
All Links are Sublinks of Cuboctahedral

Arithmetic Links

Luisa Boateng

July 2022

Abstract

In this paper we prove that all links are sublinks of cuboctahedral links.
We begin with with a cuboctahedral nested link and create a method to
find any closed braid using Dehn twists and/or fillings. We then study the
cusps of the crossing circles used and properties when doing Dehn fillings.
Finally other possibilities in different parent links are considered.

1 Introduction: FALs and Nested Links

First, we will introduce links and some classifications, then go into proving our
theorem and looking

To begin, we will look at some of the terminology of knot theory used in this
paper:

• A knot is a closed curve in three dimensions

• A link is composed of intertwined knots (Every knot is a links with one
component)

• A hyperbolic link is one whose complement is composed of ideal hyperbolic
polyhedra

• A cuboctahedral link is one whose complement is constructed of ideal
cuboctahedra

Fully Augmented Links(FALs) and Nested Links are a subclass of hyperbolic
links. To augment a link diagram, we put a unknot called a crossing circle
around each of the twist regions and undo full twists. Doing so creates disks in
the complement of the links enclosed by the crossing circles which in FALs are
twice punctured by knot strands. This is due to the fact that twist regions can
have only two strands in FALs.

Nested links are much like FALs but twist regions can have more than two
strands, and crossing circles can be nested inside each other, so long as each
still encircles a disk, twice punctured either by knot strands or other crossing
circles.
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Figure 1: The Augmentation of a Link

In a paper by Mark D. Baker [1], he proves that all links are sublinks of
arithmetic links, and uses an octahedral nested parent link, therefore also prov-
ing that all links are sublinks of octahedral links. In this paper, we start with
the nested cuboctahedral link shows below and prove that all links are sublinks
of cuboctahedral links.

Figure 2: Our Nested Cuboctahedral Parent Link

2 Cell Decomposition and Circle Packing

Now that we have a bit of background about cuboctahedral links, FALs and
nest links, we will discuss the cell decomposition and circle packing, which,
when given hyperbolic links, are a way to get a 2-dimensional blueprint for
what the ideal hyperbolic polyhedra of the complement look like. To find the
cell decomposition, we:

1. Lay the knot circles flat upon the plane of projection and cut along this
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plane, cutting the link and complement into two identical halves, P+ and
P−.

2. Take each of the now half disks that the crossing circles enclose and do a
butterfly slice along those, then flatten them out so the crossing circle’s
knot component goes through the middle.

3. Reduce each of the crossing circle and knot circle strands to ideal points

4. To get the circle packing, we just bend what we have into shape so that
each of the faces from the plane of projection are circles.

5. We can then throw any of the ideal points, or points of tangency, to infinity
to see what P+ looks like in the fundamental region if we were looking at
it from above, and to get the full complement we glue an exact copy of it,
or P−, along one of the vertical faces from the plane of projection. The
result is the fundamental region of the link complement.

Figure 3: Cell Decomposition and Circle Packing of P4

Now that we have the fundamental region, we can either shrink wrap it to the
corresponding manifold in 3-space or study its 2-dimensional representation.
We will look at both later on in this paper.

We also must note, however, that when we find the cell decomposition of a
nested link, because one crossing circle lies inside the other, when the butterfly
cut is performed on the outer crossing circle, the other one is cut in two. This
means that there will be two ideal point corresponding to the inner crossing
circle in the fundamental region, but each only represents one quarter and not
one half of a crossing circle. An example of the butterfly cut in this case is
shown in Figure 4, and the circle packing of our parent link is shown in Figure
5.
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Figure 4: Nested Butterfly Cut

Figure 5: The Circle Packing of our Parent Link

As can be seen, it is similar to the circle packing of P4, different only in its
coloring and placement of ideal points corresponding to crossing circles. This
means that their complements are homeomorphic.

In Proposition 6.4 by Chesebro, Deblois, and Wilton [2] they state that any
cuboctahedral link of finite volume is arithmetic, and thus, our link is arithmetic.

3 2r-fold covers

In order to create our braids, use 2r fold cover to get sufficient strands to be in
our braid and crossing circles to create each twist region while also maintaining
its arithmeticity and cuboctahedral properties.To find a 2 fold cover of a link
over a knot circle, we first arrange it so all the crossing circles sit horizontally,
either nested or stacked, and each knot circle is a vertical line going through
crossing circles then looping back around the outside and connecting to itself.
This form looks much like the closure of a braid with all its crossings removed.
Since each strand connects to itself we draw them cut off, as shown below. To
find the 2 fold cover, we:

1. Take a knot circle throw a point to ∞ so its disk expands into a half-plane.

2. Do a half slice and flatten out the half-plane into a plane. All the crossing
circles going through this knot circle will have 2 points in which they
intersect this plane.

4



3. Take a copy of this arrangement and rotate it around the open knot circle,
so that the planes face eachother and there is nothing between them.

4. Glue the planes together so all the crossing circles that were sliced open
glue to their counterparts in the rotation.

5. Take the point back from ∞ to recover the knot circle.

Below is the process for finding the 2 fold cover of our cuboctahedral parent
link.

Figure 6: Finding a 2-fold cover

If we were to do the same thing again, we would end up with the 2-fold cover of
the 2-fold cover, or, the 4-fold cover. We can keep taking the 2 fold cover of our
covering spaces, doubling every time and finding a pattern for 2r fold covers.
We can also do the same process but instead of taking a copy of our link and
gluing it plane-to-plane, we will take a 2-fold cover of our parent link and glue it
to whatever link we have, thus making a pattern of 2r-fold covers. We can also
do the same thing and take 2r-fold covers around a crossing circles, resulting in
copies of this link going downwards.

When we do the 2r-fold cover, we are gluing together cuboctahedra in the
complement and thus our link remains cuboctahedral, Proposition 6.4 [2] still
works, and this does not change the arithmetic properties of our links.

4 2r Dehn Twists

To do an m-integer Dehn twist, we do a half slice on the disk of a crossing
circle, then blow it up into a sphere which is separated along the equator by
the crossing circle. We then rotate the top half by 2mπ radians and glue the
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disk back down. This creates m full twists for the strands going through this
crossing circle. We can also do m/2, or half integer Dehn twists, which instead
give m crossings.

Figure 7: A 1/2 Dehn Twist

Because doing Dehn twists does not change the fact that our link is cuboctahe-
dral, it only changes the gluing of these cuboctahedra, Proposition 6.4 [2] still
holds and the link remains arithmetic.

5 Braids

Alexander’s Theorem states that any knot or link can be represented as a closed
braid. Thus, if we can find a way to make any closed braid as a sublink of
cuboctahedral arithmetic links, we have proved that any knot or link is a sublink
of cuboctahedral arithmetic links but first, we must introduce braids. To make a
braid, we start with n strands beginning parallel traveling in the same direction.
We then can cross any two consecutive strands however many times we want,
as long as every strand is constantly traveling downward and does not loop
back up. Doing so can be described by operations, α1, α2, ..., αn−1, where αi is
the crossing of the ith over the (i+ 1)th strand. Doing any of these operations
multiple times in a row is denoted αp

i , where p is the number of times αi was
performed, which is also the number of crossings in this twist region. Doing
any of these operations backwards, or crossing the (i+ 1)th strand over the ith

strand is denoted α−1
i . An example of a braid is shown below on the left of

Figure 8.

The closure of a braid takes each strand from the top and connects it with
the corresponding strand in its place on the bottom. The ith strand on the top
connects with the ith strand on the bottom. As previously stated, Alexander’s
theorem shows that we can represent any knot or link in this form.
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Figure 8: The α−2
1 α3

2α4α
−1
3 braid and its closure

6 Building Any Closed Braids

Now that we have sufficient background, we will illustrate the process of finding
any closed braid and thus, any link, using the tools we have talked about. To
build a braid from our link, we look at n, the number of strands, and t the
number of twist regions in our braid, and take the 2⌈n/4⌉-fold cover over the
knot circle and 2⌈n/2⌉-fold cover over the crossing circle. Then do a pattern of
skipping one strand and highlighting the next two as the strands of our braid,
until we have n of then. These will be the strands we use in our braid. Then,
starting from the top, we look at the strands used in our first twist region and
find the crossing circle that encircles them in our covering space and as many
half-intereger Dehn twists as needed to replicate their crossing. We do the same
for every twist region, making sure to twist them in a crossing circle below the
prior twist region, so they are in order and our braid is replicated.

To better demonstrate how we can build a closed braid from covering spaces
of our link we will show how to create the closed braid in Figure 1 using Dehn
twists. This braid has 5 strands and 4 twist regions and thus, we will need 4 and
4 fold covers over knot and crossing circles respectively. To create this braid,
we skip the first strand and highlight the next two, and repeat until we have
5 highlighted strands. These will be the strands in the braid we are trying to
form. Then starting at the left, we do Dehn twists to cross strands in the order
of α−2

1 α3
2α4α

−1
3 , and thus, our braid is now a sublink of this cuboctahedral link.

7 Dehn Fillings and Cusps

Instead of Dehn twists, we could also do Dehn fillings in crossing circles, which
will, not only twist the strands going through it but also remove the crossing
circle. To do a Dehn filling, we will first look at the cusp of a crossing circle. The
cusp of a knot component is its neighborhood in the complement, which, in the
case of crossing circles is the torus neighborhood around a crossing circle. We
can fill the cusp boundary with another torus by gluing meridian to meridian.
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Figure 9: Creating the α−2
1 α3

2α4α
−1
3 braid

Since this solid torus is in the complement, the crossing circle inside it is no
longer there. We can think of this a bit like a jelly doughnut, filling the torus of
the doughnut with a torus of jelly if the doughnut and jelly were equal thickness.
This is easy to visualize in Figure 10, where the meridians have the same shape
and could easily glue to each other.

Figure 10: Gluing a Trivial Meridian to Meridian on a Cusp

What if we try to glue it to different meridional slope on the torus? Such as

or

Figure 11: Other Slopes on the Torus

If we take the slop on the right of Figure 11, we can do one Dehn twist,
which will twist the top half the torus, and end up with the torus in Figure
12, which, we can now move the point shown and get a slope that looks like
one from Figure 10, so we can easily glue it now. Since we did a Dehn twists
however, any strands going through this crossing circle will now be twisted.
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Figure 12:

To do a 1/w Dehn filling, we fill the torus along the slope of 1 meridian and
w longitudes in the rectangle that the torus flattens to, and this will do w full
twists on the strands inside. In Figure 13, we show how the slopes on meridian
can be visualized on rectangles.

Figure 13:

8 Cusp shapes on our links

We will now look at the shape of our cusps on the crossing circles. In order to
do so, we find where the cusp lies in relation to other regions of the link on the
fundamental region of the ideal cuboctahedron. If we then set the meridian of
one of the cusps to a certain value, we can get the size of the rest of them in
this model.

h

red

green blue

gold

b

b
r

h

Figure 14: Finding the Size of the First Cusp
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To begin, we looked at the highlighted region, h, on the right side of the link,
and the two cusps that are highlighted. I first found the shape of the seemingly
largest crossing circle at the bottom of our link diagram. We can see that
the intersection here is with the meridian of this cusp and h, which is in the
complement. When we find the circle packing of our link, the cusps become
squares around ideal points and h becomes the circle on the bottom. When
we throw the point of the crossing circle whose cusp we are trying to find to
infinity, the cusp becomes a horizontal plane and h becomes a vertical plane.
Since we know their intersection to be the length of the meridian, we know this
length in the fundamental region to be the meridian the other side must be the
longitude. We must remember that when we find the circle packing and throw
a point to infinity, we have only found the top half, or P+ in the complement,
so we have to glue a copy of it, or P− to get the full cusp. Now, we set the
longitude of the red cusp to be 2 and we find that the meridian equals

√
2. We

can either repeat this process with the rest of the cusps, keeping in mind that
we have already set one value so we need only find the others, or since we know
the fundamental region will look the same no matter which point we throw to
infinity, we can make observations about the gluing of our manifold. Specifically,
we recall that since the seemingly largest red crossing circle and cusp was split
in half when we started to process of finding the fundamental region, this made
the longitude twice as much as it appeared if we had just thrown a point in the
circle packing to infinity. If we look at the blue crossing circle and cusp on the
top right, we notice that its not only split in half once by the projection plane
but once again by the red cusp, which it is nested inside. For this reason, there
are two squares that correspond the the cusp of this crossing circle when we
look at the circle packing and why we would, not only need to glue a P− to
our P+ after throwing one of these ideal points to infinity but also glue another
entire fundamental region. This results in a meridian that is double the size of
the red cusp’s meridian.

Once we do this for all the cusps, we find that in our original link, the gold
cusp has the same meridian of

√
2 and longitude of 2 and the red (seemingly

but not actually largest). The blue and green crossing circles which are nested
alongside each other in the red crossing circle both have meridians of 2

√
2 and

longitude of 2.
Recall that when we take the 2 fold cover, some of the crossing circles are

glued to copies of themselves, so the same happens to their cusp and the lon-
gitude doubles. This can also be seen in the fundamental region as doing this
would glue on another cuboctahedron and the edge of the rectangular area cor-
responding to the meridian will be twice as long. The doubling of the meridian
only happens once in the row of blue and green crossing circles because of the
pattern that the 2r-fold cover follows, so the cusps in this row that do not have
the shape previously stated have longitudes of 4 and meridians of 2

√
2.

When we take the 2-fold cover, we also notice that the longitude of the red
cusp doubles, but since we don’t do Dehn filling on this crossing circle, the cusp
shape is not important in this study.
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9 Theorem 5.1 (Futer, Purcell, Kalfagianni)

[3] If M is a hyperbolic manifold, and s1, ..., sk are slopes on cusps of M with
minimum length lmin at least 2π, then the Dehn filled manifold M(s1, ..., sk)
is hyperbolic with volume bounded below by

vol(M(s1, ..., sk)) ≥ (1− (2π/lmin)
2))3/2vol(M)

When we do Dehn fillings, because we are removing a crossing circle, the
volume of the link decreases but this theorem puts a lower bound on how much
it can decrease by. We will now look at the volume of our link and how it
changes with Dehn fillings but first, we must take into account the sentence in
this theorem that states ”slopes on cusps of M with minimum length lmin at
least 2π”. This refers to a theorem that states that the slope length on the cusp
that we fill must be at least 2π in order for our new link to be hyperbolic. Using
the measurements of our cusp shapes and the Pythagorean theorem, we find the
minimum number of longitudes needed to get this length. For the gold cusp,
we need at least 4 longitudes, and for the larger crossing circles that appear
in the 2-fold cover in the row of green and blue, we need at least 2 longitudes.
Notice that we do not calculate the minimum number of longitudes needed for
the green, blue, or red crossing circles, this is because we do not actually use
them in our process of creating any braid. This essentially means that in our
process of creating braids, if we use Dehn filling instead of Dehn twists, these
are the minimum slope length we must fill our cusps along for our new link to
be hyperbolic.

Now, using Theorem 5.1, when we plug in our calculations, we get a lower
bound for the volume to be

vol(M(s1, ..., sk)) ≥ 0.3035699356r(vcub)

when we do Dehn fillings only on the crossing circles in the blue and green
row, and

vol(M(s1, ..., sk)) ≥ 0.2547318474r(vcub)

when we do Dehn fillings on any combination of the crossing circles, where
we have taken the r-fold cover of our parent link since the number r is the
amount of cuboctahedrons glued together and vcub is the volume of our ideal
cuboctahedron.

10 Future Research

Because our parent link is a nested link, the cusp on two of the crossing circles
has a meridian that is twice as large as the other two crossing circles. Addition-
ally, when we take the 2-fold cover, the longitude of some of the cusps doubles.
Some future questions we could look into are:
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• Is there a way to form a different cuboctahedral nested link such that
some of the cusps have meridians 3 or 4 times as large as ours

• Is there a different series of Dehn fillings that excludes the crossing cir-
cles with smaller meridians, therefore reducing the minimum number of
longitudes needed to get a length of 2π

• What can we say about the resulting manifolds in Lens spaces if we used
1 longitude and p meridians in our Dehn Fillings

• Can we classify different 3-manifolds we would get by using p meridians
and q longitudes
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