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ABSTRACT. A circular DNA molecule uses twist and writhe to transmute into
the supercoil state where specific topoisomerase enzymes are able to cut the DNA
strand(s) to reduce the effect of supercoiling. The goal of this paper is to cut a
rational link the represents n number of supercoiled integral tangles with a
crossing number ¢ which composes a total of m rational tangles. The combination
of rational tangles configures a Montesinos knot where we obtain an upper bound
stick number s. The upper bound for the stick number gives a rational number
that represents how many sticks are required to turn a Montesinos knot into a
stick Montesinos knot. We only focus on alternating Montesinos knots in this
paper. Lee, No and Oh managed to show an alternating Montesinos link can have
an upper bound stick number s with s < ¢+ 1. However, this paper shows an
improved upper bound of s for an alternating Montesinos knot when there is a
’large’ c. Let K be an alternating Montesinos knot or link with the number of
half-twist e, the crossing number c, the supercoiled integral tangles n, rational
tangles m, and the stick number s. Shown as: s < %c +2n+3m+e+1.

1. Introduction

The inspiration for this project is examining how knot theory correlates to molecular biology.
DNA (deoxyribonucleic acid) is located in the cell nucleus which makes up all (with some excep-
tions) living things including plants, animals, and bacteria. DNA is formed from two molecular
strands twisted and knotted together that form a right-handed double helix. The linking number
(Lk) is the number of times two sugar-phosphate chains of DNA wrap around each other. Another
way to describe Lk is the number of turns or twists needed to unwind in a circular DNA molecule.
To find the Lk, we count the number of twist (7w) and the writhe (Wr). This is depicted as
Lk = Tw+ Wr. Insko and Trapp [1] took advantage of twist and writhe to assemble integral tangles

with an efficient upper bound stick number s when each twist has more than seven crossings, roughly.



They show it as s < %c +2n+ 3. Note that Insko and Trapp utilized this approach to construct stick
2-bridge links formed from these integral tangles. However, by cutting two strands in a 2-bridge link
diagram, we can configure a stick rational tangle that uses the same stick number as the 2-bridge
link construction [1].

Now thanks to Lee, Oh, and No [3], they devised a way of putting a stick rational tangle inside a
virtual box. After following a set of specific conditions, a virtual box can be added together with
other virtual boxes. Meaning we can add any number of stick rational tangles together. Referring
again to [3], as we combine virtual boxes together to an arbitrary 0, it is possible to form an
alternating Montesinos knot. Note that not all Montesinos knots are alternating, however, this paper
will only consider alternating Montesinos knots. Stick Montesinos knots provide an upper bound for
the stick number. The upper bound for the stick number gives a rational number that represents how
many sticks are required to turn a Montesinos knot or link into a stick Montesinos knot or link. Lee,
Oh, and No [3] demonstrates an upper bound for the stick number s of an alternating Montesinos
link given by s < ¢+ 1. However, this paper demonstrates an improved upper bound for s that uses
fewer sticks when the crossing number is ‘large’ enough. The main topic of this paper is Theorem

1, which utilizes the twist and writhe to construct an improved s for alternating Montesinos knots.

Theorem 1. Let K be an alternating Montesinos knot or link with the number of half-twist e, the
crossing number c, the supercoiled integral tangles n, rational tangles m and the stick number s.

Then
s < %c—|—2n+3m+e—|—1.

Section 2 describes supercoiled integral tangles, rational links, and Montesinos links. Readers
should skip this section if they are already comfortable with the concepts or can refer back to section
if they need any clarifications. Then Section 3 explains what stick rational tangles are as well as
how to convert a rational link into a stick rational tangle. After, we transition over to placing a stick
rational tangle inside of a virtual box and adding any number of virtual boxes together in section 4.

Section 5 discusses stick Montesinos knots and how to find an improved upper bound stick number

2



s by applying the Theorem 1. We end this paper in section 6 where we further elaborate on DNA

and leave some open questions for people to ponder.

2. Background of Tangles, Rational Links, and Monesinos Links

2.1. Rational tangles, Rational Knots, Rational Links

Any reader who is unaccustomed to knot theory must first understand the concept of a knot and
link. Imagine there is a person with a piece of string. If the person were to tie a knot with the two
end strands and glued the two endpoints of the string together, this would form a knotted loop. A
knot is a knotted loop of string with its cross-section being at a single point. A knot is considered a
closed curve in three dimensions that does not intersect on itself anywhere. The areas where the
knot (K) crosses over itself is known as the crossings of the projection. The crossing number ¢ of

K is the smallest number of crossings in a projection of any K. The picture below is considered a

o (D

Examining the picture above, from left to right, ¢ = O (unknot/trivial knot), 1 (trivial knot), 4

projection of K.

(figure-eight knot). A link is a collection of knotted loops that all intertwine with each other which
does not cut through itself. A linking number Lk depicts the number of times that each curve winds
around the other. A reader who is unfamiliar with knot theory should know that not all links are

knots, but all knots are links since a knot can be described as a link with one component. However,



when knots or links are mentioned in certain parts of the reading, sometimes we are referring to
both knots and links .

John H. Conway introduced a notation for knots that is related to knotting in DNA called tangles.
A two string tangle can be thought up as two-strands contained in a three dimensional ball with
the strands penetrating the sphere four times. A tangle in a knot (K) or link (L) is a region in the
projection plane surrounded by a circle (or box) where the K or L crosses the circle precisely four
times. One can think of the four points where the tangle crosses the circle as the compass directions
Northwest (NW), Northeast (NE), Southeast (SE), and Southwest (SW). I want to point out the
tangle diagrams in Figure 1 has the tangles inside of a box rather than a circle. The concept of a
tangle still holds true inside of a box and the purpose of this box concept is to help the reader better

visualize the notions of a virtual box in Section 4.

Click me - Figure 1. Examples of Rational Tangles
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https://www.geogebra.org/classic/aptpdp5u

An example of a tangle is to imagine two strings (arcs) that are horizontally parallel to each other.
This is known as the empty tangle or as the O tangle (shown in Figure 1a). The empty tangle
consists of two horizontal strands where the four endpoints penetrate the adjacent vertices of a box.
One strand connects the endpoints NW to NE and the second strand connects the endpoints SW to
SE. Keep in mind that any rational tangle can be constructed out of an empty tangle through two
moves known as the twist move and a rotation move. The first tangle move is known as a twist. A
twist (starting from Figure 1a.) is when we disconnect the north easternmost vertex (NE) and south
easternmost vertex (SE), move the NE strand over the SE strand, and reattach the vertices to obtain
a new tangle that is illustrated in Figure 1b. The second tangle move is known as a rotation. A
rotation is when the entire tangle is rotated 90° clockwise. An example of a rotation is take Figure
la and rotate the tangle 90° clockwise. This creates the oo tangle (depicted in Figure Ic) that is
two vertical strings. A tangle can also be represented as a rational number or an integer tangle.

Examples of an integer tangle.
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An integer tangle is two strands that wrap around each other and identifies the number of
half-twists or crossings within the tangle. Connecting integral tangles together forms rational

tangles which can be represented by Conway notation [cy, ¢y, ...,¢,]. All three tangles in Figure 1



are rational tangles. A rational tangle can be unwound by twisting and rotating the endpoints and
be represented as a continued fraction g which depicts a rational number, hence the name.

An important fact is that continued fractions has a canonical form of which all the integers used to

form the continued fraction have to properties:

1. The integers can all have the same sign of either being all positive or all negative.

2. The number of integers used to form the continued fraction is odd. Now closing the ends of a

rational tangle can build a rational knot or a rational link. An example of a rational link is a

2-bridge link.

l

FIGURE 2. Diagram of supercoiled integral tangles in a rational link converted to rational tangle.

Figure 2a illustrates an integral tangle. When the number of crossings c is positive, the over strand
has a positive slope. When c is negative, the over strand has a negative slope. Figure 2b depicts a
supercoiled integral tangle inside a 3 dimensional sphere. Figure 2c displays a 2-bridge link [1].
Figure 2d shows what strands to cut to find the rational tangle depicted in Figure 2e.

2.2. 2-Bridge Knot

The bridge number b(k) of a knot K is the minimal number of unknotted arcs on either side of the
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projection plane that is bisecting K. The b(k) of K is the least bridge number of all of the projections

of the knot K. An example of a 2-bridge link is shown in Figure 3.

Arcs above

S —— ———— R T ——

FIGURE 3. 2-Bridge Knot

Figure 3 has a projection plane cutting through a knot towards the middle. The bridge-number of
the knot is 2 since there are 2 arcs below the bisecting plane and 2 arcs above the bisecting plane.
Counting the number of each individual unknotted arc above and below the plane can determine the

bridge number of a knot. Knots that have a bridge number 2 are a classified as two-bridge knots.

All 2-bridge links have the following properties:

1. Any Rational link has a bridge number of 2.
2. Every two bridge link is a Rational link.

Knowing this, if a knot does not have a bridge number of two, then it will not be a rational knot.
For clarification, a knot K or link L is said to be a two-bridge knot or link when it is constructed out

of a rational tangle. The set of 2-Bridge links is a subset of the set of Montesinos links.

2.3. Montesinos Link

A Montesinos link produces a diagram composed of m rational tangle diagrams R, R5, ..., R,,, and

e half-twists.
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FIGURE 4. Montesinos knot

Viewing Figure 4, we can see on the far left we have three half-twist or e = 3. On the far right,
the boxes (R, R», ..., R,,,) are m rational tangles where there is a total of m. Refer to Lee, Oh, and
No [3] for more information about Montesinos knots as we shall be applying their definitions of a

Montesinos knot.

If a Montesinos knot diagram is alternating, then it is has a reduced Montesinos diagram. This

means
* If e >0, then Ry, ..., R, are positively alternating.

* If e =0, then Ry, ..., R, are positively alternating and R;, 1, ..., R, are negatively alternating

for some ¢, where 1 <t < m.



3. Converting Supercoiled Integral Tangles to Stick Rational

Tangles

Insko and Trapp took advantage of twist and writhe to construct 2-bridge knots out of supercoiled
integral tangles. A supercoiled integral tangle uses both twisting (7w) and writhing (Wr) to count

the number of crossings or link number (Lk) of a tangle.

SN X
7N 4

The image on the far left is a rational link or integral tangle. The image to the right adds writhe

to the integral tangle making a supercoiled integral tangle. To solve the linking number (Lk) for a

supercoiled tangle is Lk = Tw -+ Wr.

U% &

The image above on the left side illustrates an tangle with writhe. When the tangle loses writhe or

Wr = 0, the number of twist increases, however, Lk has not changed. Examine section 6 for further



details.

We can replace the arcs in a knot or link with straight line segments or sticks to create a stick
knot. Every knot or link has a stick number s which represents the lowest number of sticks needed
to form the link. Insko and Trapp [1] shown that a two bridge rational link has a stick number
s by knowing the number of crossings ¢ and the number of supercoiled integral tangles n using

s < %c +2n+ 3. It is written as follows.

Theorem 1. Let L be a rational link given by the integers ci,cy,...,cn, and suppose P of the integers
satisfy ¢; = 0 (mod 3), Q satisfy c; = 1 (mod 3), and R satisfy ¢; = 2(mod 3). Then the stick number

s(L) of L satisfies

s(L) < 3c(L)+2n+3—30— 1R

By building off of his notation, we can turn an integral tangle into a stick rational tangle diagram
using the same number of sticks as [1]. They show how to construction of supercoilded integral
tangle and how to glue the tangles together to build polygonal 2-bridge links. Their result was an
improved upper bound for the stick number of 2-bridge links with crossing number roughly six
times the number of tangles or more.

Now based off their research, we can turn links into stick rational tangles using the same
number of sticks. The reasoning is as follows. Any 2-bridge knot or link has a reduced alternating
diagram form and it is easy to change a rational tangle diagram so that the number of tangles n can
always be odd. Moreover, the projection can be assumed reduced and alternating, so it has minimal
crossing number. [1. PG 6] We will now explain how to convert a rational link into a stick rational

tangle.
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step 1 step 2 step 3

b. C.

FIGURE 5. Converting Rational Link to Stick Rational Tangle

First, start off with a 2-bridge link as depicted in Figure 5a. If we have already have a rational tangle
we can skip to Figure 5b, else refer to Figure 2 on how to turn a 2-bridge link into a rational tangle.
By examining Figure 5b, we start replacing all the arcs with straight lines or sticks which leads to
Figure 5c. After we replace all the arcs with sticks, we obtain a stick rational tangle as shown in

Figure 5d. We shall now describe a stick rational tangle.

FIGURE 6. Stick Rational Tangle
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Once we acquire a stick rational tangle, we are going to label the end points as a,b,c and d.
Examine Figure 6a on how to properly label each end point. Figure 6b depicts how to properly
insert positive and negative (reflection of the positive) integral tangles. For more detail, see [1]. We
shall now give an example to explain how to count the stick number of a stick rational tangle.
Example.

Assume Figure 6a, has 49 crossings ¢ and 7 integral tangles n. Use s < %c +2n+ 3 [1] to find the

upper bound for the stick number. Thus,

s < 3(49)+2(7)+3
s<325+1443

s <492

This means the upper bound for the stick number stick number is s < 49% or rather s < 49.

4. Stick Rational Tangle Confined Inside a Virtual Box

4.1 Virtual Boxes together with Stick Tangles

We have shown in the previous section that a 2-bridge link can be converted into a stick
rational tangle using the same amount of sticks as a 2-bridge link. In this section, we show that a
stick rational tangle can fit inside a virfual box. To accomplish this, we use the Lee, No, and Oh [3]
method in which they were able to contain a stick rational tangle inside a virtual box. In a specific
manner, we label the four end points of the stick rational tangle as a,b, c, and d. Next, appropriately
denote the end sticks where the four end points are attached as L, Ly, L., and L;. Now think of a
virtual box as a three dimensional box that surrounds a rational tangle. Applying the same technique
Lee, No, and Oh utilized in their paper [3], we are able to contain a stick rational tangle R inside a

virtual box Bg.
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Click me - Figure 7. Rational Tangle Confined Inside a Virtual Box

Examining Figure 7, we are able to confine R inside of Bg following the three given conditions:

1. L, passes through the back side (face) of Bg, and L; passes through the left side (face) of Bg,

2. The point ¢ lies on the common edge between the back side (face) and the left side (face) of

Bp, and

3. L, passes through the back side (face) of Bg near the position of c.

Note, in Figure 7, the dotted lines represent sticks outside of Bg and the filled line segments are
inside of Bg. In addition of those three conditions, the three end points a, b, and d do not lie inside

of Bg, but c lies on the corner edge. Also, L,, Ly, L., and L; can extend to any necessary length, but

Ly, Ly, and L, lies out side of Bg and L. cannot leave the area of Bg. From here on, consider a stick

rational tangle comprised of supercoiled integral tangles as a stick rational tangle inside a virtual box.

4.2 Combining Virtual Boxes

A stick rational tangle R inside a virtual box Bg; can be added together with R, inside Bg»
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https://www.geogebra.org/m/fvh2wc8e

without having to add any sticks. Following Lee, Oh, and No method [3] for combining Bg together,
we can combine supercoiled integral tangles without having to add any sticks. Observe Figure 8 for

an illustration.

B —
R La,‘— L'ﬁz_

Ve Q » 31/

D

Click me - Figure 8. Technique for combining virtual boxes containing Rational Tangle

Once again, we have the four end points of the stick rational tangle as a, b, c, and d and the end
sticks as Lg, Ly, L., and L. First place down Bg1. Next, position Bgy away from Bg| (where the do
not touch) on the right backside side or where L, is sticking out of Br;. If we angled the virtual
boxes and stick rational tangles correctly, L,; and L;, will merge into one stick. Also, the points d;
and ¢ will merge into one stick but make sure L;, does not cross through the virtual box Bgi. We
can then manipulate Bg, to extend downwards to any necessary length shown in Figure 8. Following
these steps, any number of virtual boxes can be added together.

Note that stick rational tangles Rj,R»,...,R, are formed up of n integral tangles. Also,
R{,Ry,...,R,, are able to merge together through linear transformation. Furthermore, the angle
between two stick rational tangles (say Ry and R;) is an arbitrary angle 6. For more information, ex-
amine [3]. In the next section, we cover how we can combine Ry, ..., R;, to form a stick Montesinos

link.
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5. Stick Montesinos Knot

Lee, No, and Oh [3] shown that virtual boxes containing stick rational tangles can be combined
together to form a stick Montesinos knot. Let K be an alternating Montesinos knot with R, stick
rational tangles and e half-twist. Since K is an alternating Montesinos knot, then presume Ry, ...,R,,

are all positively alternating and e > 0.

FIGURE 9. Stick Montesinos Knot

Lee, No, and Oh [3] shown that an upper bound for the stick number of an alternating stick
Montesinos knot is s(K) < ¢(K) + 1. They constructed a crossing tangle ¢ using ¢ + 1 sticks with
at least six crossings. However, we can construct an stick Montesinos link with an improved stick
number for a ’large’ number of crossings.

Theorem 1. Let K be an alternating Montesinos knot or link with the number of half-twist e, the
crossing number c, the supercoiled integral tangles n, rational tangles m and the stick number s.

Then
s < %c—|—2n+3m+e+l.

We will provide some examples to illustrate the theorem.
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Example 1. Examine Figure 5 which we label as R; and assume there is 144 crossings c, 12
integral tangles n, and confined inside 1 rational tangle. Let there exist Ry, R, R3, R4, R5, Rg, R7 that
are all duplicates of each other and we want to form an alternating Montesinos link with e = 0. We
will show Insko method [1] first and show another example with Theorem 1.

Ex 1a. Applying [1] method (s < %(c) +2(n) + 3 to each rational tangle:

s < 3(144)+2(12) +3
5 <96+24+3
s <123

Since all the boxes are duplicates of each other, we have to add 123 to itself eleven more times or
multiple 123 by 12. This give the stick number s < 1476 however, we must add an extra stick due
to the construction of the alternating Montesinos link [3]. Thus, the upper bound stick number is

s < 1477

Ex 1b. Applying Theorem 1, ¢ = 1728, n = 144, m = 12:

s < 3(1728)+2(144) +3(12) + 1
s < 1152+288+36+1
s < 1477

This shows using either [1] or Theorem 1 obtains the same stick number. Also, notice that employing

Lee, Oh, and No method of s < ¢+ 1 [3] provides a larger stick number that is s < 1729.

Important! This formula does not work for all cases. As a possible future research topic,
create a formula that finds the upper bound of a stick number for alternating and non alternating
Montesinos links that is useful for ’large’ crossing numbers. This is important as DNA involves has
a ’large’ number of crossings so creating a diagram of DNA with the least amount of sticks would

be most efficient.
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Reverting back to section 2, tangles are knots used to relate to DNA. In this section, we will describe
what DNA is, DNA’s relationship with supercoiling, and leave off on some open ended questions.

All living things have DNA (deoxyribonucleic acid) located inside of their cells. However, DNA is
too small to see with the naked eye thus scientist use special equipment such as X-rays, an atomic
force microscope, and electron microscope to view DNA. The basic structure of duplex DNA or
double-stranded DNA is formed from two molecular strands (sugar-phosphate strands) that twist
and knot together and composed of 4 bases; (A) adenine, (G) guanine, (C) cytosine, and (T) thymine.
DNA needs to untwist itself into two separate sugar-phosphate strands inside a cell for the process

of DNA transcription and DNA replication.

a) Transcription

I/M NS

(b) Replication

Figure 10. DNA transcription and DNA replication
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Supercoiling is important in biology because it allows long DNA strands to fit inside of a cell
nucleus and helps unwind DNA allowing for synthesis of RNA strands or new DNA strands. In
transcription (Figure 10a), DNA copies into the messenger-RNA which tells the cell how to make
protein. In replication (Figure 10b), DNA copies itself into another DNA strand before a single cell
divides into two cells. Even though figure 10 shows a brief moment in a cells life, both processes of
which the unwound regions of DNA occurs fast. However, when a DNA is tightly supercoiled or
cannot untangle itself, how does the DNA manage untangle in order to replicate? The answer is
Topoisomerases.

Enzymes that regulate DNA supercoiling are known as topoisomerases.

Figure 11. Type I and Type II Topoisomerases

There are two types of topoisomerases known as Type I and Type II. Type I topoisomerases enzymes
catalyze changes in DNA topology for single-stranded breaks in DNA. As shown in Figure 11 on
the left side, Type I helps untangle a supercoiled integral tangle. Type II topoisomerases enzymes
catalyze changes in DNA topology for double-stranded breaks in DNA. Shown on the right side
of Figure 11, Type II turns an integral tangle or a relaxed DNA into a supercoiled integral tangle.

Finally, we discuss the linking number of supercoiled integral tangle.
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FIGURE 12. Integral Supercoiled DNA

The linking number (Lk) is the number of times two sugar-phosphate chains of DNA wrap
around, or are ’linked’, with one another. Another way to describe Lk is the number of turns or
twists in a circular molecule. To find the linking number Lk of a double helix, we count the number
of twist and the number of writhe. This is depicted as Lk = Tw+ Wr.

Note that 7w and Wr can be integers and real numbers such as Tw = +0.5 and Wr = 42.5 Lk
measures the total deficit or excess of double-helical turns in a molecule. Thus, when ‘Lk = +5°,

we mean a DNA molecule is ’overwound by five turns’ exactly. An interesting fact is DNA in living

19



cells is normally underwounded or more precisely Lk is negative. Therefore, when Lk = 41 or any

number that is not 0, shall have that many more double-helical turns.

6.2. Final Thoughts

On a final note, I want to leave some questions open for discussion. Please understand I am
a mathematician, not a molecular biologist. My experience in the field of biology is epsilon ()
small. However, doing this research has peaked my curiosity involving knot theory and DNA. I
understand from a biologist point of view my ideology might seem controversial, but scientific dis-

coveries are not made through rational thinking. Now we shall dive into topics left open for research.

1. Since we are able to find an upper bound for the stick number of stick Montesinos knots,
can we correlate this to DNA? Rather is it possible to reconstruct a strand of DNA but as a
Montesinos knot/link? If not, can the set of a Montesinos links be a subset to another kind of
knot (similarly to how 2-bridge links are subsets of Montesinos Links) that can translate into

DNA?

2. Isit possible to find an even smaller stick number for rational tangles that have a large number

of crossings?

3. If we can construct a long right-handed double helix as a Montesinos knot/link, would the stick
number of the double helix tell us anything about the DNA? Is there an average range for the
stick numbers to classify the DNA into a specific category (e.g. healthy, damaged,untangling

DNA about to replicate)?

4. Could we create a DNA model using sticks? If we can, is there a difference between the
number of sticks from a healthy strand of DNA from damaged strand of DNA? If we could

determine the number of sticks, what is the stick number of cancer cells?

5. Another topic involves cancer cells. If we are able to locate cancer cells within the human

body, can we create a supercoiled DNA strand that prevents the DNA from replicating?
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(Thus stopping the cancer cell from spreading.) Obviously, we would have to disrupt the
topoisomerases in cancer cells so they cannot untangle the DNA strand. Or maybe the

question is there any knot a topoisomerases can’t/ won’t untangle?
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