single element from either of the
two spanning sets. This paper provides a means to study affine algebraic
curvature tensors in a geometric and algebraic manner similar to previous
studies of ”normal” algebraic curvature tensors.

1 Introduction

Let V be a n-dimensional manifold. We define an algebraic curvature tensor
(ACT) to be an R ∈

⊗4
(V ∗) such that R satisfies the following algebraic

properties of a Riemannian curvature tensor:

1. R(x, y, z, w) = −R(y, x, z, w),

2. R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0,

3. R(x, y, z, w) = R(z, w, x, y).

There has been lots of research about algebraic curvature tensors because they
allow algebraic methods to be used to understand geometric properties of sur-
faces. The current body of work on ACTs has mostly focused on linear depen-
dence and decompositions of ACTs [1][5][6][8], but there has also been some
investigation of ACTs in specific model spaces [7].

The commonality among all of these investigations has been the existence
of canonical ACTs that span the space of of algebraic curvature tensors. It is
natural to suspect that conclusions similar to those made about ACTs would
also hold for the more general class of affine algebraic curvature tensors (AACTs)
if a canonical spanning set were found. AACTs are 4-tensors that have only the
first two properties above. As a result of this added generality there has never
been a definition of a canonical AACT.

The goal of this paper is to define the notion of a canonical AACT by
finding spanning sets of the affine algebraic curvature tensors. This is significant

1



because having these sets will allow researchers generalize the results previously
reserved only for ACTs, and it will disentangle the algebraic study of curvature
tensors from the Levi-Civita connection. As such, mathematicians will be able to
analyze the broader subject of affine geometry through an algebraic perspective
of AACTs.

In Section 2 we will review the necessary differential geometry to understand
the differences between affine and classic differential geometry. This will set the
stage for the following sections and highlight why the generalization of ACTs
to AACTs is not immediate.

In Section 3 we will geometrically derive the symmetric spanning set which
will provide us with the first notion of a canonical AACT. Specifically, we will
highlight how the canonical Rϕ’s require the Levi-Civita connection, while the
canonical AACTs do no need metric compatibility.

In Sections 4 and 5 we will algebraically prove that the two spanning set we
create are actually spanning sets of the AACTs.

Then, in Section 6 we will prove that every AACT on a two dimensional
hypersurface can be represented by a single canonical AACT in both the sym-
metric and anti-symmetric build. These final sections will act as a jumping off
point for further study of the canonical representations of AACTs.

2 Preliminaries

This section will follow the standard submanifolds and connections theory as
laid out in [4]. With that being said, one of the fundamental objects of study
for this paper are connections on manifolds. We lay out the definition we will
be using below.

Definition 1. Let π : E → M be a vector bundle on the manifold M , T (M)
be the tangent bundle of M , and E(M) be the space of smooth sections of E. A
connection in E is a map

∇ : T (M)× E(M)→ E(M),

written as (X,Y )→ ∇XY that has the following properties:

1. ∇XY is C∞(M)-linear over X. That is for f, g ∈ C∞(M) we have that

∇fX1+gX2Y = f∇X1Y + g∇X2Y

2. ∇XY is linear over R in Y . That is for a, b ∈ R we have that

∇Xa1Y1 + a2Y2 = a1∇XY1 + a2∇XY2.

3. ∇ satisfies this product rule for f ∈ C∞(M):

∇X(fY ) = f∇XY + (Xf)Y.
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We call ∇XY the covariant derivative of Y along X. It can be thought of
as the derivative of Y in the direction of X. Next, we define a linear connection
on M .

Definition 2. An linear connection is a connection in TM . That is

∇ : T (M)× T (M)→ T (M).

A well known and important result is that every manifold admits a linear
connection. A proof of this result can be found on page 52 of [4]. We will use
this when deriving the symmetric build in Section 3.

Now we will consider the relationship between a connection and a manifold.
Let M be a manifold embedded into Rn. For any surface M embedded into a
space with an ambient connection ∇ we can break it up into a tangential and
perpendicular component.

Definition 3. Let X and Y be vector fields on Rn. Let Rn have the metric
g(·, ·). We define (∇)> and (∇)⊥ to be the tangential and perpendicular compo-
nents of ∇ respectively.

Note that for points on M (∇XY )> is a linear connection on M , and
(∇XY )⊥ : T (M)× T (M)→ N (M). We call (∇XY )⊥ the second fundamental
form, and will denote it as η(X,Y ).

Proposition 1. If X,Y ∈ T (M) are extended arbitrarily to vector fields on the
ambient space, the following formula holds along M :

∇XY = (∇XY )> + η(X,Y ).

Note that this proof does not require metric compatibility of ∇. Also, a
proof that the extension of X and Y does not change the result can be found
on page 50 of [4].

Up until this point, there have been no differences between affine differential
geometry and regular differential geometry. The next definition provides the
first split in the two fields.

Definition 4. Let M have the metric 〈·, ·〉 and let X,Y, and Z be vector fields
on M . The Levi-Civita connection (or Riemannian connection), denoted as
∇LC , is the linear connection such that

1. ∇LCX Y −∇LCY X = [X,Y ],

2. X〈Y,Z〉 = 〈∇LCX Y,Z〉+ 〈Y,∇LCX Z〉.

We say ∇LC is torsion-free and metric compatible respectively.

The fundamental fact about the Levi-Civita connection is that it is the
unique connection on M such that both properties hold [4]. Affine geometry is
the geometry of manifolds that are not necessarily equipped with the Levi-Civita
connection. So, for our purposes we will only assume that the connections being
used are torsion-free, symmetric, and flat. We define these last two terms below.
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Definition 5. A connection ∇ is said to be symmetric if

∇XY = ∇YX.

Definition 6. Let X,Y , and Z be vector fields on M . Then we define the
curvature operator on M with ∇ to be

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

We denote the curvature operator on Rn as R(X,Y )Z.

Definition 7. A connection ∇ is said to be flat if

R ≡ 0.

We use this curvature operator to define the curvature on M and Rn.

Definition 8. Let X,Y , Z, and W be vector fields on M . Then we define the
curvature tensor on M with ∇ to be

R(X,Y, Z,W ) := 〈R(X,Y )Z,W 〉.

We define R(X,Y, Z,W ) to be the curvature on Rn.

Now that we have defined these fundamental objects we can move onto the
geometric derivation of a spanning set.

3 Geometric Derivation of the Spanning Set

For this section we will make four standing assumptions: (1) Mm is a manifold
embedded into Rn with codimension k, (2) M has a torsion-free connection ∇,
(3) g(·, ·) is a metric on Rn, and (4) Rn has a flat, symmetric, and torsion-free
connection ∇ such that (∇)> = ∇.

Ultimately, the fact that we do not have metric compatibility manifests itself
in the Weingarten equation.

Proposition 2. Suppose X,Y ∈ T (M) and N ∈ N (M). When X,Y,N are
extended arbitrarily to the ambient space, the following equation holds at points
of M :

g(∇XN,Y ) = g(N, η(X,Y )).

We call this the Weingarten equation.

The Weingarten equation is critical in deriving the canonical ACTs, but it
also requires ∇ to be metric compatible. As we will show, this is the primary
reason that the set of canonical ACTs is not a complete set of canonical AACTs.

Proposition 3. (∇)> and η are torsion-free connections.

Proof. First we will prove (∇)> and η are connections and then that they are
torsion-free.
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1. η(X,Y ) and (∇XY )> are C∞(M)-linear over X because

η(fX1 + gX2, Y ) = (∇fX1+gX2
Y )⊥ = f(∇X1

Y )⊥ + g(∇X2
Y )⊥

= fη(X1, Y ) + gfη(X2, Y ),

and
(∇fX1+gX2

Y )> = f(∇X1
Y )> + g(∇X2

Y )>

since ∇ is a connection.

2. η(X,Y ) and (∇XY )> are linear over R over Y because for a1, a2 ∈ R we
have

η(X, a1Y1 + a2Y2) = (∇Xa1Y1 + a2Y2)⊥ = (∇Xa1Y1)⊥ + (∇Xa2Y2)⊥

= η(X, a1Y1) + η(X, a2Y2)

and
(∇Xa1Y1 + a2Y2)> = (∇Xa1Y1)> + (∇Xa2Y2)>.

This too is because ∇ is a connection.

3. Finally, η(X,Y ) and (∇XY )> follow the product rule. We see that for
f ∈ C∞(M)

η(X, fY ) = (∇XfY )⊥ = f(∇XY )⊥ + ((Xf)Y )⊥

and
(∇XfY )> = f(∇XY )> + ((Xf)Y )>.

So, η(X,Y ) and (∇XY )> are connections.
Next, they are torsion-free because

∇XY −∇YX = [X,Y ].

That means that

η(X,Y )− η(X,Y ) = (∇XY )⊥ − (∇YX)⊥ = [X,Y ]⊥

and
(∇XY )> − (∇YX)> = [X,Y ]>.

We also will prove one last property of η.

Proposition 4. η(A,B) is symmetric.

Proof. η is symmetric due to the symmetry of ∇XY and the fact that two
vectors are equal if and only if their perpendicular parts are equal. Thus,

η(X,Y ) = (∇XY )⊥ = (∇YX)⊥ = η(Y,X).
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We now begin to derive our basis for the AACTs geometrically. First of all,
notice that for any vector fields A and B on M , η(A,B) is in the normal bundle
of M . Let n1, ..., nk to be a basis for NM , and let hi(A,B) be smooth functions
from M to R. Then,

η(A,B) =

k∑
i=1

hi(A,B)ni.

Let us look at R. Let X,Y, Z and W be vector fields on Rn in the tangent
bundle of M . We see that by expanding ∇ into ∇+ η we get that

0 = R(X,Y, Z,W ) = g(R(X,Y )Z,W )

= g(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W )

= g(∇X(∇Y Z + η(Y,Z))−∇Y (∇XZ + η(X,Z))−∇[X,Y ]Z,W )

= g(∇X(∇Y Z) +∇X(η(Y, Z))−∇Y (∇XZ)−∇Y (η(X,Z))−∇[X,Y ]Z,W )

= g(∇X∇Y Z + η(X,∇Y Z),W )− g(∇Y∇XZ + η(Y,∇XZ),W )

− g(∇[X,Y ]Z + η([X,Y ], Z),W ) + g(∇X(η(Y, Z)),W )− g(∇Y (η(X,Z)),W ).

Recall that W is a vector field in the tangent bundle of M and η exclusively
maps into the tangent bundle. So, we can eliminate their inner products to get

0 = g(∇X∇Y Z,W )− g(∇Y∇XZ,W )− g(∇[X,Y ]Z,W ) + g(∇X(η(Y, Z)),W )

− g(∇Y (η(X,Z)),W )

= R(X,Y, Z,W ) + g(∇X(η(Y,Z)),W )− g(∇Y (η(X,Z)),W ).

Then by breaking down η into its components we get

R(X,Y, Z,W ) = R(X,Y, Z,W ) +

k∑
i=1

g(∇X(hi(Y,Z)ki),W )

−
k∑
j=1

g(∇Y (hj(X,Z)kj),W ).

Using the product rule of connections gives us

R(X,Y, Z,W ) = R(X,Y, Z,W ) +

k∑
i=1

g((hi(Y, Z)∇Xki) +X(hi(Y,Z))ki,W )

−
k∑
j=1

g(hj(X,Z)∇Y kj +X(hj(X,Z))kj ,W ).

Then, since X(hj(X,Z))kj is in the normal bundle of M its inner product
with W is 0. Hence we can simplify it down to
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R(X,Y, Z,W ) = R(X,Y, Z,W ) +

k∑
i=1

g((hi(Y,Z)∇Xki),W )

−
k∑
j=1

g(hj(X,Z)∇Y (kj),W ).

Simply letting αj(X,W ) := −g(∇Xkj ,W ) gives us that

R(X,Y, Z,W ) = R(X,Y, Z,W )−
k∑
i=1

hi(Y, Z)αi(X,W )

+

k∑
j=1

hj(X,Z)αj(Y,W ).

But, R = 0 because it is flat. So we have the result

R(X,Y, Z,W ) =

k∑
i=1

αi(X,W )hi(Y,Z)− αi(Y,W )hi(X,Z).

This has a strikingly similar form to the Rϕ’s that generate the ACTs, so we
suspect that these functions generate the AACTs. But, before we prove that,
we must check that these functions are AACTs to begin with.

Proposition 5. R(X,Y, Z,W ) =
∑k
i=1 αi(X,W )hi(Y,Z) − αi(Y,W )hi(X,Z)

where αi ∈
⊗2

(V ∗) and hi ∈ S2(V ∗) is an AACT.

Proof. We first check the anti-symmetry in the first two spots. We get that

R(X,Y, Z,W ) =

k∑
i=1

αi(X,W )hi(Y,Z)− αi(Y,W )hi(X,Z)

= −

(
k∑
i=1

αi(Y,W )hi(X,Z)− αi(X,W )hi(Y, Z)

)
= −(R(Y,X,Z,W )).

Then, checking the Bianchi identity gives us that

R(X,Y, Z,W ) +R(Y, Z,X,W ) +R(Z,X, Y,W )

=

k∑
i=1

[αi(X,W )hi(Y,Z)− αi(Y,W )hi(X,Z)

+ αi(Y,W )hi(Z,X)− αi(Z,W )hi(Y,X)

+ αi(Z,W )hi(X,Y )− αi(X,W )hi(Z, Y )]

= 0.

7



Definition 9. We define

Rα,h(X,Y, Z,W ) :=

k∑
i=1

αi(X,W )hi(Y,Z)− αi(Y,W )hi(X,Z)

where αi ∈
⊗2

(V ∗) and hi ∈ S2(V ∗)

So, we have that the Rα,h’s are AACTs, and that they can be found in a
similar way to the Rϕ. Next, we will prove our conjecture that the Rα,h’s really
are a spanning set.

4 The Symmetric Build

While we define Rα,h(X,Y, Z,W ) :=
∑k
i=1 αi(X,W )(Y,Z)−αi(Y,W )hi(X,Z),

in Section 4 we will only be denoting it as α(X,W )h(Y,Z)−α(Y,W )h(X,Z) for
simplicity. The proofs can easily be adapted back to the sum definition simply
by defining α1 and h1 to be tensors we pick below and letting all other αi and
hi equal 0.

Definition 10. The set A := {Rα,h : α ∈
⊗2

(V ∗), h ∈ S2(V ∗)} where S2(V )
is the set of symmetric 2-tensors.

Theorem 1. The set of affine algebraic curvature tensors on V is spanned by
the set A.

Proof. Let W be an arbitrary affine algebraic curvature tensor, and let Tijkl =
ei ⊗ ej ⊗ ek ⊗ el − ej ⊗ ei ⊗ ek ⊗ el where ei is a basis vector for V and ei is a
dual basis vector of V ∗. From here, W can be broken up like this:

W =
∑

i,j distinct

cijijTijij + cijiiTijii

+
∑

i,j,k distinct

cijkiTijki + cijikTijik + cijkkTijkk

+
∑

i,j,k,l distinct

cijklTijkl

where all indices go from 1 to n. As such, Tijkl essentially encodes how W acts
on (ei, ej , ek, el). Also, note that all other possible Tijkl’s can be obtained from
swapping the first two indices. Then, we can see that proving each of these
sums is in A will prove that W ∈ A, which proves the theorem. Following this
logic, we will break this argument into cases dealing with these sums.

Case 1: Tijij
We know thatTijij is a map that takes (ei, ej , ek, el) to 1, (ej , ei, ek, el) to −1,
and all other basis vectors to 0. So, if there is a linear combination of Rα,h’s that
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agrees with Tijij on the basis vectors, then Tijij ∈ A and the linear combination

of Tijij ’s is in A as well. Now, for any arbitrary α ∈
⊗2

(V ), h ∈ S2(V ) we have
that

Rα,h(ei, ej , ei, ej) = α(ei, ej)h(ej , ei)− α(ej , ej)h(ei, ei).

If we pick α and h so that α(ej , ej) = −1, h(ei, ei) = 1 and they map all other
basis vectors to 0, then Tijij(ei, ej , ei, ej) = Rα,h(ei, ej , ei, ej) = 1. This in turn
means that Tijij(ej , ei, ei, ej) = Rα,h(ej , ei, ei, ej) = −1. We also know that
Tijij sends all other combinations of basis vectors to 0, so we need to show that
Rα,h does as well.

In order for an input to be non-zero for Rα,h, we have to have ei in the third
position and ej in the fourth position. Also, ei and ej must occupy either the
first or second positions. Hence, the only non-zero inputs are (ei, ej , ei, ej) and
(ej , ei, ei, ej) which is what was desired. Therefore Tijij = Rα,h ∈ A.

Case 2: Tijii
Similarly to the last case, we want to find an Rα,h that equals Tijii. Again, for

an arbitrary α ∈
⊗2

(V ∗), h ∈ S2(V ∗) we have that

Rα,h(ei, ej , ei, ei) = α(ei, ei)h(ej , ei)− α(ej , ei)h(ei, ei).

So, if we pick α and h so that α(ej , ei) = −1, h(ei, ei) = 1 and they map all
other basis vectors to 0, then we have that Tijii = Rα,h.

Case 3: Tijik
Following the same logic as the previous cases, we see that for an arbitrary α
and h we have that

Rα,h(ei, ej , ei, ek) = α(ei, ek)h(ej , ei)− α(ej , ek)h(ei, ei).

So, picking α and h such that α(ej , ek) = −1, h(ei, ei) = 1 and all other combi-
nations of basis vectors are mapped to zero gives us that Tijik = Rα,h.

Case 4: Tijki and Tijkk
We start off in a similar manner to the last three cases, and see that

Rα,h(ei, ej , ek, ei) = α(ei, ei)h(ej , ek)− α(ej , ei)h(ei, ek).

Picking α and h such that α(ej , ei) = −1, h(ei, ek) = 1, and all other basis
vectors get mapped to 0. Unlike in previous cases where we could ignore the
symmetry of h by defining its only nonzero term to be (ei, ei), in this case we
also have that h(ej , ek) = h(ek, ej) = 1. This means that

Rα,h(ei, ej , ek, ei) = 1

Rα,h(ej , ei, ek, ei) = −1

Rα,h(ek, ej , ei, ei) = 1

Rα,h(ej , ek, ei, ei) = −1

So unlike in the previous cases Rα,h 6= Tijki. Instead, Rα,h = Tijki + Tkjii.
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Now we will examine Tkjii. Consider another arbitrary α̃ ∈
⊗2

(V ∗) and

h̃ ∈ S2(V ∗). Then, we have that

Rα̃,h̃(ek, ej , ei, ei) = α̃(ek, ei)h̃(ej , ei)− α̃(ej , ei)h̃(ek, ei).

Pick α̃ and h̃ so that α̃(ek, ei) = 1 and h̃(ej , ei) = h̃(ei, ej) = 1. That means
that 

Rα̃,h̃(ek, ej , ei, ei) = 1

Rα̃,h̃(ej , ek, ei, ei) = −1

Rα̃,h̃(ek, ei, ej , ei) = 1

Rα̃,h̃(ei, ek, ej , ei) = −1

So, Rα̃,h̃ = Tkjii + Tkiji.
Let W (ei, ej , ek, el) = cijkl for any i, j, k, l ∈ {1, ..., n}. Since W satisfies the

Bianchi identity, we can pick these constants so that cijkl + cjkil + ckijl = 0. We
claim that all terms in the Tijki and Tkjii sums can be expressed by a linear
combination of Rα,h and Rα̃,h̃. We need

Rα,h(ei, ej , ek, ei) + yRα̃,h̃(ei, ej , ek, ei) = cijki

Rα,h(ej , ek, ei, ei) + yRα̃,h̃(ej , ek, ei, ei) = cjkii

Rα,h(ek, ei, ej , ei) + yRα̃,h̃(ek, ei, ej , ei) = ckiji

If we let x = cijki and y = ckiji we can check that we get

cijkiRα,h(ei, ej , ek, ei) + ckijiRα̃,h̃(ei, ej , ek, ei) = cijki · 1 + ckiji · 0 = cijki.

Similarly, for the input (ek, ei, ej , ei) this linear combination gives us

cijkiRα,h(ek, ei, ej , ei) + ckijiRα̃,h̃(ek, ei, ej , ei) = cijki · 0 + ckiji · 1 = ckiji.

The final non-zero, independent input is (ej , ek, ei, ei). We have that

cijkiRα,h(ej , ek, ei, ei) + ckijiRα̃,h̃(ej , ek, ei, ei) = cijki · −1 + ckiji · −1 = cjkii.

And, since

cijklRα,h + ckijiRα̃,h̃ = cijkl(Tijki + Tkjii) + ckiji(Tkjii + Tkiji)

we see that all other combinations of basis vectors are mapped to 0.
Hence, Rα,h+Rα̃,h̃ covers the Tijki and Tjkii terms, and thus the

∑
cijkiTijki

and
∑
cijkkTijkk summations can be completely replicated through the summa-

tion of (Rα,h +Rα̃,h̃)’s.

Case 5: Tijkl
The final case is very similar to the fourth one. We start by considering an
arbitrary Rα,h for the input (ei, ej , ek, el). This is

Rα,h(ei, ej , ek, el) = α(ei, el)h(ej , ek)− α(ej , el)h(ei, ek).
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Let α(ei, el) = 1 = h(ej , ek) = h(ek, ej). The non-zero, independent inputs
are (ei, ej , ek, el) and (ei, ek, ej , el) both of which map to 1. Thus, Rα,h = Tijkl+
Tikjl.

We now shift to consider another arbitrary Rα̃,h̃ for the input (ei, ek, ej , el).
That gives us

Rα̃,h̃(ei, ek, ej , el) = α̃(ei, el)h̃(ek, ej)− α̃(ek, el)h̃(ei, ej).

Let α̃(ek, el) = −1 and h̃(ei, ej) = h̃(ej , ei) = 1. Then the non-zero, independent
inputs of Rα̃,h̃ are (ei, ek, ej , el) and (ej , ek, ei, el). Thus, Rα̃,h̃ = Tikjl + Tjkil.

As in the previous case, letW (ei, ej , ek, el) = cijkl for any i, j, k, l ∈ {1, ..., n}.
Again, we can pick these constants so that cijkl+ cjkil+ ckijl = 0. Then, we can
consider a linear combination xRα,h + yRα̃,h̃. We need

xRα,h(ei, ej , ek, el) + yRα̃,h̃(ei, ej , ek, el) = cijkl

xRα,h(ej , ek, ei, el) + yRα̃,h̃(ej , ek, ei, el) = cjkil

xRα,h(ek, ei, ej , el) + yRα̃,h̃(ek, ei, ej , el) = ckijl

So, we find that x = cijkl and y = cjkil. Plugging these inputs into the linear
combination shows us that

cijklRα,h(ei, ej , ek, el) + cjkilRα̃,h̃(ei, ej , ek, el) = cijkl · 1 + cjkil · 0 = cijkl,

cijklRα,h(ej , ek, ei, el) + cjkilRα̃,h̃(ej , ek, ei, el) = cijkl · 0 + cjkil · 1 = cjkil,

and

cijklRα,h(ek, ei, e,j, el) + cjkilRα̃,h̃(ek, ei, ej , el) = cijkl · −1 + cjkil · −1

= −(cijkl + cjkil) = ckjil.

Notice that the last equality follows from the Bianchi identity. Finally, we know
that

cijklRα,h + ckijlRα̃,h̃ = cijkl(Tijkl + Tikjl) + ckijl(Tikjl + Tjkil).

So, we can see that the linear combination is zero on all other inputs. As a
result, a summation of (Rα,h+Rα̃,h̃)’s can give the same output as

∑
cijklTijkl.

So,
∑
cijklTijkl ∈ A, and that proves that for any W an AACT

W ∈ A.

Not only can we span the AACTs on V with A, but we can also use anti-
symmetric p’s to create another spanning set.
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5 The Anti-Symmetric Build

We derived the Rα,h’s geometrically, but for the anti-symmetric case we obtain
our spanning set through analogy to the canonical anti-symmetric ACTs, Rψ’s.

Definition 11. We define

Rα,p(X,Y, Z,W ) =

k∑
i=1

αi(X,W )pi(Y,Z)−αi(Y,W )pi(Z,Z)−2αi(Z,W )pi(X,Y )

where αi ∈
⊗2

(V ∗) and pi ∈ Λ2(V ∗).

Proposition 6. Rα,p is an AACT.

Proof. Again, we check the anti-symmetry in the first two spots. We get that

Rα,p(X,Y, Z,W ) =

k∑
i=1

[αi(X,W )pi(Y, Z)− αi(Y,W )pi(X,Z)

− 2αi(Z,W )pi(X,Y )]

= −

(
k∑
i=1

αi(Y,W )pi(X,Z)− αi(X,W )pi(Y, Z)− 2αi(Z,W )pi(X,Y )

)
= −(Rα,p(Y,X,Z,W )).

Then, checking the Bianchi identity gives us that

Rα,p(X,Y, Z,W ) +Rα,p(Y,Z,X,W ) +Rα,p(Z,X, Y,W )

=

k∑
i=1

[αi(X,W )pi(Y,Z)− αi(Y,W )pi(X,Z)− 2αi(Z,W )pi(X,Y )

+ αi(Y,W )pi(Z,X)− αi(Z,W )pi(Y,X)− 2αi(X,W )pi(Y, Z)

+ αi(Z,W )pi(X,Y )− αi(X,W )pi(Z, Y )− 2αi(Y,W )pi(Z,X)]

= 0.

Much like in the Rα,h-case we will omit the sums in our usage of Rα,p’s.

Definition 12. The set Q := {Rα,p : α ∈
⊗2

(V ∗), p ∈ Λ2(V )} where Λ2(V ) is
the set of anti-symmetric 2-tensors.

Theorem 2. The set of affine algebraic curvature tensors on V is spanned by
the set Q.

Proof. This proofs follows very similarly to the proof that A spans the AACTs
on V. In fact, we define Tijkl the same as in the previous theorem, and we break
up an arbitrary AACT, W , in the same way. We again have

12



W =
∑

i,j distinct

cijijTijij + cijiiTijii

+
∑

i,j,k distinct

cijkiTijki + cijikTijik + cijkkTijkk

+
∑

i,j,k,l distinct

cijklTijkl

Also, like we had done in the previous proof let W (ei, ej , ek, el) = cijkl for
any i, j, k, l ∈ {1, ..., n}, and pick these c’s so that they satisfy the Bianchi
identity.

Case 1: Tijij
We again consider an arbitrary Rα,h with the input (ei, ej , ei, ej). We see that

Rα,p(ei, ej , ei, ej) = α(ei, ej)p(ej , ei)− α(ej , ej)p(ei, ei)− 2α(ei, ej)p(ei, ej).

Let α(ei, ej) = 1, p(ej , ei) = 1, and all other independent combinations of
basis vectors be sent to 0. Then, we have that Rα,p(ei, ej , ei, ej) = 3 and
Rα,p(ej , ei, ei, ej) = −3. As such, we need to show that Rα,p is zero on all
other independent combinations of basis vectors.

In order for Rα,p to be non-zero, its input must have an ej in its fourth
slot. But, then all other combinations of basis vectors will be (ei, ej , ei, ej),
(ej , ei, ei, ej), or (ei, ei, ej , ej). And, the last of these is 0 for all AACTs. So, we
have an Rα, p such that 1

3Rα,p = Tijij ∈ Q.

Case 2: Tijii
Similarly, computing Rα,p with the input (ei, ej , ei, ei) gives us that

Rα,p(ei, ej , ei, ej) = α(ei, ej)p(ej , ei)− α(ej , ej)p(ei, ei)− 2α(ei, ej)p(ei, ej).

Let α(ei, ej) = 1 p(ej , ei) = 1, and all other combinations of basis vectors be
mapped to 0. Then the only non-zero, independent input is (ei, ej , ei, ei) which
is mapped to 3. So, 1

3Rα,p = Tijii ∈ Q.

Case 3: Tijik
We start in the same way as before by computing Rα,p(ei, ej , ei, ek). If we
let α(ei, ek) = 1, p(ej , ei) = 1, and all other combinations of basis vectors be
mapped to 0 we get that

Rα,p(ei, ej , ei, ek) = α(ei, ek)p(ej , ei)−α(ej , ek)p(ei, ei)−2α(ei, ek)p(ei, ej) = 3.

As in the first two cases, this is the only non-zero, independent input, and thus
we get that 1

3Rα,p = Tijik ∈ Q.

Case 4: Tijki and Tjkii
We let α(ej , ei) = 1, p(ei, ek) = −1, and compute that Rα,p(ei, ej , ek, ei) = 1.
This Rα,p has two other distinct inputs, namely (ej , ek, ei, ei) which is also
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mapped to 1 and (ek, ei, ej , ei) which is mapped to −2. So, Rα,p = Tijki +
Tjkii − 2Tkiji.

We now look at the Tjkii case. Let α̃(ek, ei) = 1, p̃(ej , ei) = −1, and compute
that

Rα̃,p̃(ej , ek, ei, ei) = α̃(ej , ei)p̃(ek, ei)−α̃(ek, ei)p̃(ej , ei)−2α̃(ei, ei)p̃(ej , ek) = 1.

We also see that Rα̃,p̃ maps (ei, ej , ek, ei) to −2 and (ek, ei, ej , ei) to 1. So,
Rα̃,p̃ = Tjkii + Tkiji − 2Tijki.

Much like in case 4 of the symmetric build’s proof, we solve the following
systems of equations:

xRα,p(ei, ej , ek, ei) + yRα̃,p̃(ei, ej , ek, ei) = cijki,

xRα,p(ej , ek, ei, ei) + yRα̃,p̃(ej , ek, ei, ei) = cjkii,

xRα,p(ek, ei, ej , ei) + yRα̃,p̃(ek, ei, ej , ei) = ckiji.

Solving this ultimately gives us that x =
2cjkii+cijki

3 and y =
cjkii−cijki

3 .
Finally, we see that if we plug in x and y into the above linear combination and
evaluate sum at (ei, ej , ek, ei), (ej , ek, ei, ei), or (ek, ei, ej , ei) we get the desired
result. Moreover, since

2cjkii + cijki
3

Rα,p +
cjkii − cijki

3
Rα̃,p̃ =

2cjkii + cijki
3

(Tijki + Tjkii − 2Tkiji)

+
cjkii − cijki

3
(Tjkii + Tkiji − 2Tijki)

these are the only independent inputs that do not map to 0. Hence, we have
that both

∑
cijkiTijki and

∑
cjkiiTjkii can be expressed as a sum of Rα,p’s.

Case 5: Tijkl
As in the last few cases, we let α(ei, el) = 1, p(ej , ek) = 1, and all other
combinations of basis vectors be mapped to 0. Then, we get that

Rα,p(ei, ej , ek, el) = α(ei, el)p(ej , ek)−α(ej , el)p(ei, ek)−2α(ek, el)p(ei, ej) = 1.

This has two other non-zero, independent inputs: (ek, ei, ej , el) which is mapped
to 1 and (ej , ek, ei, el) which is mapped to −2. So, Rα,p = Tijkl +Tkijl− 2Tjkil.

Now let α̃(ek, el) = 1, p̃(ei, ej) = 1, and compute

Rα̃,p̃(ek, ei, ej , el) = α̃(ek, el)p̃(ei, ej)− α̃(ei, el)p̃(ek, ej)−2α̃(ej , el)p̃(ek, ei) = 1.

This also has two other non-zero, independent inputs outside its kernel, (ej , ek, ei, el)
which maps to 1 and (ei, ej , ek, el) which maps to −2. So, Rα̃,p̃ = Tkijl+Tjkil−
2Tijkl.

Much like in Case 4, we now solve the following system of equations:
xRα,p(ei, ej , ek, el) + yRα̃,p̃(ei, ej , ek, el) = cijkl,

xRα,p(ek, ei, ej , el) + yRα̃,p̃(ek, ei, ej , el) = ckijl,

xRα,p(ej , ek, ei, el) + yRα̃,p̃(ej , ek, ei, el) = cjkil.
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We get that x =
2ckijl+cijkl

3 and y =
ckijl−cijkl

3 . So, we can express
∑
cijklTijkl

as a sum of (xRα,p + yRα̃,p̃)’s. Hence,
∑
cijklTijkl ∈ Q.

As such, all of the sums in (2) are a linear combination of Rα,p’s which
implies that W ∈ Q. Therefore Q spans the AACTs.

6 κ(2) = σ(2) = 1

It is natural to ask the maximum number of Rα,h’s required to represent any
given AACT on an n-dimensional manifold. We will denote this number σ(n).
In this section we will prove the following result.

Theorem 3. σ(2) = 1.

Proof. Let A be an arbitrary AACT on a 2-dimensional manifold. A’s behavior
for any (x, y, z, w) is defined by its behavior on a set of basis vectors of M which
we will call {e1, e2}. Then, by evaluating A on all the independent sets of basis
vectors we can show that there is an Rα,h = A. If there was such an Rα,h then
we would need

A1211 = α(e1, e1)h(e2, e1)− α(e2, e1)h(e1, e1),

A1212 = α(e1, e2)h(e2, e1)− α(e2, e2)h(e1, e1),

A1221 = α(e1, e1)h(e2, e2)− α(e2, e1)h(e1, e2),

A1222 = α(e1, e2)h(e2, e2)− α(e2, e2)h(e1, e2).

Then, simply letting h(e1, e1) = 1, h(e2, e2) = 1, −α(e2, e1) = A1211,
−α(e2, e2) = A1212, α(e1, e1) = A1221, and α(e1, e2) = A1222 gives us an
Rα,h = A.

Similarly, we define κ(n) to be the maximum number of Rα,p’s needed to
represent any AACT on an n-dimensional manifold. This gives us a similar
result the to the previous theorem.

Theorem 4. κ(2) = 1.

Proof. By the same logic as in the previous proof, we consider if there was an
Rα,p = A. Then we would need


A1211 = α(e1, e1)p(e2, e1)− α(e2, e1)p(e1, e1)− 2α(e1, e1)p(e1, e2),

A1212 = α(e1, e2)p(e2, e1)− α(e2, e2)p(e1, e1)− 2α(e1, e2)p(e1, e2),

A1221 = α(e1, e1)p(e2, e2)− α(e2, e1)p(e1, e2)− 2α(e2, e1)p(e1, e2),

A1222 = α(e1, e2)p(e2, e2)− α(e2, e2)p(e1, e2)− 2α(e2, e2)p(e1, e2).

So, much like in Theorem 3, letting p(e1, e1) = 1, p(e2, e2) = 1, −α(e2, e1) =
A1211, −α(e2, e2) = A1212, α(e1, e1) = A1221, and α(e1, e2) = A1222 gives us an
Rα,p = A.
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7 Conclusion and Open Problems

Thus far we have constructed two spanning sets for the AACTs and discovered
σ(2) and κ(2). As was mentioned in the introduction, this is only the starting
point for questions concerning AACTs. Here are just a few interesting open
problems:

1. What are upper bounds for σ(n) and κ(n)? Are these bounds sharp?

2. Under what conditions can linear independence of multiple canoncial AACTs
occur?

3. Is there a geometric proof that the symmetric build spans the AACTs?
There is such a proof for the Rϕ, but this proof is not able to be directly
adapted for AACTs due to needing each Rα,h to be geometrically realized
on a manifold with a connection such that ∇ = (∇)> but (∇)> is flat in
Rn.
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