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Abstract

In this paper, we investigate properties of canonical algebraic curvature tensors
arising from the Ricci-Weyl decomposition. We define the Ricci map on symmetric
bilinear forms and use it to provide a simple construction for all canonical Einstein
tensors. Finally, we characterize when canonical tensors are Weyl-flat.

1 Introduction

Let (V, g) be a real vector space V of dimension n > 2 equipped with a non-degenerate
symmetric bilinear form g. Let S2(V ∗) denote the space of symmetric bilinear forms over V .

Definition 1. An algebraic curvature tensor is a tensor R ∈ ⊗4V ∗ that satisfies the following
identities:

(a) R(x, y, z, w) = −R(y, x, z, w) = R(z, w, x, y).

(b) R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0.

The vector space of algebraic curvature tensors over V is denoted by A(V ).

Every algebraic curvature tensor can be realized as the curvature tensor at a point of a
pseudo-Riemannian manifold ([1], Lem. 6.1.1).

Definition 2. Let ϕ, ψ ∈ S2(V ∗). The Kulkarni-Nomizu product ϕ⃝∧ ψ is given by

ϕ⃝∧ ψ(x, y, z, w) = ϕ(x, z)ψ(y, w) + ϕ(y, w)ψ(x, z)− ϕ(x,w)ψ(y, z)− ϕ(y, z)ψ(x,w).

Definition 3. Let ϕ ∈ S2(V ∗). We define an associated canonical algebraic curvature tensor
Rϕ = −1

2
ϕ⃝∧ ϕ.

Our primary interest in canonical tensors arises from the following result:

Proposition 1 ([1], Thm. 1.6.1).

A(V ) = span{Rϕ : ϕ ∈ S2(V ∗)}.

We study canonical tensors using the decomposition of A(V ) which is induced by metric
contraction.
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Definition 4. Let {ei} be a basis for V and define G = [g(ei, ej)]. The Ricci tensor of
R ∈ A(V ) is the metric contraction of R given by

Ric(R)xy =
∑
i,j

G−1
ij R(x, ei, ej, y).

Note that this contraction is basis-independent [1].

Definition 5. R ∈ A(V ) is a Weyl tensor if Ric(R) = 0. The space of Weyl tensors over V
is denoted W(V ).

The space of algebraic curvature tensors then decomposes via the following map:

Definition 6. We define the map σ : S2(V ∗) → A(V ) by

σ(ϕ) = − 1

n− 2
g⃝∧ ϕ+

Trϕ

2(n− 1)(n− 2)
g⃝∧ g.

Proposition 2 ([1], Thm. 4.1.1). The map σ is an injective linear map decomposing the
space of algebraic curvature tensors as A(V ) = W(V )⊕ Imσ.

In Section 2, we will derive basic properties of the Ricci tensors of canonical algebraic
curvature tensors. In Section 3, we then characterize all the canonical tensors which have
Weyl component zero.

2 The Ricci Map

Proposition 3. Let {ei} be a basis for V and let ϕ, ψ ∈ S2(V ∗). Let Φ = [ϕ(ei, ej)],Ψ =
[ψ(ei, ej)], and G = [g(ei, ej)] be matrix representations of ϕ, ψ, and g respectively. Then

[Ric(ϕ⃝∧ ψ)] = Φ(G−1Ψ− Tr(G−1Ψ) Id) + Ψ(G−1Φ− Tr(G−1Φ) Id).

Proof. We compute

Ric(ϕ⃝∧ ψ)il =
∑
j,k

G−1
jk (ΦikΨjl + ΦjlΨik − ΦilΨjk − ΦjkΨil)

=
∑
j,k

ΦikG
−1
kj Ψjl +

∑
j,k

ΨikG
−1
kj Φjl − Φil

∑
j,k

G−1
kj Ψjk −Ψil

∑
j,k

G−1
kj Φjk

= (ΦG−1Ψ)il + (ΨG−1Φ)il − Φil Tr(G
−1Ψ)−Ψil Tr(G

−1Φ),

from which the desired result is immediate.

We will suppose that g is positive-definite for the remainder of the paper.

Corollary 3.1. If {ei} is an orthonormal basis with respect to g, then (using the same
notation for bilinear forms and their matrix representations) we have

Ric(ϕ⃝∧ ϕ) = 2ϕ(ϕ− (Trϕ) Id)

Ric(g⃝∧ ϕ) = (2− n)ϕ− (Trϕ) Id

Ric(g⃝∧ g) = 2(1− n) Id
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Definition 7. We define the Ricci map ρ : S2(V ∗) → S2(V ∗) by ϕ 7→ RicRϕ, which by the
above computation yields ρ(ϕ) = ϕ((Trϕ) Id−ϕ) over an orthonormal basis.

We will now derive some properties of the Ricci map. Let ϕ ∈ S2(V ∗). By the Spectral
Theorem, let {ei} be an orthonormal basis diagonalizing ϕ. Let λi = ϕii be the eigenvalues
of ϕ and let λ =

∑
i λi = Trϕ be the trace. Then ρ(ϕ)ii = λi(λ− λi).

Lemma 4. ρ(ϕ) = 0 ⇐⇒ rkϕ ≤ 1.

Proof. If ρ(ϕ) = 0 but ϕ ̸= 0, then ∀i with λi ̸= 0, we have λ = λi. So there is only one
nonzero eigenvalue α, which we suppose has multiplicity k. Then λ = kα =⇒ (k − 1)α =
0 =⇒ k = 1. Thus, rkϕ = 1. The converse is easy to check.

Lemma 5. ρ(ϕ) = ϕ ⇐⇒ ϕ = 1
k−1

Idk ⊕0 for some 2 ≤ k ≤ n.

Proof. If λi ̸= 0, then λ−λi = 1, so ϕ has at most one distinct nonzero eigenvalue α. Letting
k be the multiplicity of α, we have αk − α = 1, giving the desired result. A straightfoward
computation shows the converse.

Definition 8. R ∈ A(V ) is an Einstein tensor if there exists c ∈ R such that RicR = cg.

Shapiro [2] classified all forms ϕ ∈ S2(V ∗) for which Rϕ is Einstein. We provide the same
result with a streamlined proof using the Ricci map.

Proposition 6. Let c ̸= 0. If c > 0, then ρ(ϕ) = cg ⇐⇒ ϕ = ± c
2(n−1)

g. If c < 0, then

ρ(ϕ) = cg ⇐⇒ ϕ = ±
√
−c

(√
l−1
k−1

Idk ⊕−
√

k−1
l−1

Idl

)
.

Proof. For all i, we have λi(λ − λi) = c. This is a quadratic in λi, so it has at most two
solutions. That is, λi ∈ {α, β} with α + β = λ and αβ = c.

If ϕ has only one eigenvalue, then it is easily checked that ϕ = ± c
2(n−1)

g and that c > 0.
If ϕ has two eigenvalues, then without loss of generality we write ϕ = α Idk ⊕β Idl. The
relation α + β = λ necessitates that α(k − 1) + β(l − 1) = 0. Note that this requires the

eigenvalues to have different signs, so c < 0. Substituting β = c
α
, we obtain α = ±

√
−c l−1

k−1

and symmetrically β = ∓
√

−ck−1
l−1

.

The canonical Einstein tensors with Einstein constant zero are all trivial by Lemma 4.

3 Ricci-Weyl Decomposition of Canonical ACTs

We first show a general diagonalization result for canonical tensors as a technical aid.

Definition 9. R ∈ A(V ) is called pure if there exists an orthonormal basis {ei} for V such
that Rijkl = 0 when |{i, j, k, l}| > 2. We then say that R is pure on {ei}.

Lemma 7. Suppose that ϕ, ψ ∈ S2(V ∗) are simultaneously diagonal on a basis {ei}. Then
(ϕ⃝∧ ψ)ijkl = (δikδjl − δilδjk)(ϕiiψjj + ϕjjψii), where δij is the Kronecker delta.
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Proof. Note that ∀i, j, we have ϕij = δijϕii and ψij = δijψii. The result is then directly
computed.

Lemma 8. Let ϕ ∈ S2(V ∗) with rkϕ > 2. Then Rϕ is pure on {ei} if and only if ϕ is
diagonal on {ei}.

Proof. If ϕ is diagonal, then the previous lemma shows that Rϕ is pure.
Now, assume that Rϕ is pure and suppose that all diagonal entries of ϕ are nonzero.

Then either ϕ is diagonal or there exist i ̸= j such that ϕij ̸= 0. Then ∀k ̸∈ {i, j},

0 = Rikkj = ϕijϕkk − ϕikϕkj =⇒ ϕik, ϕkj ̸= 0,

so all entries of ϕ must be nonzero. Since rkϕ > 1, there exist i ̸= j such that Rijji ̸= 0 and
thus ϕiiϕjj ̸= ϕ2

ij. Then ∀k ̸∈ {i, j},

0 = Rijki = ϕiiϕjk − ϕikϕji =⇒ ϕik = ϕjk
ϕii

ϕij

0 = Rjikj = ϕjjϕik − ϕjkϕij =⇒ ϕik = ϕjk
ϕij

ϕjj

,

so ϕiiϕjj = ϕ2
ij, a contradiction. Thus, ϕ is diagonal.

Now, suppose that a diagonal entry of ϕ is zero. Then without loss of generality, let
ϕ11 = 0. Then ∀i ̸= j with 1 ̸∈ {i, j}, we have

0 = Ri11j = ϕijϕ11 − ϕi1ϕ1j = −ϕi1ϕ1j,

so either ϕi1 or ϕ1j must be zero. By symmetry of ϕ, there then exists at most one i such
that ϕi1 ̸= 0.

Suppose that there exists i ̸= 1 such that ϕi1 ̸= 0. Since rkϕ > 2, there exist j, k such
that j ̸∈ {1, i} and ϕjk ̸= 0, as otherwise ϕi1 = ϕ1i and ϕii would be the only nonzero entries
of ϕ. Then

0 = Rij1k = ϕikϕj1 − ϕi1ϕjk = −ϕi1ϕjk =⇒ ϕjk = 0,

a contradiction. Thus, ϕ = 0 ⊕ ϕ|span{e2,...,en}. Repeating this process on all zero diagonal
entries of ϕ, we find that ϕ = 0 ⊕ ϕ′, where rkϕ′ > 2 and all diagonal entries of ϕ′ are
nonzero. As proven earlier, ϕ′ must then be diagonal, so ϕ is likewise.

We now investigate the Weyl component of canonical tensors.

Lemma 9. Every Weyl tensor can be written as a linear combination of pure Weyl tensors.

Proof. If ϕ is diagonal on {ei}, then so is ρ(ϕ) and thus σ◦ρ(ϕ). But thenWϕ is the difference
of tensors that are pure on the same basis and itself pure.

Since every Weyl tensor can be written as a linear combination of canonical tensors, it
can be written as a linear combination of the Weyl components of canonical tensors, which
are pure.

Proposition 10. If n ≥ 4, then Rϕ ∈ Imσ if and only if there exists α ∈ R and ψ ∈ S2(V ∗)
with rkψ ≤ 1 such that ϕ = αg + ψ.
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Proof. If ϕ = ag + ψ, then

ϕ⃝∧ ϕ = a2g⃝∧ g + 2g⃝∧ ψ ∈ Imσ,

as ψ⃝∧ ψ = 0.
On the other hand, suppose that ϕ ̸∈ span{g} but Rϕ ∈ Imσ. Then Rϕ − σ ◦ ρ(ϕ) = 0.

Let {ei} be an orthonormal basis diagonalizing ϕ. Then ∀i ̸= j, we have by Lemma 7 that

(n− 2)ϕiiϕjj − ϕii(Trϕ− ϕii)− ϕjj(Trϕ− ϕjj) +
Tr ρ(ϕ)

2(n− 1)
= 0.

Suppose that ϕ has three distinct eigenvalues ϕ11, ϕ22, and ϕ33. For any fixed i, the above
equation is a quadratic in ϕjj, so we must have that the other two eigenvalues solve the
quadratic specified by the third eigenvalue. So

ϕ22 + ϕ33 = Trϕ −(n− 2)ϕ11

ϕ11 + ϕ33 = Trϕ −(n− 2)ϕ22.

Then ϕ11 = ϕ22, a contradiction.
So ϕ has two distinct eigenvalues α and β. If both are repeated, then the quadratic

necessitates that

α + β = Trϕ− (n− 2)α = Trϕ− (n− 2)β =⇒ α = β,

a contradiction. So only one of the eigenvalues can have multiplicity. Without loss of
generality, suppose ϕ = α Idn−1⊕β Id1. Let ψ be a rank one form with ψnn = β − α and all
other entries zero. Then ϕ = αg + ψ as claimed.

4 Open Questions

One interesting question would be to extend the results of this paper to indefinite metrics g.
Do Einstein canonical tensors span the space of Einstein tensors? Lemma 9 suggests that

this could be answered by a construction realizing all Weyl tensors are linear combinations
of Einstein canonical tensors.

Proposition 10 characterizes when canonical tensors are in the image of σ. When are
sums or differences of canonical tensors in Imσ? Since all tensors in the image are Kulkarni-
Nomizu products, they can be written as a sum or difference of two canonical tensors. What
can we then infer about these tensors?

What about taking multiple metrics g? Can these metrics be appropriately chosen to
classify algebraic curvature tensors based on canonical tensor decompositions? In particular,
choosing dimS2(V ∗) such metrics gi guarantees by polarization that ⊕ Imσi spans A(V ).
Can this be done with fewer metrics, and what properties of the Ricci-Weyl decomposition
can help tackle this question?

Finally, a new result by Favazza [3] shows that the set of canonical tensors is dense in
A(V ) when n = 3. Is ρ(S2(V ∗)) dense in S2(V ∗) in higher dimensions? Additionally, what
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can this image look like? In particular, consider ρ(DdimS2(V ∗)), the image of the unit disk.
This set is compact and connected; what can it look like?

Let πW denote orthogonal projection onto W(V ), the space of Weyl tensors. We can see
that W(V ) = span{πWRϕ | ϕ ∈ S2(V ∗),Trϕ = 0} as πWRϕ = πWRϕ+cg, c ∈ R. Further,
these traceless forms are relatively “nice”; for example, it is straightforward to see that the
map ρ is at worst two-to-one on traceless forms (of rank at least three). What results can
we obtain about linear combinations of canonical tensors of traceless forms?

Acknowledgments

I would like to thank Dr. Corey Dunn for mentorship and support throughout this project,
as well as Dr. Rolland Trapp for continued guidance. This project was funded by NSF Grant
DMS-2050894 and California State University, San Bernardino.

References

[1] Miguel Brozos-Vázquez, Peter B. Gilkey, and Stana Nikcevic, Geometric Realizations of Curvature, Im-
perial College Press, London, 2012.

[2] Roberta Shapiro, Algebraic Curvature Tensors of Einstein and Weakly Einstein Model Spaces, The PUMP
Journal of Undergraduate Research 2 (2019), 30–43.

[3] Kieran Favazza, The Denseness of Canonical Algebraic Curvature Tensors and a Revision to the Signature
Conjecture (2023), Forthcoming.

6


	Introduction
	The Ricci Map
	Ricci-Weyl Decomposition of Canonical ACTs
	Open Questions

