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Abstract. We expand previous work on linear dependence of canonical algebraic

curvature tensors constructed from symmetric and skew-symmetric linear transfor-

mations by describing them combintorially through directed graph chain complexes.
Furthermore, we extend this combinatorial approach to tensor decomposability

while formulating a new characterization for decomposability and introducing a

weaker, more expansive definiton of k-decomposability.

1. Introduction

Algebraic curvatures tensors are mathematical objects that are pivotal to the study
of Riemannian and pseudo-Riemannian maifolds. While there are many geometric im-
plications that can be derived from their behavior, they have become a significant object
of study in their own right.

To introduce where the idea of an algebraic curvature tensor arose we start with an
n-dimensioal Riemannian manifold (M, g) where M is a real, smooth manifold and gp is
anmetric, or inner product, on the tangent vector space TpM ofM at a point p. Whether
or not this inner product is positive definite classifies M as either Riemannian or pseudo-
Riemannian. Regardless, we can measure the curvature of this manifold at a point p
through an algebraic curvature tensor which is a multilinear map Rp : (TpM)4 → R.
Moreover, the triple (TpM, gp, Rp) is a model space.

The focus of this research is to further understand the behavior of algebraic curvature
tensors and how they interact with each other.

1.1. Algebraic Curvature Tensors.
Throughout the paper, unless otherwise stated, it is assumed that V is a finite dimen-
sional real vector space with dim(V ) = n. That being said, we begin with a definition.

Definition 1.1. Let R ∈
⊗4

(V ∗). The multilinear mapping R : V 4 → R is an
algebraic curvature tensor on V if

(1) R(x, y, z, w) = −R(y, x, z, w)
(2) R(x, y, z, w) = R(z, w, y, x)
(3) R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0

for all x, y, z, w ∈ V .
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2 DECOMPOSABILITY AND LINEAR INDEPENDENCE OF CANONICAL . . .

Furthermore, the set of algebraic curvature tensors, denoted A(V ) is itself a vector
space.

We now choose to solely focus on tensors themselves and derive results about them
which could then be interpreted geometrically by others.

We now introduce the notion of a kernel of an algebraic curvature tensor.

Definition 1.2. The kernel of an algebraic curvature tensor, denoted Ker (R) is

Ker (R) = {x ∈ V : R(x, y, z, w) = 0 for all y, z, w ∈ V } .

However, Dunn, Franks, and Palmer [3] showed that

Ker (R) = {x ∈ V : R(x, y, z, w) = 0 for all y, z, w ∈ V }
= {y ∈ V : R(x, y, z, w) = 0 for all x, z, w ∈ V }
= {z ∈ V : R(x, y, z, w) = 0 for all x, y, w ∈ V }
= {w ∈ V : R(x, y, z, w) = 0 for all x, y, z ∈ V } ,

so for convention, we will only refer to the kernal as the set of vectors in the first slot
that meet this annihilation condition.

1.2. Symmetric and Antisymmetric Bilinear Forms.

We will now introduce the idea of symmetrically and antisymmetrically built curva-
ture tensors.

Definition 1.3. The mapping φ : V × V → R is a symmetric bilinear form if

(1) φ(αx+ βy, z) = αφ(x, z) + βφ(y, z), and
(2) φ(x, y) = φ(y, x).

A bilinear form τ is antisymmetric if τ(x, y) = −τ(y, x).

The set of symmetric bilinear forms on V is denoted S2(V ∗) while the set of anti-
symmetric bilinear forms on V is denoted Λ2(V ∗). These mappings give us a way to
construct algebraic curvature tensors.

Definition 1.4. For φ ∈ S2(V ∗) and τ ∈ Λ2(V ∗), R is a canonical algebraic curvature tensor,
denoted Rφ or Rτ respectively if

(1) Rφ(x, y, z, w) = φ(x,w)φ(y, z)− φ(x, z)φ(y, w), or
(2) Rτ (x, y, z, w) = τ(x,w)τ(y, z)− τ(x, z)τ(y, w)− 2τ(x, y)τ(z, w).

It is known [4] that R ∈ A(V ) can be expressed as sums of canonical algebraic
curvature tensors. For the remainder of this research, our study will focus on sums of
canonically built algebraic curvature tensors. From these definitions, we can construct
algebraic curvature tensors using linear transformations.

Definition 1.5. Let A,B : V → V be linear transformations and let φ be an inner
product on V . Then we define

(1) RA(x, y, z, w) = φ(Ax,w)φ(Ay, z)− φ(Ax, z)φ(Ay,w), and
(2) RB(x, y, z, w) = φ(Bx,w)φ(By, z)− φ(Bx, z)φ(By,w)− 2φ(Bx, y)φ(Bz,w)

for all x, y, z, w ∈ V .
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It is important to note that RA and RB are not necessarily algebraic curvature tensors
for any A and B. For this to be the case, the concept of the adjoint must be introduced.
The adjoint of A, denoted A∗ with respect to the inner product φ is characterized by
the equation φ(Ax, y) = φ(x,A∗y). We say A is symmetric or self-adjoint if A = A∗

and that A is skew-symmetric or skew-adjoint if A = −A∗.
Contextualizing our definition, it is known in most cases by [2] that RA is an algebraic

curvature tensor if and only if A is self-adjoint with respect to the inner product on V
and RB is an algebraic curvature tensor if and only if B is skew-adjoint with respect to
the inner product.

Another result that is important to the content of this work is that if rank (A) ≥ 2,
then Ker (A) = Ker (RA), and if A has rank 1 or less, then RA = 0, so Ker (A) ⊆
Ker (RA) [5]. Again, this is only when A is symmetric or skew-symmetric with respect
to the inner product. For each linear transformation, we can construct an inner product
such that A is self-adjoint which will be developed further in the next section.

1.3. The Jordan Canonical Form of Linear Transformations and the Con-
struction of the Inner Product.

Work in [6,8,9] look at dependence of symmetrically and antisymetrically built alge-
braic curvature tensors. However, the research presented here ignores the condition that
linear transformations are diagonalizable or block diagonalizable. Instead, we make a
generalization to certain Jordan canonical forms of linear transformations, and intro-
duce the potential area of study to include generalizations to any Jordan types, of which
all linear transformations have a unique representation.

We introduce the notation

A = J(λ1, t1)⊕ J(λ2, t2)⊕ · · · ⊕ J(λk, tk)⊕ C =

k⊕
i=1

J(λi, ti)⊕ C

to represent a compact way of expressing linear transformations over real vector spaces
in their Jordan canonical form, where J(λi, ti) represents a Jordan block of size ti with
real eigenvalue λi. The variable C denotes complex Jordan blocks. This study focuses
only on Jordan forms that have real Jordan block. This notation still ensures that
Jordan types are unique up to permutation of the Jordan bloacks. We also assume that
each λi ∈ R, but further results may be found when considering linear transformations
over a complex vector space.

With this information, we can now construct an inner product from this transforma-
tion.

Definition 1.6. An inner product φ on a real vector space V is a nondegenerate
symmetric bilinear form. That is, if

φ(v, w) = 0 for all w ∈ V, then v = 0

An inner product on V is called a pseudo-euclidean if it is not positive definite. Conse-
quently, V is a pseudo-eucliean vector space.

Work by [6,8,9] only discusses linear dependence of symmetric and asymmetric alge-
braic curvature tensors with diagonalizable linear operators and a positive definite inner
product. That is, φ(v, v) ≥ 0 and φ(v, v) = 0 if and only if v = 0 for all v ∈ V . This
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research generalizes previous work by studying linear transformations with any Jordan
type over pseudo-euclidean vector spaces.

Mal’cev [7] as well as Ahdout and Rothman [1] showed that every nondiagonalizable
linear transformation is self-adjoint with respect to a unique pseudo-euclidean inner
product up to signs. For dim(V ) = n and

A = J(λ1, t1)⊕ J(λ2, t2)⊕ · · · ⊕ J(λk, tk),

We write the inner product as

[φA] =



0 · · · ε1
...

. . .
... 0

ε1 · · · 0
. . .

0 · · · εk

0
...

. . .
...

εk · · · 0


Where each block of εi corresponds to the standard involutary permutation matrix of
size ti. If n is even then each εi = 1. If n is odd, then εi = ±1. We will use this
construction of the inner product for results on linear independence.

1.4. Directed Graphs and Chain Complexes over Vector Spaces.
Much of this research is concerned with chain complexes, which can be represented by
directed graphs.

Definition 1.7. A directed graph is a pair G = (V,E) where V is a set whose elements
are called vertices, and E is a set of ordered pairs of vertices.

It is important that edges are ordered so we can assign orientation to edges as going
from one vertex to another. We can now easily define a chain complex using the language
of directed graph.

Definition 1.8. A chain complex over a vector space V with linear transformations
A,B : V → V is a edge labelled directed graph, where each vertex is an instance of the
vector space V , and that for each instance of the following subgraph

A B

we have Im (A) ⊆ Ker (B).

Firstly, we observe that if Im (A) ⊆ Ker (B), then BA = 0 which will play importance
for many of the results in this study.

2. Context and Motiviation

2.1. Literature.
McMahon [8] studied independence relationships of combinations of symmetric and an-
tisymmetric algebraic curvature tensors. She was the first to introduce the idea of
chain complexes to attempt to understand dependence relationships between precom-
posed symmetric and antisymmetric tensors. It was a chain complex in this study that
inspired many of the results on independence and decomposability in this research.
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Williams [9] continued to develop the language of chain complexes and directed
graphs and began to question the role of graph-theoretic properties when discussing
chain complexes associated with sums of canonical algebraic curvature tensors.

Julie [6] expands David’s work by introducing the notion of a weighted directed graph,
in that each vertex in the chain complex is assigned a weight that expresses an upper
bound for the rank of the composition of two linear operators on each incident edge.
She then attempted to find dependence relationships between tensors extracted from
the directed graphs.

Each of these studies focuses mainly on dependence by precomposition by a linear
operator. In other words, if A is a linear transformation and B is a self-or-skew-adjoint
linear operator, then precomposing by A, denoted A†, would be the operation

A†RB(x, y, z, w) = RB(Ax,Ay,Az,Aw).

This line of inquiry is not further developed in this study. Rather, we take a different
approach to studying directed graphs as chain complexes.

Additionally, [6, 8, 9] look mainly at the assumption that some operators are in-
vertible. This research generalizes these concepts to consider non-diagonalizable linear
transformations, with different Jordan canonical forms. Moreover, the focus on diago-
nalizability forgoes the posibillity that the inner product is not positive definite. This
study uses non-positive definite inner products to ensure that linear transformations
remain either self-adjoint or skew adjoint. Otherwise, the algebraic curvature tensors
constructed from those operators would fail to satisfy the properties that define them.
Furthermore, this research only focuses on the condition that Im (A) ⊆ Ker (B) unlike
[6] who considers compositions of related linear transformations of rank larger than zero.

Finally, this study uses the combinatorial approach developed by previous work to
gain insight not only to linear dependence of tensors, but also decomposability of tensors.
While similar graph-theoretic language is used, the implications vary on what results
we wish to obtain, and the results on independence decomposability have different
geometric implications.

2.2. Relationship Between Images and Kernels.

Given the condition of linear operators associated with chain complexes, we state a
lemma that will prove useful in later results.

Lemma 2.1. Let A,B : V → V be symmetric or skew-symmetric linear transforma-
tions. If Im (A) ⊆ Ker (B), then Im (B) ⊆ Ker (A).

Proof. Given that Im (A) ⊆ Ker (B), we know that BA = 0. Then, (BA)∗ = 0, so

A∗B∗ = 0

(±A)(±B) = 0

±AB = 0

AB = 0,

so Im (B) ⊆ Ker (A), as desired. □

The chain complexes we study are structured so that each edge has the same orienta-
tion. This lemma is helpful in that it will aloow for the consideration of chain complexes
that are obtained by reversing the orientation of each edge in the graph.
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2.3. A Combinatorial approach to Algebraic Curvature Tensors.
The motivation to apply combinatorial methods to algebraic results is that of efficiency.
This study acts as a stepping stone to build combinatorial intuition that can be applied
to finite sets of algebraic curvature tensors.

Using directed graphs allows one to easily deduce information about the tensors
associated with a given chain complex, and using graph theoretic ideas can shed further
insight on the nature of how these tensors behave. Furthermore, one could potentially
use graph theory and combinatorics to characterize particular sets of curvature tensors
in relation to purely graph-theoretic properties, and potentially find new graph or tensor
invariants.

2.4. Independence and Dependence.
Firstly, we know that the set of algebraic curvature tensors for a vector space, so we can
treat these tensors as vectors in an attempt to study their linear independence or linear
dependence. Furthermore, linear dependence of a sum of canonical algebraic curvature
tensors such as

c1R1 + c2R2 + · · ·+ ckRk = 0

reduces to the question

R1 + ε2R2 + · · ·+ εkRk = 0,

where εi = ±1. This is becasue of the following observational result:

Proposition 2.2. For Rφ ∈ A(V ) and c ∈ R, Rφ = R−φ, and cRφ(x, y, z, w) =
sign (c)R√

|c|φ(x, y, z, w) for all x, y, z, w ∈ V .

2.5. Decomposability.
We define decomposability on the direct sum of a vector space V = V1 ⊕ V2.

Definition 2.3. An algebraic curvature tensor R is decomposable, denoted R = S1⊕S2

onto V = V1 ⊕ V2 with S1 ∈ A(V1) and S2 ∈ A(V2) if

R(x1 + x2, y1 + y2, z1 + z2, w1 + w2) = S1(x1, y1, z1, w1) + S2(x2, y2, z2, w2).

This is true if and only if v1 ∈ V1 and v2 ∈ V2 imply R(v1, v2, a, b) = 0 for a, b ∈ V .

We will later extend this definition to include a notion of partial decomposability.

3. Augmentation of Sets of Linearly Independent Curvature Tensors

This section focuses of results of linear independence of curvature tensor. The results
use the hypothesis that A = J(0, t) ⊕ 0, that is, a single Jordan block of size t. Many
other Jordan types can be hypothesized and this may lead to drastically different results.
In the mean time, we prove the following results.

Theorem 3.1. Suppose A,B1, . . . , Bk : V → V are linear transformations over a finite
dimensional real vector space, such that A = J(0, t)⊕ 0, t ≥ 3, A = A∗ and Bi = ±B∗

i

with respect t the inner product φ on A. Let
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•

• •
...

•

A

B1

Bk

be a chain complex on V . If {RB1
, . . . , RBk

} is linearly independent, then {RB1
, . . . , RBk

}∪
{RA} is linearly independent.

Proof. Let {e1, . . . , en} be a Jordan Basis for A. Firstly, we know that rank (A) = t−1 ≥
2, and from the chain complex, Im (A) ⊆ Ker (Bi). Therefore dim(Ker (Bi)) ≥ rank (A),
so dim(Ker (Bi)) ≥ t− 1. On this basis, span {e1, . . . , et−1} ⊆ Ker (Bi).

There are two cases that must be accounted for. Firstly, suppose {RB1
, . . . , RBk

} is

independent and cRA +

k∑
i=1

ciRBi
= 0.

The first case is when c = 0. Since, {RB1
, . . . , RBk

} is independent, each ci = 0 as

well so there is no nontrivial solution to cRA +

k∑
i=1

ciRBi = 0. Thus, the desired set is

independent.
Now suppose c ̸= 0 and there is some nontrivial solution to the equation

cRA +

k∑
i=1

ciRBi = 0.

We can divide by c to get

RA +

k∑
i=1

c̃iRBi = 0

where c̃i =
ci
c
. Now we can define B̃i =

√
|c̃i|B, so

RA +

k∑
i=1

εiRB̃i
= 0

by Proposition 2.2. Also, ci = 0 if and only if c̃i = 0, so we can reduce the equation
even further to

RA +
∑
ci ̸=0

εiRB̃i
= 0.

Notice that at least one of the c̃i ̸= 0, since otherwise RA = 0, which is impossible as
rank (A) ≥ 2. In this way, the sum of the RB̃i

is nonempty.

Claim. There exist basis vectors ep, eq, er, es such that RA(ep, eq, er, es) ̸= 0, and
RB̃i

(ep, eq, er, es) = 0 for 1 ≤ i ≤ k. This contradicts the existence of at least one
nonzero ci.
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Since A = J(0, t)⊕ 0, this gives the matrix

A = [0|e1|e2| · · · |et−1|0| · · · |0] ,

so Aej = Aej−1 for 2 ≤ j ≤ t and Aeℓ = 0 otherwise. The inner product with respect
to A is

[φA] =



0 · · · εt
...

. . .
... 0

εt · · · 0
εt+1

0
. . .

εn


.

Firstly φ(e1, e2) = 0 since t ≥ 3, so φ(ec, et−c+1) = εt where εt = ±1 for 1 ≤ c ≤ t.
Moreover, φ(ed, ed) = εd for t+ 1 ≤ d ≤ n.

We see that

RA(e2, et, e2, et) = φ(Ae2, et)φ(Aet, e2)− φ(Ae2, e2)φ(Aet, et) = 1.

However, e2 ∈ span {e1, . . . , et} ⊆ Ker (Bi), and since Ker
(
B̃i

)
= Ker (Bi) = Ker (RBi),

this tells us RB̃i
(e2, et, e2, et) = 0 for i = 1, . . . , k. Therefore, there is no dependence

relationship in the set {RA, RB1
, . . . , RBk

} if {RB1
, . . . , RBk

} is independent. □

By Lemma 2.1, there is an immediate corollary.

Corollary 3.2. Suppose A,B1, . . . , Bk : V → V are linear transformations over a finite
dimensional real vector space, such that A = J(0, t)⊕ 0, t ≥ 3, A = A∗ and Bi = ±B∗

i

with respect t the inner product φ on A. Let

•

• •
...

•

A

B1

Bk

be a chain complex on V . If {RB1
, . . . , RBk

} is linearly independent, then {RB1
, . . . , RBk

}∪
{RA} is linearly independent.

These results can be expanded upon by changing the structure of the directed graphs,
or by changing the Jordan type of the linear operators.

4. Decomposability of Curvature Tensors

We now give a characterization of decomposability of algebraic curvature tensors.
This will aid in the formulation of results on decomposability of symmetric and anti-
symmetric tensors that are expressed through chain complexes of linear operators.
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Theorem 4.1. Let V = V1 ⊕ V2. An Algebraic Curvature Tensor R is decomposable
into R = S1 ⊕ S2 if and only if there are R1, R2 ∈ A(V ) such that R = R1 + R2 and
V1 ⊆ Ker (R2) and V2 ⊆ Ker (R1) where neither V1 nor V2 are zero-dimensional.

Proof. Suppose R = S1 ⊕ S2 where S1 ∈ A(V1) and S2 ∈ A(V2). We define

Ri(x1 + x2, y1 + y2, z1 + z2, w1 + w2) := Si(xi, yi, zi, wi)

for i = 1, 2 and Ri ∈ A(V ). Since V = V1⊕V2 each v ∈ V can be written as v = v1+v2
where v1 ∈ V1 and v2 ∈ V2. We see that

R(x, y, z, w) = S1(x1, y1, z1, w1) + S2(x2, y2, z2, w2)

= R1(x1 + x2, y1 + y2, z1 + z2, w1 + w2) +R2(x1 + x2, y1 + y2, z1 + z2, w1 + w2)

= R1(x, y, z, w) +R2(x, y, z, w),

so R = R1 + R2 where R1, R2 ∈ A(V ). Additionally, for some v2 ∈ V2, we can express
this vector as v2 = 0 + v2 with 0 ∈ V1. Consequently, for any v2 ∈ V2, v2 ∈ Ker (R1)
since

R1(v2, p, q, r) = S1(0, p1, q1, r1) = 0

for any p, q, r ∈ V . Similarly, for any v1 ∈ V1, v1 ∈ Ker (R2). Therefore, V1 ⊆ Ker (R2)
and V2 ⊆ Ker (R1).

Now suppose R = R1+R2 with V1 ⊆ Ker (R2) and V2 ⊆ Ker (R1) for R1, R2 ∈ A(V ).
Define

Si := Ri

∣∣∣
Vi

∈ A(Vi).

Claim. R = S1 ⊕ S2.

To see this, note that

R(x1 + x2, y1 + y2, z1 + z2, w1 + w2) =
R1(x1 + x2, y1 + y2, z1 + z2, w1 + w2) +R2(x1 + x2, y1 + y2, z1 + z2, w1 + w2),

and since V1 ⊆ Ker (R2) and V2 ⊆ Ker (R1),

R1(x1 + x2, y1 + y2, z1 + z2, w1 + w2) +R2(x1 + x2, y1 + y2, z1 + z2, w1 + w2)

= R1(x1, y1, z1, w1) +R2(x2, y2, z2, w2)

= R1

∣∣∣
V1

(x1, y1, z1, w1) +R2

∣∣∣
V2

(x2, y2, z2, w2)

= S1(x1, y1, z1, w1) + S2(x2, y2, z2, w2).

Therefore, R = S1 ⊕ S2, as needed. □

With this comes an immediate corollary.

Corollary 4.2. Let V = V1 ⊕ · · · ⊕ Vk with k ≤
⌊
dim(V )

2

⌋
. An Algebraic Curvature

Tensor R is decomposable into R = S1⊕ · · ·⊕Sk if and only if there exist R1, . . . , Rk ∈

A(V ) such that R =

k∑
i=1

Ri and Vi ⊆
∑
i̸=j

(Ker (Rj)).

We now contextualize our result on decomposability to a chain complex of linear
operators over a finite dimensional real vector space
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Theorem 4.3. Let

•

• •
...

•

A

B1

Bk

be a chain complex where A is diagonalizable, rank (A) ≥ 2, and Bi = ±B∗
i . Then

R = RA +

k∑
i=1

RBi
is decomposable into R = RA ⊕

k∑
i=1

RBi
.

Proof. Suppose rank (A) = t. Since A is diagonalizable, we can express it as

[A] =



λ1

. . . 0
λt

0

0
. . .

0


.

This gives us a vector spaces decomposition V = Im (A) ⊕ Ker (A) = V1 ⊕ V2. By

hypothesis, Im (A) = V1 ⊆ Ker (Bi) = Ker (RBi
). Let RB =

k∑
i=1

RBi
. It is clear that

V1 ⊆ Ker (RB) because any v1 ∈ V1 annihilates each RBi
. Also, V2 = Ker (A) =

Ker (RA), so R is decomposable into R = RA ⊕RB = RA ⊕
k∑

i=1

RBi
, as needed. □

Again, by Lemma 2.1, we derive an immediate corollary.

Corollary 4.4. Let

•

• •
...

•

A

B1

Bk
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be a chain complex where A is diagonalizable, rank (A) ≥ 2, and Bi = ±B∗
i . Then

R = RA +

k∑
i=1

RBi
is decomposable into R = RA ⊕

k∑
i=1

RBi
.

5. k-Decomposability of Curvature Tensors

Decomposability of algebraic curvature tensors is a worthwhile endeavour, as it is a
tool that allows for the breaking up of a tensor into smaller, more managable, pieces.
Naturally, the notion of decomposability conveys an idea of a complete breakdown of a
tensor. The question we ask is akin to asking if there is an extension of the concept of
decomposability for tensors that do not break down completley.

This question formulates the idea of k-decomposability: a partial breakdown of a
curvature tensor expressed as a sum of algebraic curvature tensors. This contextual-
izes decomposability as a special case of k-decomposability, namely 0-decomposability.
Conceptually, a breakdown of a tensor is partial if tensors in the sum have non-trivial
intersecting kernels. Crucially, decomposability of curvature tensors imples that the
tensor kernels sum to the entire vector space, something that can now be manipulated
for further study.

[6] conjectured about a possible definition of k-decomposability to allow for the con-
dition that we overcount dim(V ) through intersecting tensor kernels. We know give a
formal, completed definition of k-decomposability.

Definition 5.1. An algebraic curvature tensor is k-decomposable over a finite dimen-
sional vector space of dimension n, denoted R = R1 ⊕k R2 if

(1) R = R1 +R2, and
(2) dim(Ker (R1)) + dim(Ker (R2))− dim(Ker (R1) ∩Ker (R2)) = n− k.

However, this definition must be justified to be valid. The following result does this.

Theorem 5.2. An algebraic curvature tensor is decomposable as R = R1⊕R2 if and only if
R = R1 ⊕0 R2.

Proof. Suppose R = R1 ⊕ R2. We know that V = V1 ⊕ V2, and that V2 ⊆ Ker (R1)
and V1 ⊆ Ker (R2). Also, R = R1 + R2, and since V = V1 + V2, it follows that
V = Ker (R1) + Ker (R2). Therefore,

dim(Ker (R1) + Ker (R2)) = dim(V )

dim(Ker (R1)) + dim(Ker (R2))− dim(Ker (R1) ∩Ker (R2)) = n,

so R is 0-decomposable.
Now suppose that R is 0-decomposable. Again, it follows that

dim(Ker (R1))+dim(Ker (R2))−dim(Ker (R1)∩Ker (R2)) = dim(Ker (R1)+Ker (R2)) = n,

so V = Ker (R1) + Ker (R2). If Ker (R1) ∩ Ker (R2) = {0}, then the conclusion is
satisifed, so assume there is a nontrivial kernel. Firstly, Ker (R1) ∩ Ker (R2) ⊆ V , as
Ker (R1) ⊆ V and Ker (R2) ⊆ V , so let {k1, . . . kℓ} be a basis for Ker (R1) ∩ Ker (R2).
Since Ker (R1)∩Ker (R2) ⊆ Ker (R2), we can extend this basis to {e1, . . . , ep, k1, . . . kℓ},
which is a basis for Ker (R2). Let V1 = Ker (R2). We can extend this basis even further
to {e1, . . . , ep, k1, . . . kℓ, f1, . . . , fs} which is a basis for V , so dim(V ) = p + ℓ + s = n.
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Now, each fi ∈ {f1, . . . , fs} can be written as fi = fi,1 + fi,2 with fi,1 ∈ Ker (R1) and

fi,2 ∈ Ker (R2). This due to the fact that V = Ker (R1) + Ker (R2). Let fi,1 = f̃i =

fi − fi,2 ∈ Ker (R1) and define V2 := span
{
f̃1, . . . , f̃s

}
.

Claim. V = V1 ⊕ V2

In order to prove this, it first needs to be shown that
{
e1, . . . , ep, k1, . . . kℓ, f̃1, . . . , f̃s

}
is a basis for V . To do this, we need only show that span

{
e1, . . . , ep, k1, . . . kℓ, f̃1, . . . , f̃s

}
=

V .
Suppose v ∈ V . Since {e1, . . . , ep, k1, . . . kℓ, f1, . . . , fs} is a basis for V , there exist

coefficients such that

v =

p∑
i=1

αiei +
ℓ∑

j=1

βjkj +

s∑
m=1

γmfm

=

p∑
i=1

αiei +

ℓ∑
j=1

βjkj +

s∑
m=1

γmf̃m +

s∑
m=1

γmfm,2.

We know fi,2 ∈ Ker (R2) = span {e1, . . . , ep, k1, . . . kℓ}, so

fi,2 =

p∑
r=1

δrer +

l∑
s=1

εsks.

Therefore,

v =

p∑
i=1

αiei +

ℓ∑
j=1

βjkj +

s∑
m=1

γm(

p∑
r=1

δrer +

ℓ∑
s=1

εsks) +

s∑
m=1

γmf̃m,

where

p∑
i=1

αiei +

ℓ∑
j=1

βjkj +

s∑
m=1

γm(

p∑
r=1

δrer +

ℓ∑
s=1

εsks) ∈ span {e1, . . . , ep, k1, . . . kℓ}, and

s∑
m=1

γmf̃m ∈ span
{
f̃1, . . . , f̃s

}
. So v ∈ span

{
e1, . . . , ep, k1, . . . kℓ, f̃1, . . . , f̃s

}
. Since∣∣∣{e1, . . . , ep, k1, . . . kℓ, f̃1, . . . , f̃s}∣∣∣ = p+l+s = n, and span

{
e1, . . . , ep, k1, . . . kℓ, f̃1, . . . , f̃s

}
=

V , we conclude that
{
e1, . . . , ep, k1, . . . kℓ, f̃1, . . . , f̃s

}
is a basis for V . Now, by construc-

tion V = V1 + V2 and V1 ∩ V2 = {0}, so V = V1 ⊕ V2.
Moreover, since V = V1 ⊕ V2 and V1 ⊆ Ker (R2) and V2 ⊆ Ker (R1), R = R1 ⊕ R2,

as desired. □

We refer the readers to Conjectures 6.3 and 6.4 to see potential contextualizations of
this result.

6. Conjectures and Further Research

There are many potentiaal lines of inquiry that can be followed from the implica-
tions of this research. We focus on combinatorial and algebriac extensions rather than
exploring the geometric implications.
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Firstly, the chain complex of desire in this study can be a connected subgraph of a
more expansive graph of the same type:

Definition 6.1. An arborescence is a directed graph in which, for a single vertex u
called the root and any other vertex v there is exactly one directed path from u to v.

We use the graph-theoretic concept of an proper edge-coloring, which is a mapping
c : E → N that assigns each edge e ∈ E to a natural number c(e) refered to as a
color,such that if e and f are incident with the same vertex, then c(e) ̸= c(f) A k-
coloring is a proper coloring that uses k colors. We formulate the following conjecture.

Conjecture 6.2. Let G an arborescence with a 2-edge coloring such that each path in G
is alternating. If G is a chain complex such that edges corresponding to linear operators
A1, . . . , As have color c1 and edges corresponding to linear operators B1, . . . , Bt have
color c2, then

R =

s∑
i=1

RAi +

t∑
j=1

RBj

is decomposable into

R =

s∑
i=1

RAi
⊕

t∑
j=1

RBj
.

We now state potential results that ponder the significance of the Jordan type of A
with respect to the chain complex of study.

Conjecture 6.3. Suppose A,B1, . . . , Bk : V → V are linear transformations over a
finite dimensional real vector space, such that A = J(0, t) ⊕ 0, t ≥ 3, A = A∗ and
Bi = ±B∗

i with respect t the inner product φ on A. Let

•

• •
...

•

A

B1

Bk

be a chain complex on V . Then R = RA ⊕1

k∑
i=1

RBi
.

We now extend this idea to a potentially more general reseult:

Conjecture 6.4. Let
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•

• •
...

•

A

B1

Bm

be a chain complex on V , and let A = A∗, B = ±B∗ with respect to the inner product φ.

Suppose A =

s⊕
i=1

J(λi, ti) where all Jordan blocks are real such that there are k Jordan

blocks J(λi, ti) with λi = 0 and ti ≥ 2. Then

R = RA ⊕k

m∑
i=1

RBi
.

We now ask general questions that can drive further research in this topic

(1) Can results on linear independence, decomposability, and k-decomposability be
generalized to include linear operators with complex Jordan types? Does this
change the results found for the chain complex

•

• •
...

•

A

B1

Bk

?

(2) Can graph-theoretic properties illicit similar results on independence and de-
composability of algebraic curvature tensors? Can results be generalized to all
types of acyclic directed graphs? Can results be found for graph containing at
least one directed cycle?

(3) Given that chain complexes can be used to develop results on independence and
decomposability, does this suggest a relationship between linear independence
and decomposability of canonical algebraic curvature tensors?

(4) Can we extend our notion of decomposability to consider tensors over the quo-
tient space V = V/K where

K =

k⋂
i=1

Ker (Ri) .
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where R =

k∑
i=1

Ri.

7. Acknowledgements

We would like to thank Dr. Corey Dunn for his excellent guidance throughout this re-
search, as well as Dr. Rolland Trapp for his helpful insight. This research was generously
funded by NSF grant DMS-2050894 and California State University, San Bernardino.

References

[1] S. Ahdout and S. Rothman, Reduction to Normal Form of a Self-Adjoint Linear
Transformation With Respect to a Pseudo-Unitary or a Pseudo-Euclidean Inner
Product, Revista Colombiana de Matematicas (Colombian Journal of Mathematics)
40 (2006), 15–29.

[2] A. Diaz and C. Dunn, The Linear Independence of Sets of Two and Three Canonical
Algebraic Curvature Tensors, Electronic Journal of Linear Algebra 20 (2010), 436–
448.

[3] C. Dunn, C. Franks, and J. Palmer, On the structure groups of direct sums of canon-
ical algebraic curvature tensors, Beitrage zur Algebra und Geometrie (Contributions
to Algebra and Geometry 56 (1996), 217–252.

[4] P. Gilkey, Geometric Properties of Natural Operators Defined by the Riemann Cur-
vature Tensor, World Scientific, Singapore, 2001.

[5] , The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds,
Imperial College Press, London, 2007.

[6] S. Julie, Linear Dependence of Canonical Algebraic Curvature Tensors as Described
by Weighted Directed Graphs, California State University, San Bernardino, REU,
2021.

[7] A.I. Mal’cev, Foundations of Linear Algebra, W.H. Freeman and Company, San
Francisco, 1963.

[8] E. McMahon, Linear Dependence of Canonical Alegbraic Curvature Tensors of Sym-
metric and Anti-Symmetric Builds, California State University, San Bernardino,
REU, 2014.

[9] D. Williams, Linear Dependence of Canonical Algebraic Curvature Tensors with
Associated Chain Complexes, California State University, San Bernardino, REU,
2015.


	1. Introduction
	1.1. Algebraic Curvature Tensors
	1.2. Symmetric and Antisymmetric Bilinear Forms
	1.3. The Jordan Canonical Form of Linear Transformations and the Construction of the Inner Product
	1.4. Directed Graphs and Chain Complexes over Vector Spaces

	2. Context and Motiviation
	2.1. Literature
	2.2. Relationship Between Images and Kernels
	2.3. A Combinatorial approach to Algebraic Curvature Tensors
	2.4. Independence and Dependence
	2.5. Decomposability

	3. Augmentation of Sets of Linearly Independent Curvature Tensors
	4. Decomposability of Curvature Tensors
	5. k-Decomposability of Curvature Tensors
	6. Conjectures and Further Research
	7. Acknowledgements
	References

