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Abstract

The kernel of an algebraic curvature tensor is a fundamental subspace that can be used to distinguish

between different algebraic curvature tensors. Kernels of algebraic curvature tensors built only of canonical

algebraic curvature tensors of a single build (symmetric or skew-symmetric) were investigated in [8] and

[2], respectively. We consider the kernel of an algebraic curvature tensor R built from canonical algebraic

curvature tensors of both symmetric and skew-symmetric build. An obvious way to ensure that the kernel of

R is nontrivial is to choose the involved bilinear forms such that the intersection of their kernels is nontrivial.

We present a construction wherein this intersection is trivial but the kernel of R is nontrivial. We also show

how many bilinear forms satisfying certain conditions are needed in order for R to have a kernel of any

allowable dimension.

1 Introduction

Throughout, let V be a finite-dimensional vector space over R.

Definition 1.0.1. An algebraic curvature tensor is a multilinear function R : V 4 → R such that:

a) R(x, y, z, w) = −R(y, x, z, w),

b) R(x, y, z, w) = R(z, w, x, y), and

c) R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0

for all x, y, z, w ∈ V.

The set of all algebraic curvature tensors on V is denoted A(V ). An algebraic curvature tensor is meant to

mimic the algebraic properties of the Riemann curvature tensor at a given point of a manifold. An important

subspace is the kernel of an algebraic curvature tensor:
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Definition 1.0.2. Let R ∈ A(V ). The kernel of R is

ker(R) := {x ∈ V | R(x, y, z, w) = 0 for all y, z, w ∈ V }.

The defining properties of algebraic curvature tensors can be used to show (see [3]) that the definition of the

kernel of an algebraic curvature tensor is not biased towards the first entry, that is,

ker(R) = {y ∈ V | R(x, y, z, w) = 0 for all x, z, w ∈ V }

= {z ∈ V | R(x, y, z, w) = 0 for all x, y, w ∈ V }

= {w ∈ V | R(x, y, z, w) = 0 for all x, y, z ∈ V }.

Kernels are worthy of study because they are one way to distinguish between algebraic curvature tensors. The

goal of this paper will be to demonstrate when an algebraic curvature tensor of a specific build has nontrivial

kernel, if dim(V ) ≥ 3. The following proposition illustrates why we do not consider dim(V ) = 2:

Proposition. [8] If dim(V ) = n and R ∈ A(V ), then dim(ker(R)) ̸= (n− 1).

Proof. (Included for convenience): First, recall from linear algebra that ifW ⊆ V is a subspace and {e1, . . . , ek}
is a basis for W, then we can extend to a basis {e1, . . . , ek, ek+1, . . . , en} of V. Assume, towards a contradiction,

that dim(ker(R)) = n − 1. Then there exists a basis {e1, . . . , en−1} of ker(R) that can be extended to a basis

{e1, . . . , en−1, en} of V. Thus V = ker(R)⊕span{en}, so for v ∈ V we can write v = kv+λven, with kv ∈ ker(R)

and λv ∈ R. Then for x, y, z, w ∈ V, we write

x = kx + λxen,

y = ky + λyen,

z = kz + λzen,

w = kw + λwen

and use the fact that kx, ky, kz, kw ∈ ker(R) to conclude that

R(x, y, z, w) = λxλyλzλwR(en, en, en, en) = 0.

This means R = 0 and therefore dim(ker(R)) = dim(V ) = n, which is a contradiction because we assumed

dim(ker(R)) = n− 1. Thus it cannot be true that dim(ker(R)) = n− 1.

Therefore, the zero tensor is the only algebraic curvature tensor that has nontrivial kernel if dim(V ) = 2.

Given a symmetric bilinear form φ on V, the canonical algebraic curvature tensor Rφ associated to φ is

Rφ(x, y, z, w) := φ(x,w)φ(y, z)− φ(x, z)φ(y, w).
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Given a skew-symmetric bilinear form ψ on V, the canonical algebraic curvature tensor Rψ associated to ψ is

Rψ(x, y, z, w) := ψ(x,w)ψ(y, z)− ψ(x, z)ψ(y, w)− 2ψ(x, y)ψ(z, w).

It will be clear from context if a given canonical algebraic curvature tensor is of symmetric or skew-symmetric

build. It is easy to see that Raτ = a2Rτ for all a ∈ R and any bilinear form τ on V. In particular, R−τ = Rτ .

It is known [5] that the sets of canonical algebraic curvature tensors of either symmetric or skew-symmetric

build are both spanning sets of A(V ):

span{Rφ | φ ∈ S2(V ∗)} = span{Rψ | ψ ∈ Λ2(V ∗)} = A(V ).

Gilkey has shown [6] that ker(Rψ) = ker(ψ) and ker(Rφ) = ker(φ) if rank(φ) ̸= 1. We now define a few key

terms.

Definition 1.0.3. Let τ be any bilinear form on V.

a) τ is positive definite if τ(x, x) > 0 for all nonzero x ∈ V.

b) τ is nondegenerate if τ(x, y) = 0 for all y ∈ V implies x = 0.

Throughout, let φ and φi denote symmetric bilinear forms on V , let ψ and ψi denote skew-symemtric bilinear

forms on V, and let ε, εi ∈ {−1, 1}.

Several previous results about kernels of algebraic curvature tensors guided this study. Kernels of algebraic

curvature tensors built only of canonical algebraic curvature tensors with a symmetric build were studied by

Strieby [8]:

Theorem. [8] Let dim(V ) = n ≥ 3. Let φ1 be positive definite. Then dim(ker(Rφ1 + εRφ2)) ∈ {0, 1, n}.

Kernels of algebraic curvature tensors built only of canonical algebraic curvature tensors with a skew-

symmetric build were studied by Brundan [2]. Note the choice of signs in the following two results.

Theorem. [2] Let R :=
k∑
i=1

Rψi . Then ker(R) =
k⋂
i=1

ker(Rψi).

Theorem. [2] Let R := Rψ1
− Rψ2

. Then either ker(R) = ker(Rψ1
) ∩ ker(Rψ2

) or ψ1 = ±ψ2, in which case

R = 0 and ker(R) = V.

The above results have a certain rigidity: the kernel of an algebraic curvature tensor built only of canonical

algebraic curvature tensors of symmetric build cannot be of any allowable dimension, while the kernel of an

algebraic curvature tensor built only of canonical algebraic curvature tensors of skew-symmetric build is no

bigger than the kernel of the individual bilinear forms involved. The goal of this work will be to expand on
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these results by considering algebraic curvature tensors built from canonical algebraic curvature tensors of both

symmetric and skew-symmetric build. We consider algebraic curvature tensors of the form

R := Rφ +

k∑
i=1

εiRψi
.

We can assume that the only coefficients in the above linear combination are 1 and −1, because Raψ = a2Rψ.

We can assume that the coefficient on Rφ is equal to 1, because ker(R) = ker(−R) for any R ∈ A(V ).

We aim to show what conditions on φ and the ψi’s are sufficient in order for R to have nontrivial kernel. Since

Rφ is the zero tensor if the rank of φ is 0 or 1 [6], we only consider the case when rank(φ) ≥ 2. An easy way

to ensure that R has nontrivial kernel is to choose φ and the ψj ’s such that

K := ker(φ)

k⋂
i=1

ker(ψi) ̸= {0},

which implies that K ⊆ ker(R) and ker(R) ̸= {0}. As shown in [7], any R ∈ A(V ) can be written as a linear

combination of canonical algebraic curvature tensors built from bilinear forms of full rank. Therefore, there

must exist a case where K = {0} but ker(R) ̸= 0. A reasonable first step toward finding such a construction is

to set φ to be positive definite. This ensures that K = {0}, and that there exists a basis B of V such that B
is orthonormal with respect to φ and any skew-symmetric bilinear form ψ is block-diagonal with respect to B [1].

We now present a method we use in this work to find ker(R). Let α ∈ ker(R), let {e1, . . . , en} be a ba-

sis for V, and write α = γ1e1 + · · · + γnen for γi ∈ R. We can solve for the γi’s by considering the system

of equations obtained from all nonzero curvature entries, up to symmetry, of the form R(α, ei, ej , ek), where

i, j, k ∈ {1, . . . , n}. Note that repeating α in the inputs to R is not necessary, as doing so only produces a linear

combination of already existing equations: for any ei, ej ∈ B, note that

R(α, α, ei, ej) = R(ei, ej , α, α) = 0, and

−R(α, ei, α, ej) = R(α, ei, ej , α) = R(α, ei, ej , γ1e1 + · · ·+ γnen)

= γ1R(α, ei, ej , e1) + · · ·+ γnR(α, ei, ej , en).

In Section 2, we investigate the kernel of an algebraic curvature tensor built of just two canonical algebraic

curvature tensors: one of symmetric and one of skew-symmetric build. In Section 3, we show how to construct

an algebraic curvature tensor that has a kernel of any allowable dimension. Our construction does not require

φ to be positive definite but still ensures K = {0}. We also present a lower bound on how many bilinear forms

satisfying certain conditions are needed to ensure that ker(R) ̸= {0}. Finally, in Section 4, we present future

directions of study.
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2 Kernel of Rφ + εRψ

In this section, we compute the kernel of an algebraic curvature tensor built of one canonical algebraic curvature

tensor of symmetric build and one canonical algebraic curvature tensor of skew-symmetric build. Let R :=

Rφ+ εRψ. In Section 2.1, we show that if φ is positive definite, then ker(R) = {0}. In Section 2.2, we consider

only the case when dim(V ) = 3 and show that if φ is not necessarily positive definite and rank(φ) ≥ 2, then

ker(R) is equal to the intersection of the kernels of the bilinear forms used to construct R.

2.1 Positive definite φ

Our goal is to show that the kernel of R is trivial if φ is positive definite and dim(V ) ≥ 3. If φ is positive

definite, there is a basis

B = {e1, f1, . . . , es, fs, x1, . . . , xt}

of V such that 2s+ t = n, φ = In, and ψ is block-diagonal with respect to B [1]. Concretely, ψ(ei, fi) = bi > 0

for i ∈ {1, . . . , s} and span{xi} = ker(ψ).

Lemma 2.1.1. If φ is positive definite, then Rφ(ei, ej , ej , ei) = Rφ(fi, fj , fj , fi) = Rφ(xi, xj , xj , xi) = 1 for

i ̸= j.

Proof. Let i ̸= j. Note that

Rφ(ei, ej , ej , ei) = φ(ei, ei)φ(ej , ej)− φ(ei, ej)φ(ej , ei) = 1.

As φ = In, it is also the case that Rφ(fi, fj , fj , fi) = Rφ(xi, xj , xj , xi) = 1.

Lemma 2.1.2. If ψ is skew-symmetric, then Rψ(ei, ej , ej , ei) = Rψ(fi, fj , fj , fi) = Rψ(xi, xj , xj , xi) = 0 for

i ̸= j.

Proof. Let i, j ∈ {1, . . . , s} and i ̸= j. Note

Rψ(ei, ej , ej , ei) = ψ(ei, ei)ψ(ej , ej)− ψ(ei, ej)ψ(ej , ei)− 2ψ(ei, ej)ψ(ej , ei) = 0.

As the only nonzero entries of ψ are those of the form ψ(ei, fi), it is also the case that Rψ(fi, fj , fj , fi) =

Rψ(xi, xj , xj , xi) = 0.

We now show that if φ is positive definite, then ker(R) = {0}.

Theorem 2.1.3. Let dim(V ) = n ≥ 3 and let φ be positive definite. Then ker(Rφ + εRψ) = {0}.

Proof. Let α ∈ ker(R). Note

α = p1e1 + q1f1 + · · ·+ pses + qsfs + r1x1 + · · ·+ rtxt
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for pi, qi, ri ∈ R. We will show that α = 0.

First, fix i ∈ {1, . . . , s} and let j ∈ {1, . . . , s} with j ̸= i. Note that, by Lemma 2.1.1 and Lemma 2.1.2,

0 = R(α, ej , ej , ei) = φ(α, ei) = pi and

0 = R(α, fj , fj , fi) = φ(α, fi) = qi.

Next, fix i ∈ {1, . . . , t} and let j ∈ {1, . . . , t} with j ̸= i. By Lemma 2.1.1 and Lemma 2.1.2,

0 = R(α, xj , xj , xi) = φ(α, xi) = ri.

Thus pi = qi = 0 for all i ∈ {1, . . . , s} and ri = 0 for all i ∈ {1, . . . , t}, so α = 0 and ker(R) = {0}.

2.2 Any φ; dim(V) = 3

We now consider the case when φ is not necessarily positive definite and show that if dim(V ) = 3, then the

kernel of R is equal to the intersection of the kernels of the bilinear forms that make up R.

Theorem 2.2.1. Let dim(V ) = 3. Let φ be any symmetric bilinear form on V of rank 2 or higher, and assume

φ is not necessarily positive definite. Then ker(R) = ker(φ) ∩ ker(ψ).

Proof. Let dim(V ) = 3. As φ is symmetric, there exists a basis B = {e1, e2, e3} of V such that φ is diagonal

with respect to B and only takes values of 0, 1, or −1 on the diagonal. As rank(φ) ≥ 2, we can reorder the

basis vectors so that the only zero diagonal entry of φ, if one exists, is φ(e3, e3). As Rφ = R−φ, we can also

assume, without loss of generality, that φ(e1, e1) = 1. Therefore, let

φ =

1 0 0

0 δ2 0

0 0 δ3

 , ψ =

 0 y z

−y 0 w

−z −w 0


for δ2 ∈ {−1, 1} and δ3 ∈ {−1, 0, 1}. Let α ∈ ker(R) and write α = γ1e1 + γ2e2 + γ3e3. We consider all possible
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{R(α, ei, ej , ek)} and obtain

γ2yw + γ3zw = 0, (2.1)

γ1yz − γ3zw = 0, (2.2)

γ1yz + γ2yw = 0, (2.3)

γ2(δ2 + 3εy2) + 3εγ3yz = 0, (2.4)

γ3(−δ3 − 3εz2)− 3εγ2yz = 0, (2.5)

γ1(−δ2 − 3εy2) + 3εγ3yw = 0, (2.6)

γ3(δ2δ3 + 3εw2)− 3εγ1yw = 0, (2.7)

γ2(−δ2δ3 − 3εw2)− 3εγ1zw = 0, (2.8)

γ1(−δ3 − 3εz2)− 3εγ2zw = 0. (2.9)

Case 1: Let z, w ̸= 0. Note that (2.2) gives

γ1y = γ3w =⇒ γ1yw = γ3w
2.

Substituting into (2.7) gives γ3δ3 = 0. If δ3 ̸= 0, then ker(φ) ∩ ker(ψ) = {0} and γ3 = 0. Then (2.1) and (2.2)

imply that either y = 0 or γ1 = γ2 = 0. If y = 0, then (2.4) gives γ2 = 0. Then (2.8) gives γ1 = 0, and the

kernel of R is trivial; in fact, ker(R) = ker(φ) ∩ ker(ψ).
If δ3 = 0, then ker(φ) = span{e3} and ker(φ) ∩ ker(ψ) = {0}, as e3 ∈ ker(ψ) only if z = w = 0.

Note (2.2) gives γ3 = y
wγ1, and (2.3) gives γ2 = − z

wγ1. Substituting these values into (2.4) and (2.6) gives

γ1 = 0 =⇒ γ1 = γ2 = γ3 = 0 =⇒ ker(R) = {0} = ker(φ) ∩ ker(ψ).

Case 2: Let z = 0. Note that (2.5) and (2.9) imply that either δ3 = 0 or γ1 = γ3 = 0. If δ3 ̸= 0,

then ker(φ) = {0} and γ1 = γ3 = 0. If γ2 ̸= 0, say γ2 = 1, then (2.4) implies y ̸= 0; thus (2.1) implies

w = 0. Then (2.8) implies that δ2 = 0 or δ3 = 0, which is a contradiction. Thus γ1 = γ2 = γ3 = 0 and

ker(R) = {0} = ker(φ) ∩ ker(ψ).
If δ3 = 0, then ker(φ) = span{e3} and (2.8) implies that either γ2 = 0 or w = 0. If w = 0, then ker(ψ) =

span{e3}. We are left with the system of equations

γ2(δ2 + 3εy2) = 0

γ1(−δ2 − 3εy2) = 0,

which implies span{e3} ⊆ ker(R). As dim(ker(R)) ̸= 2, it must be true that ker(R) = span{e3}. Then
ker(R) = ker(φ) ∩ ker(ψ).
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Now let γ2 = 0. We are left with the system of equations

γ1(−δ2 − 3εy2) + 3εγ3yw = 0

−γ1yw + γ3w
2 = 0,

which has a nonzero solution if w = 0. Then e3 ∈ ker(R) and, as above, ker(R) = span{e3} = ker(φ)∩ ker(ψ).

Case 3: Let w = 0. Then (2.7) and (2.8) imply that either δ3 = 0 or γ2 = γ3 = 0. If δ3 = 0 then

ker(φ) = span{e3}, and (2.9) implies that either γ1 = 0 or z = 0. If z = 0, then ker(ψ) = span{e3} and

ker(φ) ∩ ker(ψ) = span{e3}. We are left with the system

γ2(δ2 + 3εy2) = 0

γ1(−δ2 − 3εy2) = 0,

which means e3 ∈ ker(R) and therefore, as above, ker(R) = span{e3}. Then ker(R) = ker(φ) ∩ ker(ψ).
Now let γ1 = 0. We are left with the system of equations

γ2(δ2 + 3εy2) + 3εγ3yz = 0

γ2yz + γ3z
2 = 0,

which has a nonzero solution if z = 0. Then e3 ∈ ker(R) and, as before, ker(R) = span{e3} = ker(φ)∩ ker(ψ).
If γ2 = γ3 = 0 and δ3 ̸= 0, then ker(φ) = {0}. If γ1 ̸= 0, then (2.2) implies that y = 0 or z = 0. If y = 0, then

(2.6) gives the contradiction δ2 = 0. If z = 0, then (2.5) gives the contradiction δ3 = 0. Therefore, γ1 = 0 and

ker(R) = {0} = ker(φ) ∩ ker(ψ).

Note that this result is similar in rigidity to the previously discussed results of [2]: the kernel of R is no

bigger than the kernel of either of the bilinear forms involved in the construction of R.

3 In search of a nontrivial kernel

The goal of this section is to present a construction in which an algebraic curvature tensor of the form

R := Rφ +

k∑
i=1

εiRψi

has a kernel of any allowable dimension, despite the fact that the intersection of the kernels of the bilinear forms

used to build R is trivial. In Section 3.1, we consider the case when dim(V ) = 3 and φ is positive definite.

This leads us to a construction that is valid in any finite dimension and does not require that φ be positive
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definite. We present this construction in Section 3.2, where we also give a lower bound on how many bilinear

forms satisfying certain conditions are required for R to have a kernel of a given dimension.

3.1 Positive definite φ, dim(V ) = 3

Section 2 shows that if φ is positive definite, one symmetric and one skew-symmetric bilinear form are not

enough to build an algebraic curvature tensor with nontrivial kernel. We now show when it is possible for an

algebraic curvature tensor built from one symmetric positive definite bilinear form and two skew-symmetric

bilinear forms to have nontrivial kernel.

Let dim(V ) = 3, let φ be positive definite, and set R := Rφ + ε1Rψ1
+ ε2Rψ2

. Then there exists a basis

B of V such that

φ =

1 0 0

0 1 0

0 0 1

 , ψ1 =

 0 b 0

−b 0 0

0 0 0

 , ψ2 =

 0 y z

−y 0 w

−z −w 0

 .
Lemma 3.1.1. Unless ε1 = ε2 = −1, ker(R) = {0}.

Proof. Let α ∈ ker(R) and write α = γ1e1+γ2e2+γ3e3 for γi ∈ R. By considering all possible {R(α, ei, ej , ek)},
we obtain the following system of equations:

γ2yw + γ3zw = 0 (3.1)

−γ1yz + γ3zw = 0 (3.2)

γ1yz + γ2yw = 0 (3.3)

γ2(3ε1b
2 + 3ε2y

2 + 1) + 3ε2γ3yz = 0 (3.4)

γ3(−3ε2z
2 − 1)− 3ε2γ2yz = 0 (3.5)

γ1(−3ε2y
2 − 3ε1b

2 − 1) + 3ε2γ3yw = 0 (3.6)

γ3(1 + 3ε2w
2)− 3ε2γ1yw = 0 (3.7)

γ2(−3ε2w
2 − 1)− 3ε2γ1zw = 0 (3.8)

γ1(−3ε2z
2 − 1)− 3ε2γ2zw = 0. (3.9)

First, let ε1 = 1 and ε2 = −1 and assume, towards a contradiction, that one of the γi’s is nonzero and that one

of y, z, w is nonzero.

Case 1: Assume γ1 ̸= 0.Without loss of generality, let γ1 = 1 : if γ1 ̸= 1, simply scale α so that γ1 = 1. Assume

z ̸= 0. Note (3.2) gives y = γ3w. Substituting into (3.6) gives −3b2 − 1 = 0, which is a contradiction as b ∈ R.
Thus z = 0. Now, (3.9) gives the contradiction −1 = 0. Thus γ1 = 0.

Case 2: Knowing that γ1 = 0, let γ2 = 1. Assume w ̸= 0. Note (3.1) gives y = −γ3z. Then (3.4) gives the
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contradiction 3b2 + 1 = 0, so w = 0. Now, (3.8) gives −1 = 0, so we must have γ2 = 0.

Case 3: Knowing that γ1 = γ2 = 0, let γ3 = 1. Note (3.5) gives z =
√

1
3 and (3.7) gives w =

√
1
3 . However, we

must have that either z = 0 or w = 0, by (3.2). Therefore γ3 = 0.

We have shown that ker(R) = {0} if ε1 = 1 and ε2 = −1. If ε1 = −1 and ε2 = 1, simply block-diagonalize ψ2

with respect to φ. Then the above proof gives ker(R) = {0}.

Now, let ε1 = ε2 = 1. Again, towards a contradiction, assume that one of the γi’s is nonzero and that one

of y, z, w is nonzero.

Case 1: Assume γ1 = 1 and let y ̸= 0. Then (3.3) gives z = −γ2w. Substituting into (3.5) gives −1 = 0, so it

must be true that y = 0. Then (3.6) yields a contradiction as b ∈ R, so γ1 = 0.

Case 2: Knowing that γ1 = 0, let γ2 = 1. By (3.3), either y = 0 or w = 0. If y = 0, then (3.4) gives a

contradiction as b ∈ R. If w = 0, then (3.8) yields the contradiction −1 = 0. Thus γ2 = 0.

Case 3: Knowing that γ1 = γ2 = 0, let γ3 = 1. Then (3.1) gives that either z = 0 or w = 0. If z = 0, then

(3.5) yields the contradiction −1 = 0, and if w = 0, then (3.7) yields the contradiction 1 = 0. Thus γ3 = 0 and

ker(R) = {0} if ε1 = ε2 = 1.

Lemma 3.1.2. Consider the same construct as in Lemma 3.1.1. If b ̸=
√

1
3 , then ker(R) = {0}.

Proof. By Lemma 3.1.1, we know that ker(R) = {0} if it is not true that ε1 = ε2 = −1. We therefore set

ε1 = ε2 = −1 and show that ker(R) = {0} if b ̸=
√

1
3 . Let α ∈ ker(R) and write α = γ1e1 + γ2e2 + γ3e3. We

consider the system of equations produced in the proof of Lemma 3.1.1.

Case 1: Assume γ1 = 1. Then (3.2) gives y = γ3w, if z ̸= 0. Substituting into (3.6) gives the contradiction

3b2 = 1. Thus z = 0. Then (3.9) gives the contradiction 1 = 0, so γ1 = 0.

Case 2: Assume γ2 = 1. Then (3.3) implies that either y = 0 or w = 0. If y = 0, then (3.4) gives the

contradiction −3b2 = −1. If w = 0, then (3.8) gives the contradiction −1 = 0. Thus γ2 = 0.

Case 3: Assume γ3 = 1. Then (3.1) gives that either z = 0 or w = 0. If z = 0 then (3.5) gives the contradiction

−1 = 0, and if w = 0 then (3.7) gives the contradiction 1 = 0. Thus γ3 = 0 and ker(R) = {0} if b ̸=
√

1
3 .

We present a necessary and sufficient condition for R to be able to have a one-dimensional kernel:

Theorem 3.1.3. It is possible to choose ψ2 so that dim(ker(R)) = 1 if and only if ε1 = ε2 = −1 and b =
√

1
3 .

Proof. First, assume that it is possible to choose ψ2 so that dim(ker(R)) = 1. Then Lemma 3.1.1 and Lemma

3.1.2 tell us that ε1 = ε2 = −1 and b =
√

1
3 .

Now, let ε1 = ε2 = −1 and b =
√

1
3 . We show that we can choose y, z, w such that dim(ker(R)) = 1. Let

α ∈ ker(R) and write α = γ1e1 + γ2e2 + γ3e3 for γi ∈ R. We again consider the system of equations used in

the proof of Lemma 3.1.1. Set y = w = 0, z =
√

1
3 . Note (3.7) gives γ3 = 0 and (3.8) gives γ2 = 0, while γ1 can

take any value. Thus ker(R) = span{e1} and dim(ker(R)) = 1.
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Remark 3.1.4. In the proof of Theorem 3.1.3, we could have set y = z = 0 and w =
√

1
3 , in which case

ker(R) = span{e2}.

Proposition 3.1.5. If R is as in Theorem 3.1.3, it is not possible that ker(R) = span{e3}.

Proof. Assume, towards a contradiction, that γ3 = 1. Then (3.1) gives z = −γ2y if w ̸= 0. Substituting into

(3.5) gives −1 = 0, so it must be true that w = 0. Substituting into (3.7) gives 1 = 0, which is a contradiction.

Thus γ3 = 0 and ker(R) ̸= span{e3}.

Theorem 3.1.3 implies that if dim(V ) = 3, we need one positive definite symmetric and two skew-symmetric

bilinear forms of a particular construction in order for a nontrivial kernel to be possible: we must either have

ψ1 =


0

√
1
3 0

−
√

1
3 0 0

0 0 0

 and ψ2 =


0 0

√
1
3

0 0 0

−
√

1
3 0 0

 , or

ψ1 =


0

√
1
3 0

−
√

1
3 0 0

0 0 0

 and ψ2 =


0 0 0

0 0
√

1
3

0 −
√

1
3 0

 .
In both of the above cases, ψ1 and ψ2 have exactly two nonzero entries. This suggests a construction that

allows for a nontrivial kernel and does not rely on φ being positive definite. Before exploring this construction

in arbitrary dimension, we introduce some notation. Let i < j and let ψij denote a skew-symmetric bilinear

form such that

a) ψij(ei, ej) ̸= 0 and

b) ψij(eℓ, ek) = 0 if (ℓ, k) ̸= (i, j).

Then if dim(V ) = 3, and given our previous choice of basis, we either need

ψ1 = ψ12 and ψ2 = ψ13 or ψ1 = ψ12 and ψ2 = ψ23

in order for it to be possible for the dimension of the kernel of R to be 1.

3.2 Nondegenerate φ, dim(V ) = n ≥ 3

Recall that a goal of this paper was to construct an algebraic curvature tensor with a kernel of any allowable

dimension without intersecting the kernels of the bilinear forms involved. To this end, we investigate the

construction from Section 3.1 in arbitrary dimension and without assuming φ is positive definite. Let dim(V ) =
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n ≥ 3 and let φ be nondegenerate. Note that there exists a basis B = {e1, . . . , en} of V such that

φ =


±1

±1

. . .

±1


with respect to B [4]. Consider an indexing set S ⊆ {1, . . . , n} × {1, . . . , n} such that i < j for all (i, j) ∈ S.

Consider only the construction from Section 3.1, that is, let

R := Rφ +
∑

(i,j)∈S

εijRψij
.

Note that ker(φ) = {0}, so the intersection of the kernels of the bilinear forms involved in the construction of

R is trivial. At the risk of being informal, and to present our results in the most intuitive way, we introduce

two new terms.

Definition 3.2.1. Let ei, ej ∈ B for i < j. We say ei is friends with ej if (i, j) ∈ S.

Note that ei is friends with ej if one of the canonical algebraic curvature tensors out of which R is built is

Rψij .

Definition 3.2.2. Let ei ∈ B. We say ei is popular if ei is friends with every ej ∈ B for j ̸= i.

Let α ∈ ker(R) and write α = γ1e1 + · · · + γnen for γi ∈ R. Before showing when R must have a trivial

kernel, we present a useful lemma:

Lemma 3.2.3. If ei is not popular, then γi = 0.

Proof. There exists an ej ∈ B that is not friends with ei. Then

R(α, ej , ej , ei) = ±γi = 0.

Theorem 3.2.4. If no basis vector is popular, then ker(R) = {0}.

Proof. By Lemma 3.2.3, γi = 0 for all i.

We now state our main result, which gives a way to ensure that R has a kernel of any allowable dimension.

Theorem 3.2.5. Let m ∈ {1, . . . , n−2}∪{n}. Let δij := φ(ei, ei)φ(ej , ej). Then dim(ker(R)) = m if and only

if

12



a) At least m basis vectors are popular, and

b) δikj + 3εikja
2
ikj

= 0 for exactly m indexes {i1, . . . , im}.

Proof. First, we assume dim(ker(R)) = m and show that a) and b) must hold. Assume, towards a contradiction,

that less than m basis vectors are popular. Note that without loss of generality, we can assume that {e1, . . . , eℓ}
are popular for ℓ < m. If not, simply relabel S so that the first ℓ basis vectors are popular. By Lemma 3.2.3,

γℓ+1 = · · · = γm = · · · = γn = 0. The number of nonzero γi’s is therefore at most ℓ and dim(ker(R)) ≤ ℓ < m,

which is a contradiction. Next, let ℓ < m and assume δikj + 3εikja
2
ikj

= 0 for only ℓ indexes {i1, . . . , iℓ}. Note
that δikj +3εikja

2
ikj

̸= 0 implies γik = 0. Therefore, the number of γi’s that are equal to 0 is greater than m, so

dim(ker(R)) ̸= m. Now, let p > m and assume δikj + 3εikja
2
ikj

= 0 for p indexes {i1, . . . , ip}. Then the number

of γi’s that are equal to 0 is less than m, so dim(ker(R)) ̸= m. Therefore, if dim(ker(R)) = m then a) and b)

must hold.

Next, we assume a) and b) both hold and show that dim(ker(R)) = m. Let α ∈ ker(R) and write α =

γ1e1 + · · ·+ γnen for γi ∈ R. Note that the only potentially nonzero curvature entries will be those of the form

R(α, ei, ei, ej) and R(α, ej , ej , ei) for (i, j) ∈ S. Without loss of generality, assume that {e1, . . . , ek} are popular

for k > m. We can further relabel S to assume, without loss of generality, that δikj + 3εikja
2
ikj

= 0 for only
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ik ∈ {1, . . . ,m}. We obtain the following system of equations:

γ1(δ12 + 3ε12a
2
12) = 0,

γ2(δ12 + 3ε12a
2
12) = 0,

...

γ1(δ1m + 3ε1ma
2
1m) = 0,

γm(δ1m + 3ε1ma
2
1m) = 0,

...

γ1(δ1k + 3ε1ka
2
1k) = 0,

γk(δ1k + 3ε1ka
2
1k) = 0,

...

γ1(δ1n + 3ε1na
2
1n) = 0,

...

γ2(δ2n + 3ε2na
2
2n) = 0,

...

γm(δmn + 3εmna
2
mn) = 0,

...

γk(δkn + 3εkna
2
kn) = 0.

Note that only γ1, . . . , γm are free, so ker(R) = span{e1, . . . , em} and dim(ker(R)) = m.

We now give a few examples to illustrate the use of Theorem 3.2.5.

Example 3.2.6. Let dim(V ) = 4 and let S = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4)}. If φ is positive definite, then

Rφ − 1

3

∑
(i,j)∈S

Rψij

has a two-dimensional kernel, since only e1 and e2 are popular and therefore ker(R) = span{e1, e2}.

Example 3.2.7. Let dim(V ) = n, let φ be positive definite, and assume all n basis vectors of V are popular.

Then

Rφ =
1

3

∑
(i,j)∈S

Rψij .
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Example 3.2.8. Let

φ =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 .
Then

0 = Rφ +
1

3
(−Rψ12

+Rψ13
+Rψ14

+Rψ23
+Rψ24

−Rψ34
) .

Before presenting some corollaries of Theorem 3.2.5, we make a note:

Remark 3.2.9. Assume {e1, . . . , em} are popular. Then the set

{ (1, 2),

(1, 3), (2, 3),

(1, 4), (2, 4), (3, 4),

(1, 5), (2, 5), (3, 5), (4, 5),
...

...
...

...
. . .

...
...

...
...

... (m,m+ 1)
...

...
...

...
...

...

(1, n), (2, n), (3, n), (4, n) . . . (m,n) }

is contained in S, and |S| ≥
m∑
k=1

(n− k).

Corollary 3.2.10. To have dim(ker(R)) = m, we need one φ and
m∑
k=1

(n− k) ψi’s.

Corollary 3.2.11. To have dim(ker(R)) = n, we need one φ and
(
n
2

)
ψi’s.

Note that the construction given in Theorem 3.2.5 is restricted to algebraic curvature tensors built of canon-

ical algebraic curvature tensors coming from exactly one positive definite symmetric bilinear form and any

number of skew-symmetric bilinear forms that have exactly two nonzero entries.

4 Future Work

• Investigate if ker(R) = ker(φ)∩ ker(ψ) if φ is symmetric of rank 2 or higher, φ is not necessarily positive

definite, ψ is skew-symmetric, and dim(V ) > 3.

• In our construction in Section 3.2, investigate how ker(R) changes when φ has a kernel.
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• Find a construction that requires fewer bilinear forms than the construction presented in Section 3.2.

Investigate by allowing each skew-symmetric bilinear form to have more than two nonzero entires.

• Find a construction involving more than one symmetric bilinear form that allows for a nontrivial kernel.
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