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Abstract. In this paper, we address symmetry groups of augmented links.
We will focus on FALs and related links with a complement homeomorphic to
that of an FAL. Our main focus will be on chain links which are flat FALs and
links FAL-equivalent to chain links. Our overarching goal is to examine the
relationship between the symmetry groups of links and links FAL-equivalent to
them along with how disparate those two symmetry groups may be.
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1 Introduction

In this paper, we address the symmetry groups of augmented links. A symmetry
group of a link L is the algebraic group of self-homeomorphisms of (S3, L) up to
isotopy. We denote the full symmetry group by Sym(L) and the subgroup that
preserves orientation by Sym+(L). Further, we denote the set of orientation-
reversing symmetries on L by Sym−(L). Each symmetry of a complement of
a hyperbolic link M = S3 \ L (which all of the links discussed in this paper
are) induces a symmetry of the link, so Sym(L) ≤ Sym(M) where Sym(M).
Our motivating question in this research is how different these two groups may
be and how symmetries on M affect those on L. We begin by defining and
introducing key terminology and verbiage.

Augmented links are a class of links constructed by augmenting a link L
with a crossing circle around twist regions of L. Fully augmented links (FALs)
are a subclass of augmented links referring to those where twist regions have
exactly two strands and full twists are removed from within each crossing circle
so each crossing circle contains (i.e. wraps around) zero crossings or one cross-
ing. We call an FAL flat if all of its crossing circles contain zero crossings after
full twists have been removed (See Figure 1).
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Figure 1: Example of an FAL on the left and a flat FAL on the right

A crushtacean of an FAL F is the dual of the painted triangulation of its as-
sociated ideal polyhedra and is denoted C(F ). (See Figure 2 for the crushtacean
of the two FALs from Figure 1.) Painted edges of C(F ) correspond to crossing
circles and non-painted edges corresponds to knot circles or strands (strands in
the FAL that originate from the original link L). For more information and a
more detailed explanation of FALs and crushtaceans, consult [5] and [3].

Figure 2: Painted Crushtacean corresponding to the FALs in Fig. 1

Chain links (CLs) are a specific type of flat FALs whose crushtaceans are
prism graphs and have the same number of crossing and knot circles (See Figure
3). We will denote the n-chain link by Pn and the n-prism graph by Yn.

If k ∈ Z then we define a k-Dehn twist on a crossing circle X of an FAL L
to be the addition of k full Dehn twists within X (See Figure 4). We say that
two links L1 and L2 are FAL-equivalent if we can perform a finite number of
k-Dehn twists on L1 to produce L2 and we write L1 ∼DS L2. Furthermore, in
this case, we know that L1 and L2 have homeomorphic complements, so their
symmetry groups are both subgroups of the common symmetry group of their
complements.

A projection plane of an FAL is a plane containing the knot circles. Usually
the choice of knot circles is non-arbitrary; however, in the case of chain links,
the choice is not obvious because crossing circles can be transformed into knot
circles. Therefore, chain links have two projection planes, which we will denote
ρ1 and ρ2. Figure 5 features a diagram pointing out those two planes.

Now we have defined the necessary terminology pertaining to the symmetry
groups of the augmented links in question, so we will proceed to use topological,
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P₅ Y₅

Figure 3: P5 link with crossing circles in blue and its corresponding painted
crushtacean Y5

Figure 4: A +2-Dehn twist (top) and a -1-Dehn twist (bottom)

Figure 5: ρ1 is the sphere shaded in pink (left) ρ2 is the plane shaded in green
(right)
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algebraic, and graph theoretic techniques to determine useful results for sym-
metry groups. First, we address chain links and links that are FAL-equivalent
to them.

Remark. Moving forward, we denote {e} the trivial group by E.

2 Symmetries of Chain Links

In this section, we address the symmetry groups of chain links Pn and links that
are FAL-equivalent to Pn. By [4], we know that Pn admit no hidden symmetries
either orientation-preserving or reversing and that Sym(Pn) ∼= Sym(Mn) (as
well as that Sym+(Pn) ∼= Sym+(Mn)) where Mn is the manifold that is the
complement of Pn in S3 and n ≥ 4. For our purposes, we will denote crossing
circles by Ci where 1 ≤ i ≤ n where we choose an arbitrary circle from the link
to correspond to C1 and proceed to label the crossing circles in order clockwise.
We do the same with knot circles but denote them with Ki. Further, we let
D(Ci) to be the number of full Dehn twists a crossing circle Ci contains (for
example, D(X) = +2 for the crossing circle in the top-right of Figure 5). A
crossing disk is a disk for which a crossing circle forms the boundary and sim-
ilarly for a knot disk (we will use Ci and Ki to refer to these disks as well as
the link components). We will choose a point within the open crossing disk Ci

and in the projection plane ρ1 and label it pi. Similarly, we choose a within the
open knot disk Ki and label it p′i. (See Figure 6). The choices for these points
do not matter because we are concerned with homeomorphisms and these two
different arbitrary choices for a pi or p

′
i are homeomorphic.
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Figure 6: P5 link with our chosen labelling
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Theorem 2.1 (Theorem 6.1 from [4]) If we denote α to be the inward
rotation by π

2 around the circular axis of symmetry followed by a rotation
π
n (effectively changing a crossing circle to a knot circle and vice versa),
β to be the inward rotation by π around the circular axis of symmetry,
and γ to be the π rotation around the axis of symmetry of the link in
the projection plane containing our designated knot circles, then the set
{α, β, γ} are generators for Sym+(Pn) when n ≥ 4. (See Figure 7).

α

β

γ

Figure 7: P5 link with generators for orientation-preserving symmetry group

Remark. For all our work in this section forwards, we assume n ≥ 4.

Proposition 2.1 If n is odd then |α| = 4n, and if n is even then |α| = 2n.

Proof. If n is even and we allow α2n to act on (S3, Pn) then all the Ci are
permuted to their original positions, and we obtain the identity. Therefore, the
order of α must be 2n.
However, if n is odd, then allowing α2n to act on (S3, Pn) is not equivalent to
the identity but a homeomorphism equivalent to allowing β to act on (S3, Pn),
i.e. α2n = β. The order of β is clearly 2 and so the order of α in this case is
4n.

Theorem 2.2 If n is even, then Sym+(Pn) ∼= D2n×Z2, and if n is odd,
then Sym+(Pn) ∼= Dn × Z4.

Proof. Case 1. Suppose n is even.
Then by Theorem 2.1 and Proposition 2.1, all the symmetries generated by α
and γ form a subgroup of Sym+(Pn) of index 2 that can be induced by and in
turn induce the symmetries on the 2n-gon connecting the pi and p′i. Therefore
this subgroup is isomorphic to D2n, and ⟨α, γ⟩◁Sym+(Pn). Let B be the sub-
group generated by β. Then clearly Z2

∼= B ◁ Sym+(Pn), i.e. B is normal in
Sym+(Pn). And so by applying the Recognition Theorem of Direct Products,

5



we obtain that Sym+(Pn) ∼= D2n × Z2.

Case 2. Now suppose n is odd.
By Proposition 2.1, we can generate all of Sym+(Pn) with only α and γ. by
Proposition 2.1. LetA be the subgroup of Sym+(Pn) generated by α. It is trivial
to show that A ∼= Z4n and so A is index 2 in Sym+(Pn) and A ◁ Sym+(Pn).
Because n and 4 are relatively prime, then Z4n

∼= Zn × Z4. Let G be the
subgroup of Sym+(Pn) generated by γ which is clearly order 2.
Take ϕσ : G → Aut(A) be defined as left conjugation, i.e. ϕσ(x) = σxσ−1 and
σ ∈ G. Note that ϕe = id and ϕγ(x) = γxγ = x−1. hen by the Recognition
Theorem for Semidirect Products (Theorem DF.5.12 from [1]), we know that
Sym+(Pn) ∼= (Zn × Z4)⋊ϕ G ∼= Z4 × (Zn ⋊ϕ Z2) ∼= Dn × Z4.

Now that we have identified Sym+(Pn), the natural next step is to identify
Sym(Pn) the full symmetry group up to isomorphism. To this end, we will
largely rely on group theoretic techniques and the above remark.

Theorem 2.3 If n is even then Sym(Pn) ∼= D2n × Z2 × Z2, and if n is
odd then Sym(Pn) ∼= Dn ×D4.

Proof. Let R be the order 2 subgroup of Sym(Pn) generated by the reflection
of Pn across ρ1, which we will denote by r, i.e. R = ⟨r⟩. Because Sym+(Pn) is
index 2 in Sym(Pn), then Sym+(Pn)◁ Sym(Pn). By definition of Sym+(Pn),
we know that R ∩ Sym+(Pn) = E = {e}.
Take ϕσ : R → Aut(Sym+(Pn)) be defined as left conjugation, i.e. ϕσ(x) =
σxσ−1 where σ ∈ R. Note that ϕe = id and ϕr(x) = rxr = x−1. By
the Recognition Theorem for Semidirect Products, we know that Sym(Pn) ∼=
Sym+(Pn)⋊ϕ R.
Case 1. Suppose n is even.
Then Sym(Pn) ∼= Sym+(Pn) ⋊ϕ R ∼= (D2n × Z2) ⋊ϕ Z2. By associativity of
groups, we can move the parentheses to obtain Sym(Pn) ∼= D2n × (Z2 ⋊ϕ Z2).
Note that for any ϕ, it is the case that Z2 ⋊ϕ Z2

∼= Z2 × Z2, so Sym(Pn) ∼=
D2n × Z2 × Z2.
Case 2. Otherwise, suppose n is odd.
Then Sym(Pn) ∼= Sym+(Pn)⋊ϕR ∼= (Dn×Z4)⋊ϕR ∼= Dn×(Z4⋊ϕR). Because
Z4 ⋊ϕ Z2

∼= D4, then Sym(Pn) ∼= Dn ×D4, as desired.

Now that we have determined the full symmetry group of Pn, we will address
links L such that L ∼DS Pn. We know that the symmetries of these links will
be a subgroup of that of Mn, where Mn = S3 \ Pn. Further, it has been
shown that Sym(Mn) ∼= Sym(Pn) and Sym+(Mn) ∼= Sym+(Pn) [4]. Table 2.1
below lists all the possible subgroups of D5, D4, D12, and Z2. Because we know
Sym(P5) ∼= D5×D4 and Sym(P6) ∼= D12×Z2×Z2, we can use these subgroups
from the table to determine all the subgroups of Sym(P5) and Sym(P6).
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Subgroups of D5 Subgroups of D4 Subgroups of D12 Subgroups of Z2

E E E E
Z2 Z2 Z2 Z2

Z5 Z4 Z12

D5 Z2 × Z2 Z6
∼= Z2 × Z3

D4 Z4

Z3

Z2 × Z2

D6

D4

D3

D12

Table 2.1 Lists the subgroups of D5, D4, D12, and Z2, from which we can use
direct products to construct all the subgroups of D4 ×D5 and D12 × Z2 × Z2,
which are the full symmetry groups of P5 and P6, respectively.

We move forward by using Dehn twists to construct links whose comple-
ments are homeomorphic to Mn but have fewer symmetries themselves than
Pn. We wish to determine exactly which subgroups of Sym(Pn) the symmetry
groups of links constructed in this fashion will have. Towards this goal, we will
characterize all the possible options for Sym+(L) where L ∼DS Pn.
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Link Diagram Sym+(L)
Lemma with a Gen-
eral Construction

D5 × Z2 Lemma 2.2

Z2 × Z2 Lemma 2.3

Z2 Lemma 2.4

D3 × Z2 Lemma 2.5

Z3 × Z2 Lemma 2.6

Table 2.2 Possible links FAL-equivalent to P5, P6, and P9.

Proposition 2.2 If L ∼DS Pn and there is some σ ∈ Sym(L) where σ
acts on L to take some Ci to some Kj then L = Pn.
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Proof. It is clear that any symmetry that takes a crossing circle to a knot circle
must take all the crossing circles to knot circles and vice versa. Because σ must
preserve linking numbers of pairs of components, we know that the linking
numbers of any two adjacent knot circles Ki and Ki+1 must be zero. This
means L is exactly Pn.

Proposition 2.2 can be interpreted as saying that, for any L ∼DS Pn where
L ̸= Pn, symmetries of L can only act on L in such a way that crossing circles
are strictly permuted to other crossing circles.

Proposition 2.3 If L ∼DS Pn and σ ∈ Sym(L) where σ is a rotational
symmetry and σ(Ci) = Cj with i ̸= j and gcd(j − i, n) = 1, then there
is k ∈ Z so that D(Ci) = k for all 1 ≤ i ≤ n.

Proof. We know (j − i)x + ny = 1 has integer solutions for x and y. Then if
we allow σx to act on (S3, L), we will obtain a rotational symmetry that takes
Ci to Ci+1. Therefore, the signed linking number between knot circles must be
invariant at each crossing circle as desired.

Lemma 2.1 If L ∼DS F where F is an FAL with the same painted
crushtacean as Pn, then Sym+(L) ̸= E.

Proof. Note that β preserves Dehn-twist-numbers both in magnitude and sign,
so β ∈ Sym+(L). Because β is a non-trivial element of order 2, we know
Sym+(L) ̸= E.

By Lemma 2.1, we already know that not all subgroups of Sym(Pn) can be
achieved by breaking symmetries via full Dehn twists. It remains to determine
the fates of the remaining possible subgroups. Further note that the hypothesis
of this lemma is less restrictive than L ∼DS Pn and also applies to links with
half twists when full Dehn twists are removed.
Now we would like to construct a general case of first link from Table 2.2 L ∼DS

Pn with Sym+(L) ∼= Dn × Z2.

Lemma 2.2 If L ∼DS Pn with m ̸= 0 full Dehn twists at each crossing
circle, i.e. D(Ci) = m for all i, then Sym(L) ∼= Sym+(L) ∼= Dn × Z2.

Proof. The addition of the same signed number of full Dehn twists to Pn will
preserve the rotational symmetry on the n-gon connecting the pi, γ, and β. So
we can use the n-gon of the pi to induce ⟨α′, γ⟩ where α′ is the rotation of 2π

n
about the central point of the n-gon. So Dn × Z2

∼= ⟨α′, γ⟩ ≤ Sym(L).
We now show that every element of Sym(L) is in ⟨α′, γ⟩. Let σ be a symmetry
of L then each Ci must be permuted to itself or another crossing circle by
Proposition 2.2. Without loss of generality, suppose that σ takes C1 to Cj . If
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σ preserves orientation of the knot circles in the projection plane then σ clearly
must be a either a rotation, β, or γ. We know that σ must preserve orientation
because a reflection would change the signs on the D(Ci). It is trivial to show

that |Sym(L)| = |Sym(Pn)|
2·2 = 16n

4 = 4n, and we have that |⟨α′, γ⟩| = 4n, so it
must be the full symmetry group.

Now we consider the second link L2 from Table 2.2. In this case, reflections
as a symmetry are broken along with rotational symmetries inherited from α
other than β, but γ remains a symmetry of (S3, L2). We would like to construct a
general link L ∼DS Pn that breaks the symmetries in the same way as described
for L2 so that Sym+(L) ∼= Z2 × Z2.

Lemma 2.3 If L ∼DS Pn and there is j ∈ {1, . . . , n} such that D(Cj) = k
and D(Ci) = m ̸= k for all i ̸= j, then Sym(L) ∼= Sym+(L) = Z2 × Z2.

Proof. Because symmetries of L must preserves |D(Ci)| and we are assuming
n ≥ 4, any symmetry of L must take Cj to itself. From the symmetries of Pn,
this leaves β, γ, and reflection across ρ1. Both β and γ are valid symmetries,
but the action of reflection across ρ1 results in L′ not homeomorphic to L since
reflection changes the sign of a Dehn twist. Therefore Sym+(L) ∼= Sym(L) ∼=
Z2 × Z2

By Lemma 2.1, we know that Sym+(L) will always have a subgroup iso-
morphic to Z2. In the case of the third link L3 from Table 2.2, we know there
are cases of L ∼DS Pn with Sym+(L3) ∼= Z2. The following lemma will give a
more general case of constructions that eliminate all symmetries but β though
it is by no means comprehensive of all such constructions.

Lemma 2.4 Suppose a1, a2, . . . , an ∈ N where ai ̸= aj for all i ̸= j. If
L ∼DS Pn where D(Ci) = ai for all i, then Sym(L) ∼= Sym+(L) ∼= Z2.

Proof. By Lemma 2.2, we know Z2 ≤ Sym(L). Suppose σ ∈ Sym(L). Then σ
preserves the absolute value of linking numbers between the knot circle compo-
nents, which are unique at each crossing circle by construction, therefore each
Ci must go to Ci. Reflections in the projection plane change the signs on the
D(Ci) and so cannot be a symmetry of L. Hence, the only nontrivial symmetry
remaining is β, the inner twist.

Now consider the fourth link from Table 2.2. In this case only some rotational
symmetry inherited from Pn is lost in such a way that we can induce those
symmetries along with γ by a triangle connecting p2, p4, and p6. Note that this
works precisely because 3|6. We proceed to construct a more general case of
this kind of symmetry group on L.
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2

Figure 8: This is the symmetry graph of 0, 1, 2 and Âut(G) ∼= E

Lemma 2.5 Suppose k|n with k ≥ 2, and L ∼DS Pn where for all
i ∈ {1, 2, . . . , n

k }, we have D(Cki) = m and D(Cj) = l ̸= m for all other
j where k ∤ j. Then Sym+(L) ∼= Dk × Z2.

Proof. Note that because symmetries preserve the absolute value of linking num-
ber, we know that any symmetry of L must take Ck to some Cki. Otherwise,
the proof for this follows the same logic as for Lemma 2.3 but we limit ourselves
to the k-gon constructed by connecting the pn

k i.

Consider the final link L5 from Table 2.2. This link clearly has a symmetry of
rotation 2π

3 about a central point as well as β. However, note that γ /∈ Sym(L5)
because the crossing numbers form the sequence 0, 1, 2, 0, 1, 2, 0, 1, 2 which is an
asymmetric sub-sequence 0, 1, 2 repeated thrice, so Sym+(L4) ∼= Z3 × Z2. We
would like to construct an even more general kind of asymmetry that will cover
all L ∼DS Pn with this particular kind of symmetry group where γ is not a
possible symmetry but L does have a non-trivial rotational symmetry about a
central point. This motivates the following definition.

Definition 2.1 Let a1, a2, . . . , am ∈ Z and consider the sequence a =
⟨a1, a2, . . . , am⟩. Let G be the cycle graph on m vertices (with V = p1, . . . , pm
and E = {(pi, pj) : |i − j| = 1 mod m}) where the vertices are decorated with
the values of the ai. We will call a symmetry-reducing if the automorphism
group of G preserving values of vertices is the trivial group. Moreover, we shall
refer to G as the symmetry graph of a and the automorphism group preserving
values at vertices as Âut(G).

Lemma 2.6 Suppose m|n, m ≥ 3, and let a = ⟨a1, . . . , am⟩ ∈ Zm such
that a is symmetry-reducing. Let L ∼DS Pn and D(Ci) = am if m|i.
Otherwise if m ∤ i then take k = i mod m and let D(Ci) = ak. Then
Sym+(L) ∼= Zm × Z2.

Proof. The proof here is similar to that of Lemma 2.5 but this particular con-
struction eliminates the γ-symmetry inherited from Pn.
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After compiling these particular generalized symmetry groups of L ∼DS Pn

from Lemmas 2.2-2.6, the natural question is: is this a complete list of symmetry
groups? The following theorem addresses this question.

Theorem 2.4 Let L ∼DS Pn then Sym+(L) is one of the following:

1. Z2

2. Z2 × Z2

3. Dn × Z4 if n odd

4. D2n × Z2 if n even

5. Dk × Z2 where k|n

6. Zk × Z2 where k|n and n
k ≥ 3

Proof. Suppose the orientation-preserving symmetry group of L is not (2) through
(6). By Lemmas 2.2-6, we know that L does not follow any of the constructions
from those lemmas. By Lemma 2.1, we know β ∈ Sym+(L) so there is at least
a subgroup of Sym+(L) that is isomorphic to Z2.
Let σ be a nontrivial orientation-preserving symmetry of L. The only orientation-
preserving symmetry of L that takes every Ci to Ci is β.
So suppose, for a contradiction and without loss of generality, σ takes C1 to Cj

for some j ̸= 1. Then because symmetries preserve the Dehn twists, we know
D(C1) = D(Cj). If gcd(j − 1, n) ̸= 1 then this induces a case from Lemmas
2.5-6. So gcd(j−1, n) = 1 but then by Proposition 2.1, we have the construction
from Lemma 2.2, a contradiction.

Now that we have fully classified the orientation-preserving symmetry groups
for L ∼DS Pn, it remains to determine the full symmetry groups. We can ad-
dress this problem simply because Lemmas 2.2-2.4 address the full symmetry
groups along with the orientation-preserving subgroup so that leaves adding re-
flections to the orientation-preserving symmetry groups for constructions from
Lemmas 2.5-6 and links that fall outside Lemmas 2.2-2.6, for which the sym-
metry group is isomorphic to Z2. So the corollary below naturally follows from
Theorem 2.4.
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Corollary 2.1 Let L ∼DS Pn then Sym(L) is one of the following:

1. Z2

2. Z2 × Z2
∼= Z2 ⋊ϕ Z2

3. Dn × Z4 if n odd

4. D2n × Z2 if n even

5. Dk × Z2 where k|n

6. (Dk × Z2)⋊ϕ Z2
∼= Dk × Z2 × Z2 where k|n

7. Zk × Z2 where k|n and n
k ≥ 3

8. (Zk × Z2)⋊ϕ Z2
∼= Zk × Z2 × Z2 where k|n and n

k ≥ 3

And so we have categorized all the symmetries of augmented links that are
FAL-equivalent to Pn.

3 Symmetries of the Crushtacean for FALs

Consider a chain link Pn and its crushtacean Yn with the edges connecting the
inner and outer n-gons of Yn painted. Note that Aut′(Yn) ∼= Dn × Z2 where
we take Aut′(G) to be the automorphism group of a painted graph G that pre-
serves painting. The generators of Aut′(Yn) are α′, β′, and γ′: where α′ is a
2π
n -rotation; β′, lifting the middle n-gon of Yn to the outside; and γ′, reflection
across the axis of symmetry in the plane. Based on our work from Theorem
2.2, we can construct an injection h : Aut′(Yn) → Sym+(Pn) where h(α

′) = α2,
h(β′) = β, and h(γ′) = γ. Therefore, we know in the case of chain links that
Aut′(Yn) ≤ Sym+(Pn). One naturally wonders if such a relationship can be
extended more generally to FALs, especially as it has been shown that Aut′(C)
injects to the symmetry group of the complement [3]. To answer this question,
we require several tools from graph theory and geometry.

Definition 3.1 A polytope is geometric object with flat faces.
Definition 3.2 A skeleton of a polytope is a graph whose vertices are the ver-
tices of the polytope with edges connecting vertices that are connected by an
edge in the polytope. For example, the skeleton of a pentagonal prism would
be Y5.

We will need to invoke a result from [2] about a particular property of
crushtaceans of FALs that then allows us to borrow a convenient theorem from
graph theory for our results. These two theorems are listed below.
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Theorem 3.1. [2] Crushtaceans of FALs are 3-connected.
Theorem 3.2 [6] For every tri-connected graph G, there exists a poly-
tope P in R3 such that G is the skeleton of P and P displays the sym-
metries of G.

Now we have the necessary tools to show a strong relation between Sym(L)
and Aut′(C).

Theorem 3.3. If L is a flat fully augmented link with painted crush-
tacean C then there exists an injection h : Aut′(C) → Sym+(L).

Proof. By Theorem 3.1, we know that C is triconnected and so we may construct
a polytope P that displays the symmetries of C using Theorem 2.2. Now if we
paint the edges of P so that it corresponds to the painting on C, we can then
use a method analogous to Purcell’s [An Intro to FALs] method to reconstruct
L on P by wrapping crossing circles around painted edges and the knot circles
are reconstructed on the surface of P by following the unpainted edges. (See
Figure 10 for an example construction). Therefore, each symmetry of P induces
a symmetry of L, and so any symmetry of C will induce one on L.

Corollary 3.1 If L is flat FAL with painted crushtacean C then
Aut′(C)⋊ Z2 ≤ Sym(L).

Figure 9: Example of a crushtacean and recovering the flat FAL corresponding
to it

Though this result is very interesting, we are restricted to flat FALs. How-
ever, we will extend this result to all FALs by invoking another of Twogood’s
theorems included below for reference.

Theorem 3.4 [2] Up to flype-equivalence, a signed, painted crushtacean
corresponds exactly to one FAL.

We will denote Aut′′(G) to be the subgroup of Aut(G) where elements pre-
serve painting and signing on painted edges. Then we can create a relationship
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Figure 10: Going clockwise: (1) Conversion of the crushtacean from Fig. 10 to
a painted polytope (2) Adding crossing circles to painted edges (3) Drawing in
knot circles from the unpainted edges

extending to all FALs that is a generalization of Theorem 2.3.

Corollary 3.1 If L is an FAL with signed painted crushtacean C then
there exists an injection h : Aut′′(C) → Sym(L).

Proof. The proof here is the exact same as for Theorem 2.3 but adding the
condition of signs on the painted edges to account for half-twists.

Based on our own results and previous work, we think that there are more
restrictive symmetry results to be found for FALs that invoke more sophisticated
methods from geometric topology on the complements of FALs. We list the
following conjecture that we believe is provable using such techniques.

Conjecture 3.1 Suppose L is a b-prime flat FAL with crushtacean C
and M = S3 \ L arithmetic. Then Sym+(L) ∼= Aut′(C).

For information on b-prime FALs, please consult [8].
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4 Conclusion and Future Directions

Based on our work in Section 2, we know that some symmetries of the comple-
ment are inherited by links FAL-equivalent to Pn. So for this specific class of
links, we know that not all subgroups H ≤ Sym(Pn) ∼= Sym(Mn) have some
L ∼DS Pn so that Sym(L) ∼= H. The natural question is whether or not this
extends past FAL-equivalent links for Pn. A natural next step in this research
would be to examine nested links, for which there is a natural way to use a
special painting on n-prism graphs to construct links with complements home-
omorphic to Mn. Classifying the symmetry groups of this additional class of
links would be a useful next step in determining a stronger and more useful
generalization of how the symmetry group of the complement limits that of the
link itself.
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[6] László Babai. “Automorphism groups, isomorphism, reconstruction (Chap-
ter 27 of the Handbook of Combinatorics)” (1994), p. 12.

[7] Matthew Zevenbergen. “Crushtaceans and Complements of Fully Aug-
mented and Nested Links” (pre-print).

[8] Morgan, Mork, Ransom, Spyropoulos, Ziegler, and Trapp. “Belted-sum De-
compositions of Fully Augmented Links” (pre-print).

17


