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Abstract

In this paper we examine Algebraic Curvature Tensors and Model Spaces over dimension 3 whose
structure groups contain rotation actions. In particular, the rotation actions we analyze are the circular
action S1 and the hyperbolic boost transformation. We also examine structure groups that contain
elements of finite order k ̸= 2. Since every structure group is a Lie group, we use the structure of its Lie
algebra to obtain information about the structure group.

1 Introduction

We first start by providing some definitions. Let V be a real finite dimensional vector space.

Definition 1.1. Let x, y, z, w ∈ V and let R ∈ ⊗4V ∗. We say R is an Algebraic Curvature Tensor (or ACT)
if it has the following properties:

R(x, y, z, w) = −R(y, x, z, w) = −R(x, y, w, z) = R(z, w, x, y), and

R(x, y, z, w) +R(x,w, y, z) +R(x, z, w, y) = 0.

We let A(V ) denote the set of all ACTs over V where dimV = n.

Next, let A ∈ GL(n,R). We define the precomposition of A with R, denoted A∗R, as

A∗R(x, y, z, w) = R(Ax,Ay,Az,Aw).

In general, it is not the case that A∗R(x, y, z, w) = R(x, y, z, w). Although when equality does hold, the set
of such A ∈ GL(n,R) form a group under composition.

Definition 1.2. We define the structure group of R, denoted GR, as the group

GR = {A ∈ GL(n,R) | A∗R(x, y, z, w) = R(x, y, z, w) for all x, y, z, w ∈ V }.

Structure groups are important since given R ∈ A(V ), its structure group GR is precisely the group of
transformations of V that fix R. Previous work on structure groups include Obeidin’s work in the case that
dimV = 3, in which he classifies all possible GR for R ∈ A(V ) [Obe12].

Now suppose V is equiped with an inner product ⟨·, ·⟩. When V has an inner product, we say the triple
M = (V, ⟨·, ·⟩, R) is a model space. For A ∈ GL(n,R), we can also precompose A with the inner product,
defined as

A∗⟨x, y⟩ = ⟨Ax,Ay⟩.

As before, it is not always the case that A∗⟨x, y⟩ = ⟨x, y⟩, but when such equality holds in addition to
A∗R = R, the set of such matrices form a group under composition.
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Definition 1.3. Let M = (V, ⟨·, ·⟩, R) be a model space. We define the structure group of M, denoted GM,
as the group

GM = {A ∈ GL(n,R) | A∗R = R and A∗⟨x, y⟩ = ⟨x, y⟩ for all x, y ∈ V } .

In both cases of GR and GM, the structure group is actually a Lie Group.

Definition 1.4. A Lie Group G is a group that is also a real smooth manifold such that the two maps
G×G → G given by

g · h 7→ gh and g 7→ g−1

are smooth. [Sep06]

Given a structure group, it is helpful to uncover some information about the structure group. Since every
structure group is a Lie group, which is also a manifold, we can calculate the dimension of the Lie group. In
order to do so, we can calulate the dimension of the Lie Algebra associated to the structure group.

Definition 1.5. For a Lie group G, its associated Lie Algebra g is the tangent space of G at the identity of
G.

One method to find the dimension of a Lie group G is to consider some path g(t) through the identity
I ∈ G such that g(t) ∈ G for all t in some interval J and g(p) = I for some p ∈ J . Without loss of generality,
suppose g(0) = I. Then one can evaluate g′(p) for some p ∈ J , which is the tangent space of G at point
g(p) ∈ G . So for some path g(t) such that g(0) = I, the tangent space at the identity is the space given
by g′(0), or in other words, the Lie algebra g of G. We are then able to find basis vectors for g, in which
case the number of basis vectors is also the dimension of g and hence the dimension of the group G. For
notational purposes, we will let gR and gM denote the Lie algebra of GR and GM, respectively.

We now give an outline of this paper. In Section 2, we work over V of dimension 3 and find all R ∈ A(V )
that are preserved by the rotation action S1 by using the method above. As a result of this, we show that for
any GR containing an element of finite order k > 2, R is preserved by S1 as well. In Section 3, we work over
V of dimension 3 again and find all R ∈ A(V ) that are preserved by a hyperbolic boost using the method
above as well. In Section 4, we consider model spaces M over dimension 3 that are preserved by S1 and a
hyperbolic boost. At the end of each section, we provide a summary of the results found in that section.
We then conclude with open questions that can lead to future work. Lastly, we state acknowledgements and
refrences cited in this paper.

2 Structure groups containing an S1 action

We first describe all ACTs over dimension 3. Let V be a 3-dimensional vector space with basis βV =
{e1, e2, e3} and let A(V ) be as in Definition 1.1. It is known that A(V ) is a 6-dimensional vector space
where each component is determined by the output of each possible combination of inputs of basis vectors
up to the symmytries in Definition 1.1. For notation, we let

Rijkℓ = R(ei, ej , ek, eℓ)

for 1 ≤ i, j, k, ℓ ≤ 3. For R ∈ A(V ) with dimV = 3, the six components of R are

R1221, R1331, R2332, R1231, R2132, R3123.

For convinence, we define each of the six curvature entries as follows:

R1 = R1221,

R2 = R1331,

R3 = R2332,

R4 = R1231,

R5 = R2132,

R6 = R3123.
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We will refer to these entries as above throughout the rest of this paper. We also provide one more definition
before our analysis.

Definition 2.1. Let S2(V ∗) denote the set of all bilinear forms on V . Given ϕ ∈ S2(V ∗), we define

Rϕ(x, y, z, w) = ϕ(x,w)ϕ(y, z)− ϕ(x, z)ϕ(y, w).

Since ϕ is bilinear, ϕ is determined entirely by the entries of the basis vectors for V into ϕ. If βV = {e1, . . . , en}
is a basis for V , we let ϕij = ϕ(ei, ej) and let

[ϕ] =

ϕ11 · · · ϕ1n

...
. . .

...
ϕ1n · · · ϕnn


denote the array of entries of ϕ for all possible combinations of basis vectors for V , up to symmetry of ϕ.

2.1 A classification of all ACTs in dimension 3 preserved by S1

We will derive all possible ACTs over dimension 3 whose structure groups contain an S1 action. Let R ∈ A(V )
be an ACT over V of dimension 3 with basis βV = {e1, e2, e3} and suppose the structure group of R contains
S1. Without loss of generality, suppose this S1 action acts on the plane spanned by e2 and e3. Such an
action can be represented by the following matrix

Aθ,λ =

λ 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

where λ ∈ R − {0} is fixed and θ ∈ [0, 2π). By definition, we must have A∗
θ,λRi = Ri for all i = 1, . . . , 6.

Also, since we are assuming the structure group contains S1, we must have A∗
θ,λRi = Ri for all θ ∈ [0, 2π).

By the calulations of Beneish [Ben13], we arrive at the following equalities for A∗
θ,λRi:

R1 = A∗
θ,λR1 = λ2 cos2 θR1 + λ2 sin2 θR2 + 2λ2 cos θ sin θR4 (1)

R2 = A∗
θ,λR2 = λ2 sin2 θR1 + λ2 cos2 θR2 − 2λ2 cos θ sin θR4 (2)

R3 = A∗
θ,λR3 = (sin2 θ + cos2 θ)2R3 (3)

R4 = A∗
θ,λR4 = −λ2 cos θ sin θR1 + λ2 cos θ sin θR2 + λ2(cos2 θ − sin2 θ)R4 (4)

R5 = A∗
θ,λR5 = λ cos θR5 − λ sin θR6 (5)

R6 = A∗
θ,λR6 = λ sin θR5 + λ cos θR6. (6)

Claim 2.2. We claim R1 = R2 is free, R3 is free, and R4 = R5 = R6 = 0.

Proof. Since (sin2 θ + cos2 θ)2 = 12 = 1, we have that the (3) holds for all θ. There are two possible cases,
depending on if λ ∈ R− {−1, 0, 1} or if λ = ±1. Note that λ ̸= 0 since if λ = 0, Aθ,λ would be degenerate.

1. Case λ ∈ R − {−1, 0, 1}: Suppose λ ∈ R − {−1, 0, 1}. Since Equations (1)−(6) must hold for all
θ ∈ [0, 2π), they all must hold for θ = 0. If θ = 0, we get the equations

R1 = λ2R1,

R2 = λ2R2,

R3 = R3,

R4 = λ2R4,

R5 = λR5,

R6 = λR6.

Since λ ̸= ±1, we must have that R1 = R2 = R4 = R5 = R6 = 0.
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2. Case λ = ±1: Next, we look at if λ = ±1. For (5) and (6), if λ = −1 and θ = 0, we get

R5 = −R5

R6 = −R6,

so it must be the case that R5 = R6 = 0. Next, suppose λ = 1, We can multiply (5) and (6) by cos θ
and sin θ respectively. We then get

cos θR5 = cos2 θR5 − cos θ sin θR6

sin θR6 = sin2 θR5 + cos θ sin θR6.

If we add these two equations, we get cos θR5 + sin θR6 = R5. So it must be the case that

cos θR5 + sin θR6 = cos θR5 − sin θR6,

or equivalently,
2 sin θR6 = 0.

Since this equality must hold for all θ ∈ [0, 2π), it must hold when sin θ ̸= 0 and hence R6 = 0.
Substituting this into (5), we see that

R5 = cos θR5,

which must also hold for all θ and hence when cos θ ̸= 1. So, we must have that R5 = 0 as well. In
either case of λ = ±1, we get R5 = R6 = 0.

Next, for (1),(2) and (4), in either case of λ = 1 or λ = −1, the equations end up being equivalent. Also,
these equations must hold for all θ ∈ [0, 2π). In particular, they must hold for all θ ∈ [0, 2π)− {0, π}.
For the sake of our calculations, suppose θ ̸∈ {0, π}. If we subtract (2) from (1), we get

R1 −R2 = (cos2 θ − sin2 θ)R1 − (cos2 θ − sin2 θ)R2 + 4 cos θ sin θR4 = (cos 2θ)(R1 −R2) + 2 sin 2θR4.

If we solve for R1 −R2, we get

(1− cos 2θ)(R1 −R2) = 2 sin 2θR4,

so

R1 −R2 =
2 sin 2θ

(1− cos 2θ)
R4.

Since θ ̸∈ {0, π}, cos 2θ ̸= 1 and hence (1− cos 2θ) ̸= 0. If we simplify (4), we see

R4 =

(
−1

2
sin 2θ

)
(R1 −R2) + cos 2θR4.

Then by plugging in R1 −R2 = 2 sin 2θ
(1−cos 2θ)R4, we get

R4 =

(
−1

2
sin 2θ

)(
2 sin 2θ

(1− cos 2θ)

)
R4 + cos 2θR4.

This simplifies to

R4 =

(
− sin2 θ

1− cos 2θ

)
R4 + cos 2θR4,

or equivalently,

R4 = −1− cos2 2θ

1− cos 2θ
R4 + cos 2θR4 = − (1− cos 2θ)(1 + cos 2θ)

1− cos 2θ
R4 + cos 2θR4.

Then simplifying more gives us

R4 = −(1 + cos 2θ)R4 + cos 2θR4 = −R4 − cos 2θR4 + cos 2θR4 = −R4.
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Since R4 = −R4, we must have R4 = 0. Now, (1) and (2) become

R1 = cos2 θR1 + sin2 θR2

and
R2 = sin2 θR1 + cos2 θR2,

respectively. Then

R1 −R2 = (cos2 θ − sin2 θ)(R1 −R2) = (cos 2θ)(R1 −R2).

Again since cos 2θ ̸= 1 for θ ̸∈ {0, π}, we get that R1 −R2 = 0 and hence R1 = R2.

In all cases of λ ∈ R − {0}, we have R1 = R2, R3 is free, and R4 = R5 = R6 = 0, so we can label each
curvature component at R1 = R2 = α, R3 = β, and R4 = R5 = R6 = 0 for some α, β ∈ R. Thus, the
subspace of A(V ) whose elements are preserved by S1 is the set of curvature tensors whose components are
of the following form:

R1 = R2 = α

R3 = β

R4 = R5 = R6 = 0

for some α, β ∈ R.

Throughout the rest of the paper, let S ⊆ A(V ) be the subspace spanned by ACTs of the form above.
For some ACT R ∈ S, we have just shown that the structure group GR of R contains S1 as at least a
subgroup of GR, but GR can contain more elements than just those of S1. We now examine the different
possible cases for R and GR, depending on all possible choices of α, β ∈ R.

Calculation 2.3. For some R ∈ A(V ) such that R4 = R5 = R6 = 0, we will calculate A∗R = R for some
arbitrary A ∈ GR below.

Firstly, let

A =

x1 x4 x7

x2 x5 x8

x3 x6 x9

 ∈ GR.

Then, we must have A∗Ri = Ri for i = 1, . . . , 6. This gives us the equations

R1 = A∗R1 = (x1x5 − x2x4)
2R1 + (x1x6 − x3x4)

2R2 + (x2x6 − x3x5)
2R3

R2 = A∗R2 = (x1x8 − x2x7)
2R1 + (x1x9 − x3x7)

2R2 + (x2x9 − x3x8)
2R3

R3 = A∗R3 = (x4x8 − x5x7)
2R1 + (x4x9 − x6x7)

2R2 + (x5x9 − x6x8)
2R3

R4 = A∗R4 = (x1x5 − x2x4)(x1x8 − x2x7)R1 + (x1x6 − x3x4)(x1x9 − x3x7)R2 + (x2x6 − x3x5)(x2x9 − x3x8)R3

R5 = A∗R5 = −(x1x5 − x2x4)(x4x8 − x5x7)R1 − (x1x6 − x3x4)(x4x9 − x6x7)R2 − (x2x6 − x3x5)(x5x9 − x6x8)R3

R6 = A∗R6 = (x1x8 − x2x7)(x4x8 − x5x7)R1 + (x1x9 − x3x7)(x4x9 − x6x7)R2 + (x2x9 − x3x8)(x5x9 − x6x8)R3.

Since we have a multilinear system of equations of Ri in terms of variables xj , we can take the partial

derivative of each xj to obtain the Jacobian matrix
(

∂Ri

∂xj

)
. We provide one example of this by differentiating

R1 with respect to x1 implicitly. Note that since each Ri ∈ R is a constant, the derivative of every Ri with
respect to any variable is 0. To avoid confusion, the R1 in ∂R1

∂x1
on the left hand side is a function of multiple

xj , while the R1 multiplied by many xj on the right hand side is the constant R1. Observe that

0 =
∂R1

∂x1
= 2x5(x1x5 − x2x4)R1.

We repeat this process by taking the partial derivative of every Ri with respect to each xj implicitly, giving

us
(

∂Ri

∂xj

)
. Next, we can use this Jacobian matrix to find the dimension of GR. Since GR is a Lie group, we
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can find its dimension by finding the dimension of the Lie algebra gR of GR. So, let t ∈ J be an interval
containing 0 and let

A(t) =

x1(t) x4(t) x7(t)
x2(t) x5(t) x8(t)
x3(t) x6(t) x9(t)


such that A(0) = I3, the identity 3× 3 matrix. In other words, we now have a continuous path A(t) in GR

such that A(t) ∈ GR for all t ∈ J and A(0) = I3. We can modify
(

∂Ri

∂xj

)
by substituting every xj coefficient

in
(

∂Ri

∂xj

)
with xj(t) as a function of t. If we use the fact that R4 = R5 = R6 = 0 and evaluate each xj(t) at

t = 0, we get following modified Jacobian matrix
(

∂Ri

∂xj

)
|t=0

:

(
∂Ri

∂xj

)
|t=0

=


2R1 0 0 0 2R1 0 0 0 0
2R2 0 0 0 0 0 0 0 2R2

0 0 0 0 2R3 0 0 0 2R3

0 0 0 0 0 R2 0 R1 0
0 0 R3 0 0 0 R1 0 0
0 R3 0 R2 0 0 0 0 0

 .

Finally, we can use the chain rule by multiplying the modified Jacobian matrix
(

∂Ri

∂xj

)
|t=0

by
(

∂xj

∂t

)
|t=0

to take the derivative of each Ri with respect to t and evaluating at t = 0. For notational purposes, let
x′
j = x′

j(0). Then, we see

(
∂Ri

∂t

)
|t=0

=


2R1 0 0 0 2R1 0 0 0 0
2R2 0 0 0 0 0 0 0 2R2

0 0 0 0 2R3 0 0 0 2R3

0 0 0 0 0 R2 0 R1 0
0 0 R3 0 0 0 R1 0 0
0 R3 0 R2 0 0 0 0 0





x′
1
...
...
...
x′
9


=


2R1(x

′
1 + x′

5)
2R2(x

′
1 + x′

9)
2R3(x

′
5 + x′

9)
R2x

′
6 +R1x

′
8

R3x
′
3 +R1x

′
7

R3x
′
2 +R2x

′
4

 =


0
0
0
0
0
0

 . (♣)

This concludes Calculation 2.3. □ If we substitute R1 = R2 = α and R3 = β into the equations above, we
get the following equations: 

2α(x′
1 + x′

5)
2α(x′

1 + x′
9)

2β(x′
5 + x′

9)
αx′

6 + αx′
8

βx′
3 + αx′

7

βx′
2 + αx′

4

 =


0
0
0
0
0
0

 . (a)

We will now look at the four possible cases: α = 0 and β = 0, α = 0 and β ̸= 0, α ̸= 0 and β = 0,
α ̸= 0 and β ̸= 0.

1. Case α = β = 0: Let R ∈ S as above be such that α = β = 0. Then all of the equations in (a)
hold for all choices of xj and hence each xj is free for all j = 1, . . . , 9. Hence, dimGR = 9 and so
GR = GL(3,R). In this case, R = 0, the zero curvature tensor.

2. Case α = 0 and β ̸= 0: Let R ∈ S such that α = 0 and β ̸= 0. Then the equations in (a) become
0
0

2β(x′
5 + x′

9)
0

βx′
3

βx′
2

 =


0
0
0
0
0
0

 .
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So we see that x5 = −x9, x2 = x3 = 0 and x1, x4, x6, x7, x8, x9 are free. Hence, dimGR = 6 and a basis
βgR

for gR is

βgR
=


1 0 0
0 0 0
0 0 0

 ,

0 1 0
0 0 0
0 0 0

 ,

0 0 0
0 0 0
0 1 0

 ,

0 0 1
0 0 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0

 ,

0 0 0
0 −1 0
0 0 1

 .

Observe that R1221 = R1331 = 0, so e1 ∈ kerR. Since R has non-trivial kernel, we can decompose R as
R = R1⊕R2 and V as V = V1⊕V2, where V1 = span{e1} and V2 = span{e2, e3} and each Ri ∈ A(Vi).
[DFP11]

3. Case α ̸= 0 and β = 0: Let R ∈ S such that α ̸= 0 and β = 0. Then the equations in (a) become
2α(x′

1 + x′
5)

2α(x′
1 + x′

9)
0

αx′
6 + αx′

8

αx′
7

αx′
4

 =


0
0
0
0
0
0

 .

Thus, we can see that x5 = x9 = −x1, x6 = −x8, x4 = x7 = 0 and x2, x3 are free. So we have 4 free
variables x1, x2, x3, x8 which give rise to a basis βgR

of gR given by:

βgR
=


1 0 0
0 −1 0
0 0 −1

 ,

0 0 0
1 0 0
0 0 0

 ,

0 0 0
0 0 0
1 0 0

 ,

0 0 0
0 0 1
0 −1 0

 .

In this case, we have that R = Rϕ1 +Rϕ2 where ϕ1, ϕ2 ∈ S2(V ∗) and

ϕ1 =

1 0 0
0 α 0
0 0 0

 and ϕ2 =

1 0 0
0 0 0
0 0 α

 .

4. Case α ̸= 0 and β ̸= 0: Let R ∈ S such that α ̸= 0 and β ̸= 0. Then our equations in (a) become
2α(x′

1 + x′
5)

2α(x′
1 + x′

9)
2β(x′

5 + x′
9)

αx′
6 + αx′

8

βx′
3 + αx′

7

βx′
2 + αx′

4

 =


0
0
0
0
0
0

 .

If we solve for each variable, we see that x1 = x5 = x9 = 0, x6 = −x8, x2 = −α
βx4, and x3 = −α

βx7.
Thus we have three free variables, given by x4, x7, x8. These then give us three basis vectors for basis
βgR

of gR, given by:

βgR
=


 0 1 0
−α

β 0 0

0 0 0

 ,

 0 0 1
0 0 0

−α
β 0 0

 ,

0 0 0
0 0 1
0 −1 0

 .

In this case, we have that R = sgn(β)Rϕ for some ϕ ∈ S2(V ∗) given by

ϕ =

sgn(β)α/
√
|β| 0 0

0
√
|β| 0

0 0
√
|β|

 ,

where sgn(β) denotes the sign function of β. It is known thatGRϕ
= Gϕ, and in particular, Gϕ = O(p, q)

where (p, q) is the signature of ϕ [DFP11]. We let p represent the number of negative entries in ϕ and
let q represent the number of positive entries of ϕ. So, since ϕ22, ϕ33 > 0, we have GR = O(1, 2) or
GR = O(3) depending on the signature of ϕ.

7



This is now a complete classification of all R ∈ A(V ) over dimV = 3 that are preserved by S1. To
summarize, the possible dimensions of GR are 9, 6, 4, and 3. In the case that dimGR = 9, we have that
GR = GL(3,R). In the case that dimGR = 3, we have that GR = O(3) or GR = (1, 2).

2.2 Elements of GR of finite order in dimension 3

Let R ∈ A(V ) where dimV = 3 and suppose A ∈ GR has finite order k > 2. We focus on elements of
order k > 2 since elements of GL(n,R) of order 2 arise from reflections or products of reflections [Koo03].
In the case that dimV = 3, Williams has already detailed some structure groups whose elements have order
2 [Wil19]. In Koo’s paper, Koo describles all elements of GL(n,R) of finite order. According to Koo, if A
has finite order k > 2, then it must be of the form

A =

ε 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

where ε = ±1, θ = 2aπ
b for some a, b ∈ Z with b > 2, and k = b or k = lcm{2, b}, depending on if ε = 1 or

ε = −1, respectively. We suppose b > 2, so we have that θ ̸= π. Since A is of the same form as Aθ,±1 from
Section 2.1, one might realize there are similarities between elements of finite order k > 2 and elements of
S1. This leads us to the following theorem.

Theorem 2.4. Let R be an ACT over dimension 3 such that there exists A ∈ GR of order k > 2. Then S1
is a subgroup of GR.

Proof. Let R ∈ A(V ) such that dimV = 3 and suppose GR contains an element of finite order k > 2. Let
A ∈ GR be such an elements. Then by Koo, A is of the form

A =

ε 0 0
0 cos θ − sin θ
0 sin θ cos θ

 ,

where θ = 2π a
b for some a, b ∈ Z, b > 2, and ε = ±1 [Koo03]. Also, the order k of A is k = b or k = lcm{2, b},

depending on if ε = 1 or ε = −1, respectively. Since A ∈ GR, we must have A∗Ri = Ri for all i. If we
expand A∗Ri = Ri, we get the following system of equations:

R1 = A∗R1 = cos2 θR1 + sin2 θR2 + 2 cos θ sin θR4 (7)

R2 = A∗R2 = sin2 θR1 + cos2 θR2 − 2 cos θ sin θR4 (8)

R3 = A∗R3 = (sin2 θ + cos2 θ)2R3 (9)

R4 = A∗R4 = − cos θ sin θR1 + cos θ sin θR2 + (cos2 θ − sin2 θ)R4 (10)

R5 = A∗R5 = ε cos θR5 − ε sin θR6 (11)

R6 = A∗R6 = ε sin θR5 + ε cos θR6. (12)

We can see that Equation (9) always holds. We can follow the calculations in Case 2 of Claim 2.2 identically
since cos 2θ ̸= 1 because θ ̸∈ {0, π}. Thus, we conclude that R1 = R2, R3 is free, and R4 = R5 = R6 = 0.
Thus, R ∈ S and hence S1 must preserve R as well.

Theorem 2.4 tells us that in the case dimV = 3, if there exists A ∈ GR of finite order k > 2 that preserves
R, then S1 must also preserve R.

3 Hyperbolic Boost in dimension 3

We now focus our attention to the Hyperbolic Boost action in dimension 3. This action can be described by
the matrix

Bθ,λ =

λ 0 0
0 cosh θ − sinh θ
0 − sinh θ cosh θ

 ,
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where λ ∈ R− {0} is fixed and θ ∈ R. Suppose there exists R ∈ A(V ) over dimV = 3 such that Bθ,λ ∈ GR

for all θ ∈ R. Then we must have B∗
θ,λRi = Ri for all i, which gives us the following equations:

R1 = B∗
θ,λR1 = λ2 cosh2 θR1 + λ2 sinh2 θR2 − 2λ2 cosh θ sinh θR4 (13)

R2 = B∗
θ,λR2 = λ2 sinh2 θR1 + λ2 cosh2 θR2 − 2λ2 cosh θ sinh θR4 (14)

R3 = B∗
θ,λR3 = (sinh2 θ − cosh2 θ)2R3 (15)

R4 = B∗
θ,λR4 = −λ2 cosh θ sinh θR1 − λ2 cosh θ sinh θR2 + λ2(cosh2 θ + sinh2 θ)R4 (16)

R5 = B∗
θ,λR5 = λ cosh θR5 + λ sinh θR6 (17)

R6 = B∗
θ,λR6 = λ sinh θR5 + λ cosh θR6. (18)

Claim 3.1. We claim that R1 = −R2 is free, R3 is free, and R4 = R5 = R6 = 0.

Proof. As in Claim 2.2, there are two cases depending on if λ ∈ R − {−1, 0, 1} and if λ = ±1. Note that
these Equations (13)−(18) must hold for all θ ∈ R. Observe that equation (15) holds for all θ ∈ R since
cosh2 θ − sinh2 θ = 1 for all θ ∈ R.

1. Case λ ∈ R − {−1, 0, 1}: Suppose λ ∈ R − {−1, 0, 1}. Then Equations (13)−(18) must hold for all
θ ∈ R. If θ = 0, we have

R1 = λ2R1

R2 = λ2R2

R3 = R3

R4 = λ2R4

R5 = λR5

R6 = λR6.

Since λ ∈ R− {−1, 0, 1}, we must have R1 = R2 = R4 = R5 = R6 = 0 and R3 is free.

2. Case λ = ±1: Suppose λ = ±1. If λ = −1, then evaluating (17) and (18) at θ = 0 gives us

R5 = −R5

R6 = −R6.

Hence, we must have R5 = R6 = 0. Next suppose λ = 1. Then (17) and (18) become

R5 = cosh θR5 + sinh θR6

R6 = sinh θR5 + cosh θR6.

If we multiply R5 and R6 by cosh θ and − sinh θ respectively, we see

cosh θR5 = cosh2 θR5 + cosh θ sinh θR6

− sinh θR6 = − sinh2 θR5 − cosh θ sinh θR6.

If we add these two equations, we get R5 = (cosh2 θ − sinh2 θ)R5 = cosh θR5 − sinh θR6. But since
R5 = cosh θR5 + sinh θR6, we have

cosh θR5 + sinh θR6 = cosh θR5 − sinh θR6,

or in other words,
2 sinh θR6 = 0.

Since this equation must hold for all θ ∈ R, if θ ̸= 0, then sinh θ ̸= 0 so we must have R6 = 0.
Substituting R6 = 0 into (17), we have R5 = cosh θR5. Again, this equation must hold for all θ ∈ R,
so if θ ̸= 0, then cosh θ ̸= 1 and hence R5 = 0.
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Next we will examine Equations (13),(14), and (16). Notice that if λ = −1 or if λ = 1, the equations
are identical. Also since these equations must hold for all θ ∈ R, they must hold for when θ ̸= 0 as
well, so for the sake of our calculations, suppose θ ̸= 0. If we add (13) and (14), we see that

R1 +R2 = (cosh2 θ + sinh2 θ)(R1 +R2)− 4 cosh θ sinh θR4 = cosh 2θ(R1 +R2)− 2 sinh 2θR4.

Hence,
(1− cosh 2θ)(R1 +R2) = −2 sinh 2θR4.

Since θ ̸= 0, 1− cosh 2θ ̸= 0 and so

R1 +R2 =
−2 sinh 2θ

1− cosh 2θ
R4.

We can simplify (16) as

R4 = − cosh θ sinh θR1 − cosh θ sinh θR2 + (cosh2 θ + sinh2 θ)R4

= − cosh θ sinh θ(R1 +R2) + cosh 2θR4

= −1

2
sinh 2θ(R1 +R2) + cosh 2θR4. (♯)

If we substitute R1 +R2 = −2 sinh 2θ
1−cosh 2θR4 into (♯), we see

R4 =

(
−2 sinh 2θ

1− cosh 2θ
R4

)(
−1

2
sinh 2θ

)
R4 + cosh 2θR4

=
sinh2 2θ

1− cosh 2θ
R4 + cosh 2θR4

=
cosh2 2θ − 1

1− cosh 2θ
R4 + cosh 2θR4

= −(1 + cosh 2θ)R4 + cosh 2θR4

= −R4 − cosh 2θR4 + cosh 2θR4 = −R4.

Hence, R4 = −R4 and so R4 = 0. We can plug in R4 = 0 into R1+R2 = cosh 2θ(R1+R2)−2 sinh 2θR4

to see that
R1 +R2 = cosh 2θ(R1 +R2).

If θ ̸= 0, then cosh 2θ ̸= 1 and so we must have R1 + R2 = 0, or in other words, R1 = −R2. So if
λ = ±1, we have that R1 = −R2, R3 is free, and R4 = R5 = R6 = 0.

In all possible cases of λ ∈ R − {0}, we have that R1 = −R2, R3 is free, and R4 = R5 = R6 = 0.
Thus, the subspace of A(V ) whose elements are preserved by a hyperbolic boost is the set of curvature
tensors whose components are of the following form:

R1 = −R2

R3 is free

R4 = R5 = R6 = 0.

Let T ⊆ A(V ) be the subspace spanned by ACTs of the form above. By Claim 3.1, we have shown that
any R ∈ T is preserved by a hyperbolic boost, so Aθ ∈ GR for all θ ∈ R. As we did in Section 2.1, for each
possible R ∈ T depending on R1, R3 ∈ R, we will examine the Lie algebra structure of GR. Notice that
in Calculation 2.2, we calculated A∗Ri = Ri where R4 = R5 = R6 = 0 for some arbitrary A ∈ GR. We
disregarded R1 = R2 until the calculation was over, so we may use the results from Calculation 2.2.
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So, let R ∈ T and let A ∈ GR. Also, let A(t) be a path in GR through I3 such that A(0) = I3. We must
have that A(t)∗Ri = Ri for all t. Then if we take the derivative of each side with respect to t and evaluate
at t = 0, recall that (♣) says that

(
∂Ri

∂t

)
|t=0

=


2R1(x

′
1 + x′

5)
2R2(x

′
1 + x′

9)
2R3(x

′
5 + x′

9)
R2x

′
6 +R1x

′
8

R3x
′
3 +R1x

′
7

R3x
′
2 +R2x

′
4

 =


0
0
0
0
0
0

 .

Now we can substitute R1 = −R2 into these equations to see that
2R1(x

′
1 + x′

5)
−2R1(x

′
1 + x′

9)
2R3(x

′
5 + x′

9)
−R1x

′
6 +R1x

′
8

R3x
′
3 +R1x

′
7

R3x
′
2 −R1x

′
4

 =


0
0
0
0
0
0

 .

For convenience, we label R1 = γ and R3 = τ . This gives us
2γ(x′

1 + x′
5)

−2γ(x′
1 + x′

9)
2τ(x′

5 + x′
9)

γ(−x′
6 + x′

8)
τx′

3 + γx′
7

τx′
2 − γx′

4

 =


0
0
0
0
0
0

 . (♠)

We now examine all possible cases of γ, τ ∈ R.

1. Case γ = τ = 0: Let R ∈ T as above such that γ = τ = 0. Then the equations in (♠) hold for all
choices of xj and hence each xj is free for all j = 1, . . . , 9. Thus, dimGR = 9 and so GR = GL(3,R).
In this case, R = 0, the zero curvature tensor.

2. Case γ = 0 and τ ̸= 0: Let R ∈ T such that γ = 0 and τ ̸= 0. Then the equations in (♠) become
0
0

2τ(x′
5 + x′

9)
0

τx′
3

τx′
2

 =


0
0
0
0
0
0

 .

So we see that x5 = −x9, x2 = x3 = 0 and x1, x4, x6, x7, x8, x9 are free. Thus, dimGR = 6 and a basis
βgR

for gR is

βgR
=


1 0 0
0 0 0
0 0 0

 ,

0 1 0
0 0 0
0 0 0

 ,

0 0 0
0 0 0
0 1 0

 ,

0 0 1
0 0 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0

 ,

0 0 0
0 −1 0
0 0 1

 .

In this case, since 0 = γ = R1221 = R1331, we have that e1 ∈ kerR. Since R has non-trivial kernel, we
can decompose R as R = R1 ⊕R2 and V as V = V1 ⊕ V2, where V1 = span{e1} and V2 = span{e2, e3}
and each Ri ∈ A(Vi).
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3. Case γ ̸= 0 and τ = 0: Let R ∈ T such that γ ̸= 0 and τ = 0. Then the equations in (♠) become
2γ(x′

1 + x′
5)

−2γ(x′
1 + x′

9)
0

γ(−x′
6 + x′

8)
γx′

7

γx′
4

 =


0
0
0
0
0
0

 .

We can see that x1 = −x5 = −x9, x6 = x8, and x4 = x7 = 0. Thus, x1, x2, x3, x8 are free and so
dimGR = 4. Then we have a basis βgR

of gR given by:

βgR
=


1 0 0
0 −1 0
0 0 −1

 ,

0 0 0
1 0 0
0 0 0

 ,

0 0 0
0 0 0
1 0 0

 ,

0 0 0
0 0 1
0 1 0

 .

In this case, we have R = Rϕ1
+Rϕ2

where ϕ1, ϕ2 ∈ S2(V ∗) and

ϕ1 =

1 0 0
0 γ 0
0 0 0

 and ϕ2 =

1 0 0
0 0 0
0 0 −γ

 .

4. Case γ ̸= 0 and τ ̸= 0: Let R ∈ T such that γ ̸= 0 and τ ̸= 0. Then the equations in (♠) become
2γ(x′

1 + x′
5)

−2γ(x′
1 + x′

9)
2τ(x′

5 + x′
9)

γ(−x′
6 + x′

8)
τx′

3 + γx′
7

τx′
2 − γx′

4

 =


0
0
0
0
0
0

 .

If we solve for each xj , we see that x1 = x5 = x9 = 0, x6 = x8, x3 = −γ
τ x7, and x2 = γ

τ x4. Thus, we
have three free variables given by x4, x7, x8. These then give us three basis vectors for basis βgR

of gR,
given by:

βgR
=


0 1 0

γ
τ 0 0
0 0 0

 ,

 0 0 1
0 0 0
−γ

τ 0 0

 ,

0 0 0
0 0 1
0 1 0

 .

In this case, we have that R = sgn(−τ)Rϕ, where ϕ ∈ S2(V ∗) is given by

ϕ =

sgn(−τ)γ/
√

|τ | 0 0

0
√
|τ | 0

0 0 −
√

|τ |

 .

So, we must have that dimGR = 3. Moreover, GR = O(1, 2) or GR = O(2, 1), depending on the
signature of ϕ.

We have now classified all R ∈ A(V ) in dimension 3 that are preserved by a hyperbolic boost. The possible
dimensions of GR are 9,6,4, and 3. In the case that dimGR = 9, we have that GR = GL(3,R). In the case
that dimGR = 3, we have either GR = O(1, 2) or GR = O(2, 1).

4 Model Spaces M in dimension 3 preserved by Rotation Actions

We now focus our attention to model spaces M of dimension 3. One notable feature about model spaces is
that the vector space V is equipped with an inner product ⟨·, ·⟩. Since an inner product is symmetric and
bilinear, all of the information regarding an inner product can be deduced from applying the inner product
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to all combinations of basis vectors. In this section, we work over V of dimension 3, so let βV = {e1, e2, e3}
be a basis for V . We will also let H denote the ⟨·, ·⟩ such that Hij = ⟨ei, ej⟩. Up to the symmetries of H,
there are six possible combinations of basis vectors to input into H, given by H11, H22, H33, H12, H13, H23.
We also enumerate these as

H1 = H11,

H2 = H22,

H3 = H33,

H4 = H12,

H5 = H13,

H6 = H23.

We will refer to the possible entries of H as above throughout the rest of the section.

4.1 Model Spaces M preserved by S1

We will derive all possible model spaces M over dimension 3 whose structure groups contain S1. We first
start with a preliminary result.

Proposition 4.1. Define

S1±1 :=


ε 0 0
0 cos θ − sin θ
0 sin θ cos θ

 | θ ∈ [0, 2π) and ε = ±1

 .

Then S1±1 is a group under multiplication of matrices.

Proof. Observe that I3 ∈ S1±1 since I3 is a matrix in S1±1 where θ = 0 and ε = 1. Thus, S1±1 has an identity
element. Since S1±1 ⊆ GL(3,R) and it is known that multiplication of matrices in GL(3,R) is associative, we
have that multiplication in S1±1 is also associative. Lastly, we must check for inverses. Let

X =

ε 0 0
0 cosx − sinx
0 sinx cosx

 ∈ S1±1.

Then consider the matrix

Y =

ε 0 0
0 cos(2π − x) − sin(2π − x)
0 sin(2π − x) cos(2π − x)

 .

Observe that Y ∈ S1±1 since if x ∈ (0, 2π), 2π − x ∈ [0, 2π) as well. If x = 0, then replace 2π − x with 0, as
the following calculations are equivalent. Then we can see that

XY =

ε 0 0
0 cosx − sinx
0 sinx cosx

ε 0 0
0 cos(2π − x) − sin(2π − x)
0 sin(2π − x) cos(2π − x)


=

1 0 0
0 cos(x+ 2π − x) − sin(x+ 2π − x)
0 sin(x+ 2π − x) cos(x+ 2π − x)

 = I3.

Hence, every X ∈ S1±1 has an inverse element X−1 ∈ S1±1 as well. Thus, S1±1 is a group.

Let Aθ,λ represent the S1 action as given in Section 2.1 and let M = (V, ⟨·, ·⟩, R) = (V,H,R) be a model
space in dimension 3 such that S1 preserves M. In order for S1 to preserve M, S1 must preserve both R and
H. In Section 2.1, we classified all R ∈ A(V ) in dimension 3 that are preserved by S1. We use these results
as well as new calculations of A∗

θ,λHi to determine which possible M are preserved by S1. Since S1 preserves
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M by our supposition, we must have A∗
θ,λHi = Hi for all i = 1, . . . , 6. If we compute A∗

θ,λHi = Hi, we get
the following equations:

H1 = A∗
θ,λH1 = λ2H1 (19)

H2 = A∗
θ,λH2 = cos2 θH2 + sin2 θH3 + 2 cos θ sin θH6 (20)

H3 = A∗
θ,λH3 = sin2 θH2 + cos2 θH3 − 2 cos θ sin θH6 (21)

H4 = A∗
θ,λH4 = λ cos θH4 + λ sin θH5 (22)

H5 = A∗
θ,λH5 = −λ sin θH4 + λ cos θH5 (23)

H6 = A∗
θ,λH6 = − cos θ sin θH2 + cos θ sin θH3 + (cos2 θ − sin2 θ)H6, (24)

all of which must hold for all θ ∈ [0, 2π) and fixed λ ∈ R− {0}.

Claim 4.2. Solving the equations above, we see H1 is free and nonzero, H2 = H3 are free and nonzero,
H4 = H5 = H6 = 0, and we must have λ = ±1.

Proof. To begin, we encode the data of H into the following array:

[H]ij =

H11 H12 H13

H12 H22 H23

H13 H23 H33

 =

H1 H4 H5

H4 H2 H6

H5 H6 H3

 ,

where the ij entry of [H]ij represents Hij . We will fill in the entries of [H] as we continue.
Notice that Equations (19)−(24) look nearly identical to Equations (1)−(6) in Section 2.1, which we have

already solved. We will not repeat the calculations done in Claim 2.2; we instead focus on how they are
identical up to a substitution and choice of λ for Equations (1)−(6).

We first examine Equations (22) and (23). If we replace H4 with R6 and H5 with R5, we see that (22)
and (23) respectively become

R6 = λ cos θR6 + λ sin θR5 = λ sin θR5 + λ cos θR6

R5 = −λ sin θR6 + λ cos θR5 = λ cos θR5 − λ sin θR6.

Note that we did not actually equate H4 = R6 and H5 = R5, we simply just symbolically substituted R6, R5

in for H4, H5, respectively. In Claim 2.2, we showed that R5 = R6 = 0 for all cases of λ ∈ R − {0}. Using
this knowledge and realizing that Equations (22) and (23) are identical to (6) and (5) respectively up to the
substitution we made, we can conclude that H4 = H5 = 0. We update these values in [H] to see

[H] =

H1 0 0
0 H2 H6

0 H6 H3

 .

Next, if we symbolically substitute H2 with R1, H3 with R2, and H6 with R4, observe that Equations
(20),(21),(24) are identical to Equations (1),(2),(4) in the case that λ = ±1 in Equations (1),(2),(4). In the
case that λ = ±1 for Equations (1),(2),(4), we concluded that R4 = 0 and R2 = R3. Hence, by substituting
H2 with R1, H3 with R2, and H6 with R4, we see that H6 = 0 and H2 = H3. Using this knowledge, we can
update the entries of [H]:

[H] =

H1 0 0
0 H2 0
0 0 H3

 .

We hold off on substituting H2 = H3 in [H] for now for the sake of a later calculation. Note that since H is
an inner product, it must be nondegenerate. In other words, if H is nondegenerate, then H(v, w) = 0 for all
w ∈ V if and only if v = 0⃗. If H2 = H3 = 0, then H would be degenerate since we would have H(e2, w) = 0
for all w ∈ V , which cannot true since e2 ̸= 0⃗ is a basis vector for V .

Finally, we examine Equation (19). Observe that if λ ̸= ±1, then we conclude from Equation (19) that
H1 = 0. This would imply that H(e1, w) = 0 for all w ∈ V . This cannot be the case since e1 is a basis vector
for V . Hence, we must have λ = ±1, which means that Equation (19) holds for any choice of H1.
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So, if S1 preserves M, we have found that the inner product H of M must be of the form above. We now
examine GM as we did in Calculation 2.2 by looking at the Lie algebra structure of gM.

Calculation 4.3. For some model space M such that R ∈ S and H is of the form given by Claim 4.2, we
will calculate A∗Hi = Hi for some arbitrary A ∈ GM. We do not need to compute A∗Ri = Ri since this
calculation was already done in Calculation 2.3.

Firstly, let

A =

x1 x4 x7

x2 x5 x8

x3 x6 x9

 ∈ GM.

Since A ∈ GM, we must have A∗Hi = Hi for all i = 1, . . . , 6. When we compute A∗Hi = Hi, we arrive at
the following equations:

H1 = A∗H1 = x2
1H1 + x2

2H2 + x2
3H3

H2 = A∗H2 = x2
4H1 + x2

5H2 + x2
6H3

H3 = A∗H3 = x2
7H1 + x2

8H2 + x2
9H3

H4 = A∗H4 = x1x4H1 + x2x5H2 + x3x6H3

H5 = A∗H5 = x1x7H1 + x2x8H2 + x3x9H3

H6 = A∗H6 = x4x7H1 + x5x8H2 + x6x9H3.

Since GM is a Lie group, we can find its dimension by finding the dimension of its Lie algebra GM. So, let

A(t) =

x1(t) x4(t) x7(t)
x2(t) x5(t) x8(t)
x3(t) x6(t) x9(t)


such that A(0) = I3. As we did in Calculation 2.2, we can take the the the partial derivative of each Hi

with respect to xj to get the Jacobian matrix
(

∂Hi

∂xj

)
. We then consider each xj in

(
∂Hi

∂xj

)
as a function of t

as described by the path A(t) in GM such that A(0) = I3. We can then evaluate each xj at t = 0 and use

the fact that H4 = H5 = H6 = 0 to obtain the following modified Jacobian matrix
(

∂Hi

∂xj

)
|t=0

:

(
∂Hi

∂xj

)
|t=0

=


2H1 0 0 0 0 0 0 0 0
0 0 0 0 2H2 0 0 0 0
0 0 0 0 0 0 0 0 2H3

0 H2 0 H1 0 0 0 0 0
0 0 H3 0 0 0 H1 0 0
0 0 0 0 0 H3 0 H2 0

 .

Now we can use the chain rule by multiplying the modified Jacobian matrix
(

∂Hi

∂xj

)
|t=0

by
(

∂xj

∂t

)
|t=0

to take

the derivative of each Hi with respect to t and evaluating at t = 0. Since Hi is a real valued, constant, its
derivative is 0. We will again let x′

j = x′
j(0). Then we have

(
∂Hi

∂xj

)
|t=0

=


2H1 0 0 0 0 0 0 0 0
0 0 0 0 2H2 0 0 0 0
0 0 0 0 0 0 0 0 2H3

0 H2 0 H1 0 0 0 0 0
0 0 H3 0 0 0 H1 0 0
0 0 0 0 0 H3 0 H2 0





x′
1
...
...
...
x′
9


=


2H1x

′
1

2H2x
′
5

2H3x
′
9

H2x
′
2 +H1x

′
4

H3x
′
3 +H1x

′
7

H3x
′
6 +H2x

′
8

 =


0
0
0
0
0
0

 .

(♢)
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This concludes Calculation 4.3. □
For the case of S1, we may now substitute H2 = H3 into (♢) to get

2H1x
′
1

2H2x
′
5

2H2x
′
9

H2x
′
2 +H1x

′
4

H2x
′
3 +H1x

′
7

H2x
′
6 +H2x

′
8

 =


0
0
0
0
0
0

 . (b)

So in order for S1 to preserve M, we must have that the Equations (b) and (a) in Section 2.1 hold. Observe
that since H1, H2, H3 are all nonzero, we must have that x1 = x5 = x9 = 0. Also, we must have that
x2 = −H1

H2
x4, x3 = −H1

H2
x7, and x6 = −x8. So, there are 3 free variables x4, x7, x8 at the very most and

hence dimGM ≤ 3. As we did in Section 2.1, we will examine all possible GM that are preserved by S1 by
examining all possibilities of R1 = R2 = α,R3 = β ∈ R.

1. Case α = 0 and β = 0: For model space M = (V,H,R) preserved by Aθ,±1, let R ∈ S such that
α = 0 and β = 0. Then all of the equations in (a) always hold. We again must have that R is the
zero curvature tensor. By the previous paragraph, since x4, x7, x8 are free, dimGM = 3. The different
possibilities of GM are GM = O(3), GM = O(2, 1), GM = O(1, 2), or GM = O(0, 3), depending on the
signature of H.

2. Case α = 0 and β ̸= 0: For model space M = (V,H,R) preserved by Aθ,±1, let R ∈ S such that α = 0
and β ̸= 0. In Section 2.1, it was shown that the relationships among the variables for R in this case
are x5 = −x9,x2 = x3 = 0, and x1, x4, x6, x7, x8, x9 are free. But since S1 preserves H as well, we have
x1 = x5 = x9 = 0, x2 = −H1

H2
x4, x3 = −H1

H2
x7, and x6 = −x8. Since x2 = x3 = 0, we must also have

that x4 = x7 = 0. Also, since we have the relationship that x6 = −x8, we only have one free variable
in this case, which is x8. Thus, dimGM = 1 and a basis βgM

for gM is

βgM
=


0 0 0
0 0 1
0 −1 0

 .

Thus, dimGM = 1 and GM = S1±1 as in Proposition 4.1.

3. Case α ̸= 0, β = 0: For model space M = (V,H,R) preserved by Aθ,±1, let R ∈ S such that α ̸= 0 and
β = 0. In Section 2.1, it was shown that the relationships among the variables for R in this case are
x5 = x9 = −x1, x6 = −x8, x4 = x7 = 0 and x2, x3 are free. But since x1 = x5 = x9 = 0,x2 = −H1

H2
x4,

and x3 = −H1

H2
x7, we must have x1 = x5 = x9 = 0 as well as x2 = x3 = 0. Hence, we only have one

free variable x8. Thus, dimGM = 1 and a basis βgM
for gM is

βgM
=


0 0 0
0 0 1
0 −1 0

 .

Again, dimGM = 1 and GM = S1±1 as in Proposition 4.1.

4. Case α ̸= 0 and β ̸= 0: For model space M = (V,H,R) preserved by Aθ,±1, let R ∈ S such that α ̸= 0
and β ̸= 0. In Section 2.1, it was shown that the relationships among the variables for R in this case
are x1 = x5 = x9 = 0, x6 = −x8, x2 = −α

βx4, and x3 = −α
βx7. But, x2 = −H1

H2
x4, x3 = −H1

H2
x7 by our

assumption that S1 preserves H. Hence, we have that −α
βx4 = −H1

H2
x4 and −α

βx7 = −H1

H2
x7, or in other

words,
(

H1

H2
− α

β

)
x4 =

(
H1

H2
− α

β

)
x7 = 0. There are two cases here, depending on if

(
H1

H2
− α

β

)
̸= 0 or

if
(

H1

H2
− α

β

)
= 0.
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(a) Case
(

H1

H2
− α

β

)
̸= 0: If

(
H1

H2
− α

β

)
̸= 0, then we must have x4 = x7 = 0. In this case, there is

only one free variable x8. Therefore, dimGM = 1 and a basis βgM
for gM is

βgM
=


0 0 0
0 0 1
0 −1 0

 .

Again, we have dimGM = 1 and GM = S1±1.

(b) Case
(

H1

H2
− α

β

)
= 0: Suppose

(
H1

H2
− α

β

)
= 0. Observe that x4 and x7 are free, as well as x8.

Next, since
(

H1

H2
− α

β

)
= 0, we must have H1

H2
= α

β , or in other words, H1 = α
βH2. We claim that

R is actually ±RH , depending on the sign of β. To see this, let the array [H] be

[H] =

sgn(β)α/
√
|β| 0 0

0
√
|β| 0

0 0
√
|β|


and let R = sgn(β)RH . The form of RH is that given by Definition 2.1, where H ∈ S2(V ∗). So,

R1 = sgn(β)H1 ·H2 = sgn(β)

(
sgn(β) · α√

|β|

√
|β|

)
= α

R2 = sgn(β)H1 ·H3 = sgn(β)

(
sgn(β) · α√

|β|

√
|β|

)
= α

R3 = sgn(β)H2 ·H3 = sgn(β)
(√

|β|
2
)
= sgn(β)|β| = β

as desired. Since there are three free variables x4, x7, x8, dimGM = 3 and a basis βgM
for gM is

βgR
=


 0 1 0
−α

β 0 0

0 0 0

 ,

 0 0 1
0 0 0

−α
β 0 0

 ,

0 0 0
0 0 1
0 −1 0

 .

Thus, dimGM = 3 and GM = O(1, 2) or GM = O(3), depending on the signature of H.

This classifies GM of M pereserved by S1±1 and hence S1 in the case that α ̸= 0 and β ̸= 0 for R ∈ S.

This is now a complete classification of M in dimension 3 such that S1±1 and hence S1 preserves M. We have
found all possible dimensions of GM, corresponding to 1 and 3. In the case that dimGM = 1, we have that
GM = S1±1. In the case that dimGM = 3, we have either GM = O(3) or GM = O(1, 2).

4.2 Model Spaces M preserved by a hyperbolic boost

Now we will study M that are preserved by a hyperbolic boost. We start with a preliminary result.

Proposition 4.4. Define

HB :=


ε 0 0
0 cosh θ − sinh θ
0 − sinh θ cosh θ

 | θ ∈ R and ε = ±1

 .

Then HB is a group under multiplication of matrices.

Proof. Observe that I3 ∈ HB since I3 is a matrix in HB where θ = 0 and ε = 1. Thus, HB has an identity
element. Since HB ⊆ GL(3,R) and it is known that multiplication of matrices in GL(3,R) is associative, we
have that multiplication in HB is also associative. Lastly, we must check for inverses. Let

X =

ε 0 0
0 coshx − sinhx
0 − sinhx coshx

 ∈ HB .
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Then consider the matrix

Y =

ε 0 0
0 cosh(−x) − sinh(−x)
0 − sinh(−x) cosh(−x)

 .

Observe that Y ∈ HB since if x ∈ R, −x ∈ R as well. Then we can see that

XY =

ε 0 0
0 coshx − sinhx
0 − sinhx coshx

ε 0 0
0 cosh(−x) − sinh(−x)
0 − sinh(−x) cosh(−x)

 =

1 0 0
0 cosh(x− x) − sinh(x− x)
0 − sinh(x− x) cosh(x− x)

 = I3.

Hence, every X ∈ HB has an inverse element X−1 ∈ HB as well. Thus, HB is a group.

Let Bθ,λ be the same as that of Section 3. As in Section 4.1, we will calculate B∗
θHi = Hi for all i and

determine what each Hi must be. So, suppose M is preserved by a hyperbolic boost, or in other words,
B∗

θ,λRi = Ri and B∗
θ,λHi = Hi for all i. In Section 3, we have found all R ∈ A(V ) that are preserved by

a hyperbolic boost, so we focus our attention to B∗
θ,λHi = Hi. If we compute B∗

θ,λHi = Hi, we get the
following equations:

H1 = B∗
θ,λH1 = λ2H1 (25)

H2 = B∗
θ,λH2 = cosh2 θH2 + sinh2 θH3 − 2 cosh θ sinh θH6 (26)

H3 = B∗
θ,λH3 = sinh2 θH2 + cosh2 θH3 − 2 cosh θ sinh θH6 (27)

H4 = B∗
θ,λH4 = λ cosh θH4 − λ sinh θH5 (28)

H5 = B∗
θ,λH5 = −λ sinh θH4 + λ cosh θH5 (29)

H6 = B∗
θ,λH6 = − cosh θ sinh θH1 − cosh θ sinh θH2 + (cosh2 θ + sinh2 θ)H6. (30)

Claim 4.5. We claim that H1 is free and nonzero, H2 = −H3 are both nonzero, and H4 = H5 = H6 = 0.
In addition, we must have λ = ±1.

Proof. We first examine Equations (28) and (29). Observe that if we add these two equations, we get

H4 +H5 = λ(cosh θ − sinh θ)(H4 +H5) = λe−θ(H4 +H5).

In other words, we have (λe−θ−1)(H4+H5) = 0. If λ < 0, (λe−θ−1) ̸= 0 for all θ ∈ R so we must have that
H4 +H5 = 0. If λ > 0, when θ = log(λ), we have that (λe−θ − 1) = (1− 1) = 0. But since e−θ : R → R>0

is injective, when θ ̸= log(λ), (λe−θ − 1) ̸= 0. But the equality (λe−θ − 1)(H4 +H5) = 0 must hold for all
θ ∈ R, so we must have H4 +H5 = 0. In all cases of λ ∈ R − {0}, we have shown that it must be the case
that H4 +H5 = 0, or in other words, H4 = −H5. We can substitute H4 = −H5 into (28) to see

H4 = λ(cosh θ + sinh θ)H4 = λeθH4.

In other words, we must have (λeθ − 1)H4 = 0. If λ < 0, then λeθ − 1 < 0 and so we must have that H4 = 0.
If λ > 0, since eθ is injective, whenever θ ̸= − log(λ), we have that λeθ − 1 ̸= 0. But (λeθ − 1)H4 = 0 must
hold for all θ ∈ R so it must be the case that H4 = 0. Since H4 = −H5, we see that H5 = 0 as well.

Now we move on to examining Equations (26),(27), and (30). As we did in Claim 4.2, we will not
directly solve these equations but rather point out that Equations (26),(27),(30) are identical to Equations
(13),(14),(16) respectively, when λ = ±1 in Equations (13),(14),(16). We will identify H2 with R1, H3 with
R2, and H6 with R4. In the case that λ = ±1 in Equations (13),(14),(16), we have shown that R1 = −R2

and R4 = 0. Using this with the identification H2 with R1, H3 with R2, and H6 with R4, we conclude
H2 = −H3 and H6 = 0. As in Claim 4.2, we encode this information into the array [H] to see that

[H] =

H1 0 0
0 H2 0
0 0 H3

 .

Since H is an inner product, it must be nondegenerate. Observe that by equation (25) says that H1 = λ2H1.
If λ ̸= ±1, we must have that H1 = 0 which cannot be true since if H1 = 0, H would not be nondegenerate.
Thus, we have that λ = ±1.
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Note 4.6. In Claim 4.5, we showed that if Bθ,λ preserves an inner product H, we must have λ = ±1. Hence,
Bθ,λ ∈ HB as in Proposition 4.4.

We now have described what what form an inner product H of M must be in. As before, we use the fact
that GM is a Lie group to list the possible dimensions of GM that are preserved by a hyperbolic boost. So,
let M be a model space preserved by a hyperbolic boost and consider a path A(t) through I3 in GM such
that A(0) = I3. We then repeat the process as done Calculation 2.2. Observe that at the end of Calculation
2.2, (♢) holds for any path A(t) through any GM such that H4 = H5 = H6 = 0. Since that is the case here,
we will reuse these results. Recall that (♢) says that

2H1x
′
1

2H2x
′
5

2H3x
′
9

H2x
′
2 +H1x

′
4

H3x
′
3 +H1x

′
7

H3x
′
6 +H2x

′
8

 =


0
0
0
0
0
0

 .

If we substitute H2 = −H3, we see that
2H1x

′
1

2H2x
′
5

−2H2x
′
9

H2x
′
2 +H1x

′
4

−H2x
′
3 +H1x

′
7

−H2x
′
6 +H2x

′
8

 =


0
0
0
0
0
0

 . (♡)

Thus, we must have that x1 = x5 = x9 = 0, x2 = −H1

H2
x4, x3 = H1

H2
x7, and x6 = x8, so x4, x7, x8 are free. As

we did in Section 4.1, we examine all possible GM that are preserved by a hyperbolic boost by examining all
possibilities of curvature entries of R R1 = −R2 = γ,R3 = τ ∈ R in addition to all possible inner product
entries of H.

1. Case γ = τ = 0: For model space M = (V,H,R) preserved by Bθ,±1, let R ∈ T such that γ = τ = 0.
Then the equations in (♠) always hold for any choice of xj and R is the zero curvature tensor. By the
previous paragraph, x4, x7, x8 are free, so dimGM = 3 and GM = O(2, 1) or GM = O(1, 2), depending
on the signature of H.

2. Case γ = 0 and τ ̸= 0: For model space M = (V,H,R) preserved by Bθ,±1, let R ∈ T such that γ = 0
and τ ̸= 0. By Case 2 in Section 3, we have that x5 = −x9, x2 = x3 = 0 and x1, x4, x6, x7, x8, x9 are
free. But by the equations in (♡), we have x1 = x5 = x9 = 0, x2 = −H1

H2
x4, x3 = H1

H2
x7, and x6 = x8.

So, we must have x1 = x5 = x9 = 0, x2 = x3 = x4 = x7 = 0, and x6 = x8, which means that there is
one free variable x8. This gives us a basis βgM

for gM, given by

βgM
=


0 0 0
0 0 1
0 1 0

 .

Thus, dimGM = 1 and GM = HB as in Proposition 4.4.

3. Case γ ̸= 0 and τ = 0: For model space M = (V,H,R) preserved by Bθ,±1, let R ∈ T such that γ ̸= 0
and τ = 0. By Case 3 in Section 3, we have that x1 = −x5 = −x9, x6 = x8, and x4 = x7 = 0. But
we must also have that x1 = x5 = x9 = 0, x2 = −H1

H2
x4, and x3 = H1

H2
x7 since Bθ,±1 preserves M. So

in total, we can see that x1 = x5 = x9 = 0, x2 = x3 = x4 = x7 = 0, and x6 = x8. Hence, we have one
free variable x8. This gives us a basis βgM

for gM, given by

βgM
=


0 0 0
0 0 1
0 1 0

 .

So, dimGM = 1 and GM = HB.
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4. Case γ ̸= 0 and τ ̸= 0: For model space M = (V,H,R) preserved by Bθ,±1, let R ∈ T such that γ ̸= 0
and τ ̸= 0. Then we must have x1 = x5 = x9 = 0, x6 = x8, x3 = −γ

τ x7, and x2 = γ
τ x4. Since Bθ,±1

also preserves M, we must also have x2 = −H1

H2
x4 and x3 = H1

H2
x7. We then can see that γ

τ x4 = −H1

H2
x4

and −γ
τ x7 = H1

H2
x7 , or in other words,(

γ

τ
+

H1

H2

)
x4 =

(
γ

τ
+

H1

H2

)
x7 = 0.

We then have two cases, depending on if
(

γ
τ + H1

H2

)
̸= 0 or if

(
γ
τ + H1

H2

)
= 0.

(a) Case
(

γ
τ + H1

H2

)
̸= 0: Suppose

(
γ
τ + H1

H2

)
̸= 0. Then we must have x4 = x7 = 0 which implies

that x2 = x3 = 0. In this case, we only have one free variable x8. Therefore, dimGM = 1 and a
basis βgM

for gM is

βgM
=


0 0 0
0 0 1
0 1 0

 .

Again, we have that dimGM = 1 and GM = HB.

(b) Case
(

γ
τ + H1

H2

)
= 0: Suppose

(
γ
τ + H1

H2

)
= 0. We claim that R = sgn(−τ)RH . To see this, let

the array [H] be

[H] =

sgn(−τ)γ/
√

|τ | 0 0

0
√
|τ | 0

0 0
√

|τ |


and let R = sgn(β)RH . Then we see that

R1 = sgn(−τ)H1 ·H2 = sgn(−τ)

(
sgn(τ) · γ√

|τ |

√
|τ |

)
= γ,

R2 = sgn(−τ)H1 ·H3 = sgn(−τ)

(
sgn(−τ) · γ√

|τ |
· −
√
|τ |

)
= −γ,

R3 = sgn(−τ)H2 ·H3 = sgn(−τ)
(
−
√

|τ |
2
)
= − sgn(−τ)|τ | = τ.

In this case, we have three free variables x4, x7, x8, so dimGM = 3 and we have a basis βgM
for

gM given by

βgR
=


0 1 0

γ
τ 0 0
0 0 0

 ,

 0 0 1
0 0 0
−γ

τ 0 0

 ,

0 0 0
0 0 1
0 −1 0

 .

In this case, since R = Rϕ for some ϕ ∈ S2(V ∗), we have that GRϕ
= Gϕ. So, we must have

GR = O(1, 2) or GR = (2, 1), depending on the signature of ϕ.

This classifies GM of M pereserved by a hyperbolic boost in the case that γ ̸= 0 and τ ̸= 0 for R ∈ T .

In conclusion, we have provided a complete classification of the possible dimensions of GM for some model
space M that is preserved by a hyperbolic boost. There are two possible dimensions of GM: dimGM = 3
and dimGM = 1. In the case that dimGM = 1, it is shown that GM = HB as defined in Proposition 4.4. In
one particular case of dimGM = 3, we have that GM = O(2, 1) or GM = O(1, 2).

5 Future Work

We provide some open questions for future work related to this paper.
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1. We have shown that there are some curvature tensors R = ±Rϕ1 ± Rϕ2 for ϕ1, ϕ2 ∈ S2(V ∗) with a
4 dimensional structure group. Such an R cannot be expressed as a single Rϕ. Is there a method of
determining if a given R is of the form R = Rϕ1

+Rϕ2
by looking at the dimension of GR?

2. This paper focused on rotation actions in dimension 3. What would change (or stay the same) about
these methods if we studied rotation actions in dimension n > 3?

3. One can think about the set of unit quaternions in R4 and realize this set as subset of SL(4,R). Is
it possible that the set of unit quaternions is a structure group of some ACT R or model space M in
dimension 4? The quaternion group Q8 = {1,−1, i,−i, j,−j, k,−k} is a subset of the unit quaternions
where each ±i,±j,±k have order 4. In this paper we have shown that in dimension 3, if an element
of a structure group has finite order, it must contain all rotations S1. Does this result hold for higher
dimensions and hence Q8 cannot be a structure group?

4. Suppose G is some structure group. Since this structure group G is a Lie group, it is also a manifold.
It is known that we can calculate the curvature of a given Lie group. Let R be an ACT of G. What
is GR? In other words, what is the structure group of an ACT R that measures the curvature of a
structure group G?
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