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Abstract

We give a combinatorial description for all cuboctahedral FALs that respect the

preferred horoball packing, analogous to Purcell’s description of octahedral FALs [5].

Additionally, we utilize the work of Adams [1] and Morgan, Ransom, Spyropoulos,

and Ziegler [4] to show how this family of FALs can be belt-sum decomposed, and

also find common geodesics in a subset of this family.

1 Understanding Fully Augmented Links

1.1 What is a Fully Augmented Link?

We begin by defining the class of links that we will be working with.

Definition 1.1 (Twist Region). For any link diagram L, a twist region is formed

whenever exactly two strands cross in a projection of the link. For every n twists in a

given twist region, exactly n− 1 bigons are formed.

Definition 1.2 (Fully Augmented Link). Take any link diagram L. For every twist

region, place an unknotted component (known as a crossing circle) around the entire

twist region and reduce the number of twists modulo 2. Thus if there are an even

number of bigons, there will be only 1 twist inside the crossing circle, and if there are

an odd number of bigons, the strands non-intersecting. The result is a fully augmented

link (hereafter referred to as an FAL). Figure 1 provides examples of twist regions and

the process of augmenting a link.

(a) A link with two
twist regions

(b) Augmenting
the link.

(c) Reducing twists
modulo 2.

Figure 1: Fully augmenting a link.
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FALs possess certain nice properties that make them worthy of study. Firstly, re-

ducing the number of twists modulo 2 results in a complement that is homeomorphic

to the original [5]. Also, the presence of half-twists does not affect the volume of the

FAL. This means that for any FAL, there are up to 2n half-twist partners (perhaps less

due to symmetries) whose complements are all homeomorphic, and can be considered

to be members of the same equivalency class. We say an FAL is “flat” if it contains no

half-twists. Additionally, the complements of certain FALs decompose nicely in regular

ideal polyhedra, which we will discuss presently.

1.2 Cell Decomposition, Circle Packings, and The Upper Half-Plane

Model

Definition 1.3 (Hyperbolic FAL). An FAL F is hyperbolic if a metric of constant

curvature −1 can be placed on the manifold S3 − F .

Theorem 1.4 (Purcell). Let F be a hyperbolic FAL. There is a decomposition of S3/F

into two identical totally geodesic polyhedra that possess the following properties:

• Faces of the polyhedra can be checkerboard colored, with shaded faces all triangles

each corresponding to one half of a crossing circle, and white faces corresponding

to the link components lying in the projection plane.

• Ideal vertices are all 4-valent

• The dihedral angle at each edge is π
2 .

Purcell’s proof for this theorem is primarily procedural, so we shall explain in briefer

detail the process of cell decomposition that is used to obtain these polyhedra.

In the standad cell-decomposition, planar components and crossing circles form the

2-cells, while the intersections of these form the 1-cells. When we decompose, we first

cut across the plane of projection (hence why we have two identical polyhedra, denoted

P+, P−) as seen in the leftmost image of Figure 2. Then, we slice along the crossing

circles, splitting them into two faces. We then compress the intersection of the two

halves of the crossing circles and the planar components to single points, then stretch

the resulting Figure into a circle packing in the plane.

Figure 2: The cell-decomposition process.
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1.3 Nerves, Crushtaceans, and Their Paintings

As mentioned, the decomposition process results in a circle packing that determines

one of the two identical ideal polyhedra. We can use this circle packing to define the

nerve and the crushtacean, which are tools that allow us to examine the link as a planar

graph.

Definition 1.5 (Nerve). Begin with a circle packing C corresponding to some FAL F .

The center of each circle in the circle packing corresponds to a vertex in the graph,

while points of tangency between two circles correspond to edges. This process forms

the nerve of an FAL, denoted FN .

We can also choose to color the nerve in the manner described in the following:

Definition 1.6 (Painted Nerve). If the point of tangency in a circle packing is shared

by two halves of the same crossing circle, then the corresponding edge in the graph will

be painted. If not, then it will be unpainted (black). This process forms the painted

nerve of an FAL.

We also cite a result from Purcell regarding the nerve:

Theorem 1.7 (Purcell). Let F be a hyperbolic FAL. Then the nerve FN is a triangu-

lation of S2, and satisfies the following properties:

• Each edge of the nerve has distinct endpoints.

• No two vertices are joined by more than one edge.

• If γ is a triangulation of S2 satisfying the above properties, then any painting

of γ such that each triangle has exactly one painted edge is considered to be

“well-painted”, and the well-painted γ corresponds to an FAL.

Definition 1.8 (Crushtacean). The crushtacean is the dual graph to the nerve, denoted

FC . It is formed by creating a vertex for every triangle in S2 − FN , and each edge

corresponds to when two triangles border each other (share an edge). If the shared

edge between two triangles in FN is painted, then the corresponding edge in FC is also

painted, and unpainted otherwise.

The crushtacean provides an easy way to move from a graph to its corresponding

FAL, as each painted edge corresponds to a crossing circle, and each vertex of these

painted edges receive exactly two unpainted edges, which correspond to planar compo-

nents. Figure 3 shows the formation of a painted nerve from a circle packing and its

corresponding crushtacean.
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(a) A circle packing with
painted points of tangency.

(b) Circles connected via
points of tangency.

(c) The nerve isolated from
the circle packing

(d) Forming the crushtacean
as the dual to the nerve

(e) The crushtacean after
rescaling.

Figure 3: Moving from a circle packing to a crushtacean

2 Characterizing the Nerves of the 1st Family of Cuboc-

tahedral FALs

Purcell’s paper provides a complete combinatorial description, using unpainted nerves,

for all octahedral FALs whose decomposition respects the preferred horoball packing.

In this paper, we will provide a similar description for the family of cuboctahedral FALs

which decompose into cuboctahedra in the same manner as in Purcell’s work. We will

henceforth refer to this family as the 1st family of cuboctahedral FALs.

2.1 The Basic Building Block, P4

Purcell began her proof using the simplest octahedral FAL, the Borromean Rings,

which is formed from two regular ideal octahedra. We follow a similar route, us-

ing the simplest cuboctahedral FAL, formed by only two regular ideal cuboctahe-

dra: the chain of eight links, hereafter referred to as P4, using the notation from

[Meyer/Millichap/Trapp] [3]. Note that from here onwards, whenever we say cuboc-

tahedron we are referring to a regular ideal cuboctahedron. Additionally, while we only

say P4, we are including its equivalence class of half-twist partners. We preface the

proof of this result by first finding the circle packing of P4. Next, we may send one of

the points of tangency to infinity using a Möbius transformation, all of which is shown

in Figure 4.
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(a) P4

(b) The circle packing of
the P4 link.

(c) The circle packing
after sending P to infin-
ity.

Figure 4: P4 and its circle packing.

We also define a specific form of subdivision that we will utilize:

Definition 2.1 (Central Triangular Subdivision). Take any graph that is a triangulation

of S2. To perform central triangular subdivision on this graph, take any triangle, and

insert another triangle inside it so the sides of the new triangle face the vertices of the

exterior triangle. Then, connect the two vertices of each side of the interior triangle to

the corresponding vertex in the exterior triangle.

Figure 5: Central triangle subdividing a triangle

We now define a family of cuboctahedral FALs that respect the preferred horoball

packing as defined by Purcell.

Definition 2.2 (The 1st Family ). The 1st family of Cuboctahedral FALs contains all

cuboctahedral FALs whose decompositions respect the preferred horoball packing, i.e

the manner of decomposition described in Section 1. Equivalently, this is all cubocta-

hedral FALs whose upper and lower halves P+ and P− contain an integer number of

cuboctahedra, and no cuboctahedra are split between the two halves.

We include one last definition for ease of communication:

Definition 2.3 (Simple Cuboctahedral Nerve). We refer to the unpainted nerve of P4

shown in Figure 6 as the simple cuboctahedral nerve.
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(a) Generating the nerve of P4 from
the transformed circle packing. (b) The nerve after re-scaling.

Figure 6: Finding the nerve of P4.

2.2 The Primary Result of This Section

Lemma 2.4. If the two identical polyhedra formed by the decomposition of an FAL are

formed by gluing multiple regular ideal cuboctahedra together, then the cuboctahedra

must be attached to each other along shaded faces.

Proof. Let P be formed by gluing two regular ideal cuboctahedra together. They then

must share at least one vertex, which we map to infinity under a Möbius transformation.

Suppose by way of contradiction that they are glued by attaching unshaded faces to each

other. Then we will have two copies of Figure 4c glued along the one of the horizontal

lines. But this means that the shaded faces at the ends of the Figure will become quadri-

laterals, having 3 ideal points in the plane and one at infinity. But this violates the

checkerboard criterion in Theorem 1.4, so we must have to glue them along shaded faces.

Each time we glue an additional cuboctahedron with a point at infinity, we must

continue to glue along shaded faces or else we violate Theorem 1.4. Additionally, if we

glue a cuboctahedron to the structure that has no points at infinity, it must be along

once of the interstices in the circle packing. This is essentially attaching a cuboctahedron

“underneath” the polyhedron it is being glued together with.

Lemma 2.5. Gluing a cuboctahedron to a polyhedron along a shaded face is represented

in the circle packing by filling an interstice with three mutually tangent circles, each of

which are tangent to two of the circles forming the interstice.

Proof. We need to add circles into the circle packing in such a way that the new points

of tangency form a cuboctahedron using the dual circles connecting them. We know

from Lemma 2.4 that we must glue shaded faces together. A cuboctahedron has exactly

6 quadrilateral faces and 8 triangular faces; each vertex of a cuboctahedron joins two

quadrilateral and two triangular faces together, and faces of the same shape never share
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an edge.

Consider some interstice formed by three circles. If we fill this interstice with three

mutually tangent circles that each touch two of the bounding circles, we get Figure

8. The addition of these three circles inside the interstice forms 7 shaded triangular

faces and 6 unshaded quadrilateral faces, 3 of which lie outside the interstice. The

final unshaded face is the entire interstice itself, to which the additional cuboctahe-

dron was glued. So this manner of adding circles corresponds to gluing one additional

cuboctahedron.

Figure 7: Adding a cuboctahedron in the circle packing. The 6 unshaded quadrilateral
faces are numbered, and the 7 visible triangles are the shaded interstices.

Figure 8: N Cuboctahedra glued together linearly.

Theorem 2.6. Let F be a cuboctahedral FAL with nerve FN . Then F is a member of

the 1st family if and only if FN is formed through repeated central triangular subdivision

on the simple cuboctahedral nerve.

Proof. Suppose F is a member of the first family. Then each of the two identical poly-

hedra that F decomposes into must be formed by exactly n cuboctahedra, for some

n ∈ N. We can use a Möbius transformation to send one vertex of these polyhedra to

infinity. Since the polyhedra are identical whatever holds for one holds for both, so we

can consider just P as one polyhedra representing both P+ and P−. Since P is formed

by gluing cuboctahedra together, the vertex at infinity will be the vertex of at least one

cuboctahedron.

If P is formed by only 1 cuboctahedron, then after sending a vertex to infinity it

must be of the form shown in Figure 4c. The nerve of this circle packing is shown in
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Figure 6. Suppose P is made from n cuboctahedra. When the second cuboctahedron

was attached, it must have been attached along a shaded face in the manner described

by Lemma 2.5. Suppose without loss of generality that we glued the second cubocta-

hedron to the face on the right with a point at infinity. Then we get a circle packing

as shown in Figure 9a. Figures 9b and 9c show the nerve of this circle packing. This

is the simple cuboctahedral nerve with central triangular subdivision performed once.

For every additional cuboctahedron we attach, we add three circles into an interstice,

which will correspond to central triangular subdivision of the corresponding triangle in

the nerve. So the forward direction is proven.

Now suppose F is some FAL with nerve FN , where FN is the result of some number

of central triangular subdivisions. For each of these subdivisions, we add exactly 3

vertices and 9 edges inside one of the triangles in the nerve. This corresponds to

adding 3 mutually tangent circles into an interstice, each of which touches 2 of the

exterior triangles forming the interstice, which by Lemma 2.5 is equivalent to gluing an

additional cuboctahedron. So the reverse direction is proven.

(a) Two cuboctahedra glued
together.

(b) Generating the nerve
from (a).

(c) The nerve of two cuboc-
tahedra.

Figure 9: The nerve of 2 cuboctahedra

To see what an arbitrary 1st family member’s nerve may look like, see Figure 10.

Figure 10: The nerve of n cuboctahedra.
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We end this section with a corollary to the previous theorem that relates the num-

ber of crossing circles in a 1st family member to the number of cuboctahedra in its

complement.

Corollary 2.6.1. The number of cuboctahedra in the complement of a 1st family

member is 2
3(c− 1), where c is the number of crossing circles.

Proof. If F is a member of the 1st family, then its nerve FN is a triangulation of S2

by Theorem 1.7. Since the nerve must be well-painted, each triangle has exactly one

painted edge. Since each painted edge borders two triangles, and each painted edge cor-

responds to 1 crossing circle, the number of crossing circles c is the number of triangles

T in the nerve divided by two, or c = T
2 .

Additionally, since FN is a triangulation of S2, 3T = 2E, where E is the number of

edges in the nerve. Finally, we have E = 9n+3, where n is the number of cuboctahedra.

This comes from there being 12 edges in the simple cuboctahedral nerve, and with

each subdivision 9 edges are added. Putting this all together with some algebra yields

n = c−1
3 . But this corresponds only to P+. For every cuboctahedra in P+, there is one

in P−, and the nerve only corresponds to one of the halves of the complement of F . So

we multiply by a factor of 2, getting the desired expression.

3 Characterizing the 1st Family in Terms of Belted Sums

Now that we have a complete combinatorial classification of the 1st family of cuboc-

tahedral FALs, we may change directions and use this result to describe the first family

in a different manner. In this section, we will define the belt-sum operation for FALs,

what it means to be belt-sum prime, and how all 1st family cuboctahedral FALs are

formed as belted-sums of two specific cuboctahedral FALs.

3.1 Necessary Background

Belt-summing is an operation defined by Adams where two FALs can be joined in

a manner that preserves volume. This occurs by slicing along thrice-punctured spheres

in the complements of the links and the gluing together along the cut. The result is one

FAL whose volume is the sum of the previous two.

There are a number of definitions and theorems that must be referenced before we

begin explaining our results. The work in this section is primarily an extension of the

work done by Morgan, Ransom, Spyropoulos and Ziegler from the CSUSB REU in 2017

[4], and as such much of this background information is their original research, which

we shall cite but not explain in detail.

9



Definition 3.1 (Non-Trivial 3-Cycle). A non-trivial 3-cycle in a nerve is any 3-cycle

that does not bound a face when considering the nerve as a triangulation of S2.

Definition 3.2 (Buckle). A buckle is defined as a non-trivial, once-painted 3-cycle.

(a) A nerve containing only
trivial 3-cycles.

(b) The painted 3-cycle here
is non-trivial.

(c) A nerve with exactly one
buckle.

Figure 11: Buckles and 3-cycles.

Lemma 3.3 (Morgan et. al.). Every 3-cycle in a well-painted nerve FN is either once-

painted or thrice-painted.

Theorem 3.4 (Morgan et. al.). An FAL is the belted sum of two others if and only if

its painted nerve contains a buckle.

Corollary 3.4.1 (Morgan et. al.). F is belt-sum prime if and only if its nerve contains

no buckles.

Theorem 3.5 (Morgan et. al.). The following statements are all true:

• Each FAL has a belt-sum decomposition into belt-sum prime FALs.

• This decomposition is commutative.

• This decomposition is unique.

The above theorems are not trivial, but for our purposes we may take them for

granted and use them as is relevant to our topic. The last theorem in particular is quite

strong, and will be utilized heavily in this section.

3.2 There Are Only Two Well-Paintings of the Simple Cuboctahedral

Nerve

Our goal now is to find all belt-sum prime cuboctahedral FALs, so to begin, we may

start with the simplest. The unpainted nerve of P4 is the simplest cuboctahedral nerve,

and as shown in the previous section, every cuboctahedral FAL is formed by subdividing

this nerve. We may start by finding every well-painting of this nerve:
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Theorem 3.6. The two painted nerves found in Figure 12 below are the only two

well-paintings of the simple cuboctahedral nerve.

Proof. We must find every way to paint this graph so that each triangle has exactly

one painted edge. There are exactly 8 triangles including the exterior triangle, so we

must paint exactly 4 edges. Since the exterior triangle must have a painted edge,

without loss of generality we may paint the bottom edge of this triangle (this comes

from the rotational symmetry of the nerve). Now we have two triangles with painted

edges, leaving 6 unpainted. From here, we also must paint the interior triangle. Up to

symmetry there are only two ways to do this: painting the upper edge or painting one

of the lower edges. From here, each of these nerves can only be painted in one way in

order to well-paint the entire nerve. So there are only two well-paintings of the simple

cuboctahedral nerve.

(a) One well-painted nerve. (b) The other well-painted nerve

Figure 12: The two well-painted simple cuboctahedral nerves.

Corollary 3.6.1. The two painted nerves in Figure 12 are belt-sum prime.

Proof. This comes as a direct consequence of the previous theorem. These nerves are

well-painted by construction, and they contain no non-trivial 3-cycles, therefore they

can’t contain a buckle. So by Corollary 3.4.1, these nerves are belt-sum primes.

It is worth examining what flat FALs these two nerves correspond to. These are

shown in Figure 13. Naturally, one of these is P4. The other is a link with only 3 planar

components; we will refer to this link C2, as it is the second cuboctahedral FAL in the

1st family. We are unsure if this link has another given name or if it has been studied

in the past.
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(a) P4 (b) C2

Figure 13: The two FALs corresponding to the nerves in Figure 12.

3.3 Any Central Triangular Subdivision of The Simple Cuboctahedral

Nerve Must Form a Buckle

Next, we may consider central triangular subdivisions of this nerve, as all other

members of the 1st family are simply well-paintings of some arbitrary number of central

triangular subdivisions of this nerve. Those that contain no buckles will be the remaining

belt-sum prime FALs that we are looking for. But as it happens, there are none of this

form, as detailed in the theorem below:

Theorem 3.7. Any central triangular subdivision of the simple cuboctahedral nerve

must form a buckle.

Proof. Let FN be the painted nerve corresponding to some 1st family member that is

not P4 or C2. Then by Theorem 2.6, FN must have been subdivided at least once. Con-

sider the “innermost” subdivision(s) (see Figure 14). We know that there must be an

innermost subdivision, because if not, then there would be infinitely many subdivisions

corresponding to infinitely many cuboctahedra, which is impossible for an FAL with

finitely many components.

Now consider the exterior triangle of this subgraph. By Lemma 3.3, this 3-cycle is ei-

ther once painted or thrice-painted. If it is once-painted, then it is by definition a buckle.

If it is thrice-painted, then we now must attempt to paint the interior edges so that

the subgraph is well-painted. The three outermost triangles of this subgraph already

have one painted edge, so there are 4 remaining triangles to paint, meaning we must

carefully select two edges to paint. Up to symmetry, there is only one way to paint an

edge of the interior triangle, so without loss of generality, we may paint the top edge of

this triangle. But now we face a predicament! There are two unpainted triangles that

do not share an edge (see Figure 15). Therefore, we cannot well-paint this graph. As

a result, it means that if FN is a nerve that has been subdivided at least once, it must

contain a buckle, since every non-trivial 3-cycle will be once-painted.

12



Figure 14: The subdivision in the very center (look closely!) and in the top center are
the two innermost subdivisions, as they are simple cuboctahedral nerves that have not
been subdivided further.

Figure 15: We are left with two triangles that have no painted edges (the exterior
triangle has a painted edge, but was not filled in for visual clarity).

3.4 There Are Only Two Belt-Sum Prime 1st Family Members

We now reach the main result of this section:

Theorem 3.8. The only two belt-sum prime 1st family members are P4 and C2, and

their half-twist partners.

Proof. Let F be a cuboctahedral FAL, and let FN be its painted nerve. Then either

FN has been subdivided or it hasn’t.

Case 1: If FN hasn’t been subdivided, then by Theorem 3.6, there are only two

FALs that result from well-paintings of this nerve. These are P4 and C2.

Case 2: If FN has been subdivided, then by Theorem 3.7, it must contain a buckle.

Then, by Theorem 3.4, any FAL of this form is the belt-sum of two others, and therefore

is not prime.
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So the only two belt-sum prime cuboctahedral FALs are the two aforementioned

FALs.

The consequence of this theorem is that every 1st family member is some belt-sum

of these two links. In fact, we can make an even stronger claim in Theorem 3.10:

Lemma 3.9. The 1st family is closed under belt-summing.

Proof. Suppose by way of contradiction that there was some 1st family member F , with

nerve FN , that was formed by belt-summing some combination of links, at least one of

which is not in the 1st family. We know by Theorem 2.6 that FN must be formed by

some number of central triangular subdivisions of the simple cuboctahedral nerve. By

Theorem 3.7, each of these subdivisions forms a buckle, which is the thrice-punctured

sphere which belt-summing decomposes along. Additionally, the only buckles in FN

occur at these subdivisions, since by construction there are no other non-trivial 3-cycles

in FN , once-painted or otherwise. Therefore, F will be belt-sum decomposed along

each of the subdivisions, which all correspond to one additional cuboctahedron. Since

belt-sum decomposition is unique (Theorem 3.5) this is the only way that F can be

be decomposed. So F cannot be the belt-sum of a collection of links that includes a

non-cuboctahedral FAL.

Theorem 3.10. Every belt-sum composite 1st family member F can be uniquely belt-

sum decomposed into a combination of P4’s and C2’s. Additionally, if F has c crossing

circles, then F can be decomposed into x P4’s and y C2’s, where x+ y = c−1
3 .

Proof. Let F be a cuboctahedral FAL with c crossing circles. By Theorem 3.5, we know

that every FAL can be uniquely decomposed into belt-sum prime FALs. Theorem 3.8

states that P4 and the C2 are the only two belt-sum prime cuboctahedral FALs. Fi-

nally, by Lemma 3.9, we know that F can only be the belt-sum of cuboctahedral FALs.

Altogether, this means that F has a unique decomposition into P4’s and C2’s.

We know from Corollary 2.6.1 that if F has c crossing circles, then its complement

is formed by gluing n = 2c−2
3 cuboctahedra together ( c−1

3 in the top half, P+, and
c−1
3

in the bottom half, P−). If there are x copies of P4 and y copies of C2, then there are a

total of 2x+ 2y cuboctahedra glued together to form F . Then, since 2x+ 2y = n and

n = 2c−2
3 , simplifying yields x+ y = c−1

3

Finally, we may use a result from Adams [1] to address the nature of the volume of

every cuboctahedral FAL complement.

Lemma 3.11 (Adams). If F1 and F2 are two FALs with volumes V1, V2, then their

belted sum F1+2 has volume V1 + V2.
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Theorem 3.12. If a 1st family member F is formed by belt-summing prime family

members together n times, then the volume of F is (n+ 1)× 24.092184....

Proof. Let F be a cuboctahedral FAL that decomposes into n+1 prime family members.

Then it is the result of exactly n belt-sum operations. Each prime family member

contains 2 cuboctahedra, so the complement of F contains 2n + 2 cuboctahedra. By

Lemma 3.11, volume is preserved under belt summing, so the volume of the belt-sum

(the volume of F , that is) is the sum of the volumes of each cuboctahedra; from SnapPy,

we found that the volume of 1 cuboctahedron is 12.0461..., and multiplying (2n+2)×
12.0461 yields the given value.

4 Using Gluing Maps and Length Spectra to Find A Com-

mon Geodesic in a Subset of the 1st Family

The results of the previous section mean that cuboctahedral FALs are a rather simple

class of links, at least in terms of belt-summing, since every cuboctahedral FAL can be

built up from just two simple ones. We use this nice property to examine geodesics in

cuboctahedral FALs.

4.1 Calculating The Systoles

We began by utilizing SnapPy to find the length spectra of both P4 and C2 with no

half-twists. While geodesics beyond the systoles may be of interest for other purposes,

our goal was only to examine the systoles (the shortest geodesics in the respective links’

complements) and see where they were located. Figure 16 shows every geodesic of length

less than 4.

Conveniently, both links share the exact same number of systoles of the exact same

length and rotation. However, SnapPy only shows that they exist. It was up to us to

locate them in the link complement.

4.2 Locating the Systoles

To find the systoles, we began by constructing the fundamental regions of both links.

While these links conveniently possess the same exact shape, the labelling of the regions

differs between the two, as certain shaded regions are paired different according to how

the two links were decomposed. As a result, the gluing maps are different. Figure 17

shows how the two FALs were labelled. In both cases, we chose to send the point of

tangency between A and A′ to infinity, making Z the face along which the upper and

lower halves of the link complements were glued together.
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P4 C2

Multiplicity Length Rotation Multiplicity Length Rotation

8 2.5533737... -2.0534164...i 8 2.5533737... -2.0534164...i

8 2.5533737... 2.0534164...i 8 2.5533737... 2.0534164...i

29 3.5254943... 0 25 3.5254943... -3.3892015...i

40 3.6261872... -2.4946975...i 8 3.5254943... 3.1415926...i

40 3.6261872... 2.4946975...i 32 3.6261872... -2.4946975...i

24 3.7556317... -0.9176411...i 32 3.6261872... 2.4946975...i

24 3.7556317... 0.9176411...i 24 3.7556317... -0.9176411...i

24 3.7556317... 0.9176411...i

12 3.8860507... -1.9490701...i

12 3.8860507... 1.9490701...i

Figure 16: Length Spectra for the Two Links

(a) P4 (b) C2

Figure 17: How The Regions of Both FALs Were Labelled.

The next step was to calculate the gluing maps for both links. To do this, we found

the Möbius transformations using Maple, then wrote them all in matrix form. Then,

we normalized the matrices and calculated their traces. We then plugged these traces

into the hyperbolic length formula, l = 2arccosh(±trace
2 ). Unsurprisingly, the lengths

of almost every curve was 0, as they could be pushed arbitrarily close to a cusp, often

around either crossing circles of planar components. The exceptions were the maps φX

in both links and their inverses. But these had lengths longer than the systoles (length

≈ 3.52549), so they were not what we were looking for. The full gluing maps, including

images of the curves they represent, are shown in Figures 18 and 19.
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Map Picture Map Picture

φA = A → A
′

φA =

[
1 4

√
2

0 1

] φ−1
A = A

′ → A

φ−1
A =

[
1 −4

√
2

0 1

]
φB+ = B+ → B

′
+

φB+ =

[
1 + 2

√
2i 8

√
2

√
2
2 1− 2

√
2i

] φ−1
B+

= B
′
+ → B+

φ−1
B+

=

[
1− 2

√
2i −8

√
2

−
√
2
2 1 + 2

√
2i

]
φB− = B− → B

′
−

φB− =

[
1− 2

√
2i 8

√
2

√
2
2 1 + 2

√
2i

] φ−1
B−

= B
′
− → B−

φ−1
B−

=

[
1 + 2

√
2i −8

√
2

−
√
2
2 1− 2

√
2i

]
φC+ = C+ → C

′
+

φC+ =

[
1 +

√
2
2 i −2i

1
4 i 1−

√
2
2 i

] φ−1
C+

= C
′
+ → C+

φ−1
C+

=

[
1−

√
2
2 i 2i

−1
4 i 1 +

√
2
2 i

]
φC− = C− → C

′
−

φC− =

[
1−

√
2
2 i 2i

−1
4 i 1 +

√
2
2 i

] φ−1
C−

= C
′
− → C−

φ−1
C−

=

[
1 +

√
2
2 i −2i

1
4 i 1−

√
2
2 i

]
φD = D → D

′

φD =

[
1 0
√
2
2 1

] φ−1
D = D

′ → D

φ−1
D =

[
1 0

−
√
2
2 1

]
φU = U+ → U−

φU =

[
1−

√
2i −4i

1
2 i 1 +

√
2i

] φ−1
U = U− → U+

φ−1
U =

[
1 +

√
2i 4i

−1
2 i 1−

√
2i

]
φV = V+ → V−

φV =

[
1 +

√
2i −4i

1
2 i 1−

√
2i

] φ−1
V = V− → V+

φ−1
V =

[
1−

√
2i 4i

−1
2 i 1 +

√
2i

]
φW = W+ → W−

φW =

[
1 0

i 1

] φ−1
W = W− → W+

φ−1
W =

[
1 0

−i 1

]
φX = X+ → X−

φX =

[
3 −8i

i 3

] φ−1
X = X− → X+

φ−1
X =

[
3 8i

−i 3

]
φY = Y+ → Y−

φY =

[
1 −8i

0 1

] φ−1
Y = Y− → Y+

φ−1
Y =

[
1 8i

0 1

]

Figure 18: Table of Gluing Maps for P4
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√
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√
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√
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√
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√
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√
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√
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√
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√
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√
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[
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√
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√
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√
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√
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]
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√
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1
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√
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] φ−1
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U =

[
1 +

√
2i 4i

−1
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√
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]
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φV =

[
1 +

√
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1
2 i 1−

√
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] φ−1
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V =

[
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√
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√
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]
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[
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1 0
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]
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Y =

[
1 8i

0 1

]

Figure 19: Table of Gluing Maps for C2
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Since none of these maps were systoles, we had to multiply matrices to find more

complicated curves in the manifold, with the intention of finding a matrix whose trace

was 2 ± 2
√
2i. This trace corresponded to the length of the systoles that we were

searching for. The table in Figures 20 and 21 lists all the systoles as products of gluing

maps for both links.

Systoles With Positive Rotation Systoles With Negative Rotation

φA+φU φ−1
A+

φU

φA+φV φ−1
A+

φV

φA−φU φ−1
A−

φU

φA−φV φ−1
A−

φV

φ−1
D+

φU φD+φU

φ−1
D+

φV φD+φV

φ−1
D−

φU φD−φU

φ−1
D−

φV φD−φV

Figure 20: Every Systole for P4 in Terms of Gluing Maps

Systoles With Positive Rotation Systoles With Negative Rotation

φ−1
A+

φU φA+φU

φ−1
A+

φV φA+φV

φ−1
A−

φU φA−φU

φ−1
A−

φV φA−φV

φC+φU φC+φW

φC−φU φC−φW

φD+φW φD+φV

φD−φW φD−φV

Figure 21: Every Systole for C2 in Terms of Gluing Maps
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4.3 Every Thrice-Punctured Sphere’s Complement Contains a Systole

Now that we have the locations of every systole in both links, the next step is to

locate every thrice-punctured sphere.

Lemma 4.1 (Morgan et. al.). There are only three types of thrice-punctured spheres

in the complement of an FAL, defined as follows:

• Standard thrice punctured spheres, which are formed by crossing circles. These

correspond to painted edges in a nerve.

• Buckle thrice-punctured spheres, which correspond to buckles in the nerve (once-

painted non-trivial 3-cycles)

• K4 thrice-punctured spheres, which correspond to K4 subgraphs in the nerve (K4

being the complete graph on 4 vertices)

Lemma 4.2. P4 and C2 contain only standard thrice-punctured spheres.

Proof. Examining the nerves of P4 and C2, it is clear that neither nerve contains a K4

subgraph, since there are no non-trivial 3-cycles. We also know that these are belt-

sum prime nerves, and therefore they contain no buckles. So the only thrice-punctured

spheres in these two links are the 4 crossing circles in each.

Lemma 4.3. All 1st family members that are not P4 and C2 contain only standard

thrice-punctured spheres and buckle thrice-punctured spheres.

Proof. Let F be a 1st family member that is not P4 or C2. Then it must be belt-sum

composite by Theorem 3.8. Then it must contain a buckle by Theorem 3.4, so it will

contain buckle thrice-punctured spheres. Additionally, we know from Corollary 2.6.1

that it will contain 3
2n + 1 crossing circles, where n is the number of cuboctahedra

forming F . It remains to show that there are no K4 thrice-punctured spheres in F .

But in order for FN to contain a K4 subgraph, we must have subdivided some trivial

3-cycle at some point in the series of subdivisions performed to obtain FN in a different

manner, namely, adding one vertex inside the triangle and connecting it to each other

vertex. But by Theorem 2.6 this cannot be the case, so no K4 punctured spheres will

exist in any 1st family member.

Lemma 4.4. The complement of any thrice-punctured sphere in P4 will contain a

geodesic of length 2.5533....

Proof. By Lemma 4.3, there are 4 possible thrice-punctured spheres to choose from in

P4; these are the 4 crossing circles. If we choose to belt-sum by cutting along circles B

or C (see Figure 17), then every systole will be in the complement.
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If we cut along crossing circle A, then there are 8 systoles in its complement, these

being the curves formed by φU , φV , and the inverses and upper and lower counterparts

for φD. Similarly, if we cut along crossing circle D, then the other 8 systoles (formed by

φA, φU , and φV ) are in the complement. So the complement of every thrice-punctured

sphere contained multiple geodesics of length 2.5533....

Lemma 4.5. The complement of any thrice-punctured sphere in C2 will contain a

geodesic of length 2.5533....

Proof. Similar to the proof for the previous lemma, there are 4 crossing circles that

we can choose to cut along. If we choose to cut along B, then every systole is in the

complement of that thrice-punctured sphere.

If we cut along A, then the 8 systoles containing either φC or φD will be in the

complement.

If we cut along C, then every systole containing φA and φD will be in the com-

plement. Similarly, cutting alone D means systoles containing φA and φC are in the

complement.

So the complement of every thrice-punctured sphere in C2 contains a geodesic of

length 2.5533....

Lemma 4.6. The complement of any buckle thrice punctured sphere will contain a

geodesic of length 2.5533....

Proof. Suppose F is a 1st family member containing buckle thrice-punctured spheres.

Then it has been formed by belt-summing some number of times; consider the most

recent of these. In this case, we take some other 1st family member L and either belt-

sum P4 or C2 to it by cutting along a thrice-punctured sphere in each of the links and

attaching them together in order to form F . By Lemmas 4.4 and 4.5, both P4 and C2

have geodesics of length 2.5533... in the complements of any standard thrice-punctured

sphere we choose to belt-sum along, the resulting FAL F will contain a geodesic of this

length as well.

Theorem 4.7. The complement of any thrice-punctured sphere in a flat 1st family

member will contain a geodesic of length 2.5533....

Proof. Suppose F is a flat first family member with painted nerve FN . If FN has not

been subdivided, it is either P4 or C2. Then by Lemmas 4.4 and 4.5, F contains a

geodesic of length 2.5533....
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Now suppose F has been subdivided at least once. Then by Lemma 4.3, the only

thrice-punctured spheres in F are standard and buckle thrice-punctured spheres. We

know that the complement of every standard thrice-punctured sphere will contain a

geodesic of length 2.5533... by Lemmas 4.4 and 4.5. Additionally, the complements

of the buckle thrice-punctured spheres must also contain these geodesics by Lemma

4.6.

Corollary 4.7.1. If a link does not contain a geodesic of length 2.5533... in its length

spectrum, then it is not a flat 1st family member.

Proof. This is a direct consequence of the previous theorem. Since the complement

of every thrice-punctured sphere in a cuboctahedral FAL contains a geodesic of length

2.5533...., then there will be a geodesic of this length in the complement of every cuboc-

tahedral FAL.

5 Further Questions

Everything described above is the extent of our findings. There are however, ques-

tions closely related to these topics that are still unanswered, which we list and explain

here.

• Does the belt-sum operation create shorter geodesics?

If the above is true, then the result in Corollary 4.7.1 is as strong a claim as we can

make regarding the length spectra of cuboctahedral FALs. However, if the answer is

false, and belt-summing preserves systolic length, then the following stronger claim will

be true:

Conjecture 1. The systolic length of every flat 1st family member is 2.5533....

• How will the presence of half-twists affect systole length in the two belt-sum prime

links?

• Are there other classes of FALs for which similar results can be found?

While we restricted ourselves to cuboctahedral FALs since together with octahedral

FALs they represent all arithmetic FALs as recently proven by Worden and Hoffman [6],

there are other polyhedra that tesselate hyperbolic space in a similar manner including

regular ideal tetrehedra. . Are there FALs whose complements are formed by gluing of

these polyhedra instead, and can a similar endeavor be undertaken on those classes as

we have done here with cuboctahedral FALs?
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Figure 22: Cuboctahedral FAL not in the 1st family.

• Our work is limited to just one family of cuboctahedral FALs. We know for a fact

that there exists at least one more family; the link shown above is one of its mem-

bers. This link decomposes into cuboctahedra through a different process than

the one we described (one that does not respect the preferred horoball packing),

and its nerve does not follow our characterization.

– Is this the only other family, or are there more?

– Can we perform a similar analysis on this family (and others)?

– What happens when we belt-sum members of two families together?

– The list of questions goes on.
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