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Abstract

We give a combinatorial and geometric description for an infinite

class of cuboctahedral FALs that are distinct from other known classes.

Our construction is not possible on octahedral FALs, as shown by Pur-

cell., so it highlights the distinction between these two classes of arith-

metic FALs. We also utilize the work of Worrell, specifically the pre-

viously unclassified example presented in his work as a basis for this

classification.

1 Background

It has recently been proven by Hoffman and Worden that octahedral and

cuboctahedral FALs make up all arithmetic FALs. As it stands, octahedral

FALs have been fully classified by Purcell, but the same has yet to have

been completed for cuboctahedral FALs[2]. In his work, Worrell presents one

method for creating cuboctahedral FALs, however, this process does not con-

tain all valid cuboctahedral FALs. The FALs produced from this process

belong to a class referred to as the 1st Family [3]. We will present a new

construction that produces cuboctahedral FALs that strictly do not belong to

the 1st family.
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Figure 1: 4-Link Chain to it’s circle packing

1.1 Fully Augmented Links

We will begin by defining the basics of FALs and the associated graphs we

utilize in this paper.

Definition 1.1. (Fully Augmented Link) Given a link diagram, take any twist

region and place a crossing circle around the strands. Now, reduce the number

of twists contained in each crossing circle modulo 2. The resulting link is called

a fully augmented link (FAL).

We will consider the circle packing of a cuboctahedral FAL, specifically the

4-link chain. The circle packing, as seen in Figure 1, represents the right-angled

ideal polyhedra of the polyhedral decomposition of Purcell’s Proposition 2.2

[2]. We refer to the blue points of Figure 1 (right) as crossing circle points.

This circle packing is used to generate graphs that allow us to further study

FALs.

Definition 1.2. (Circle Packing) The circle packing of an FAL is an arrange-

ment of non-overlapping circles where shaded regions correspond to crossing

disks and unshaded regions correspond to the projection plane. From the circle

packing, we can generate two planar graphs.

Definition 1.3. (Crushtacean) The crushtacean of a fully augmented link is

the graph with vertices corresponding to shaded regions of the associated circle
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packing where two vertices are adjacent if the shaded regions are tangent to

each other. Every vertex in a crushtacean is 3-valent.

Definition 1.4. (Nerve) The nerve of a FAL is the dual graph of the crush-

tacean. Equivalently, the nerve has vertices corresponding to unshaded regions

of the circle packing with edges connecting vertices whose associated polygons

are tangent to each other. Every region on a nerve is a triangle.

1.2 Geometric Background

We now shift to a geometric view of Cuboctahedral FALs. There is a significant

amount of geometric background needed to fully understand the results of

this paper. Specifically, the knowledge of cuboctahedral FAL complements.

The complement of the FAL is where we see cuboctahedra and study their

properties to better understand the cuboctahedral FAL.

Definition 1.5. (Hyperbolic Plane) A plane in the upper half-space model is

either a hemisphere or a vertical half-plane.

(a) Regular Ideal Cuboctahedron (b) Regular Ideal 4-Antiprism

Figure 2: Hyperbolic Polyhedra

Definition 1.6. (Cuboctahedron) A cuboctahedron is a polyhedron with

6 square faces and 8 triangular faces. A cuboctahedron can be produced by

truncating the vertices of a cube to form the triangles.
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In hyperbolic space, we are able to study the unique regular ideal cuboc-

tahedron. Hereafter when we refer to a cuboctahedron, we are referring to the

regular ideal cuboctahedron.

Definition 1.7. (Regular Ideal Cuboctahedron) An ideal cuboctahedron is a

cuboctahedron whose vertices are all ideal. A regular ideal cuboctahedron

is an ideal cuboctahedron whose dihedral angles are all right angles (Figure

2a).

Definition 1.8. (Regular Ideal 4-Antiprism) A 4-Antiprism is a polyhedron

having two square faces in parallel planes, with eight alternating-facing tri-

angles connecting the square faces. A Regular Ideal 4-Antiprism is a

4-Antiprism whose vertices are all ideal and whose dihedral angles are all π
2

(Figure 2b).

Remark 1.9. Two 4-Antiprisms glue together along quadrilateral faces to

form a cuboctahedron. Conversely, a cuboctahedron can be sliced with a

plane to form two 4-Antiprisms. This can be seen in Figures 2a and 2b. In a

circle packing, the plane that slices a cuboctahedron into two 4-Antiprisms is

represented by the circle that intersects all crossing circle points, D, as seen

in Figure 3a. Notice that outside of D in Figure 3b, we have one quadrilateral

(the outermost circle), 4 shaded triangles, and 4 unshaded triangles. Including

D as the second quadrilateral, we obtain a 4-Antiprism. Similarly, the interior

of D seen in Figure 3c plus D gives the other 4-Antiprism.

Definition 1.10. (Multi-Polyhedral Points) A tangency point in a circle pack-

ing is Multi-Polyhedral if it is a point where two polyhedra meet (Figure 4a).

Remark 1.11. In Purcell’s work with octahedra, we only allow for gluing

along shaded faces. Note that conversely, we are working with cuboctahe-

dra thus allowing for more space, making the gluing of cuboctahedra along

unshaded faces possible.

Lemma 1.12. If two cuboctahedra A and B are glued along unshaded quadri-

lateral faces, then there exists a cuboctahedron made of half of A and half of

B.
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D

(a) The slicing of a
cuboctahedron

D

(b) The outer 4-
Antiprism from slicing

D

(c) The inner 4-antiprism
from slicing

Figure 3: Slicing a Cuboctahedron into 4-Antiprisms

a b

cd

(a) Multi-Polyhedral
Points

(b) Addition of one
Cuboctahedron in P+

(c) Cuboctahedron found
by ETGS

Figure 4

Proof. We begin with a cuboctahedron, A, and consider its circle packing, C.

Without loss of generality, consider the innermost circle, I, of C. By adding

an isometric copy of C to I, as in Figure 4b, we glue a new cuboctahedron,

B, to an unshaded face of A. Note that I is not present in the circle packing

after the gluing because the bottom face of A is now interior to the polyhedron

A ∪B.

We will now consider the plane that slices the cuboctahedra as in Remark

1.9. The plane through all crossing circle points in A produces one ideal quadri-

lateral, and the plane through all crossing circle points in B produces another.

Connecting a crossing circle point from B, its adjacent multi-polyhedral points,

and the cocircular crossing circle point from A, yields a plane. We can do this
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at each crossing circle point in B to obtain four more quadrilateral faces,

as well as 8 triangular faces as in Figure 4c. Thus, we have found an ideal

polyhedron, specifically a regular ideal cuboctahedron which we will name G,

contained in the polyhedron that comes from gluing two cuboctahedrons.

Notice that the quadrilaterals of G are shaded, and the triangles of G are

unshaded. Now consider the section of G that is contained in I. The bottom

quadrilateral of G, as well as the bottoms of the triangles of G, are contained

in I. Thus half of G is in B, leaving the other half of G in A.

1.3 The 1st Family

We will now introduce the family of cuboctahedral FALs introduced by Worrell

that decompose in the same manner as octahedral FALs as described by Purcell

[3] [2].

Figure 5: Vertex Hexagon Expansion

Definition 1.13. (Vertex Hexagon Expansion) To perform a vertex hexagon

expansion on the crushtacean of an FAL, begin by taking any vertex and

replace it with a hexagon. On every other vertex of the hexagon, draw an

edge meeting at the center of the polygon, there should be 3. On every vertex

that was skipped, draw an edge connecting to one of the vertices that was

adjacent to the original vertex, such that each vertex from the hexagon is

adjacent to a different vertex as describe in Figure 5.
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In his work, Worrell defines the central triangular subdivision as well as

proved that when performed on the nerve of a cuboctahedral FAL, it produces

cuboctahedral FALs belonging to the first family. For our purposes, we will

define the corresponding move for the crushtacean.

Definition 1.14. (1st Family Cubeoctahedral FALs) The 1st family of cuboc-

tahedral FALs is all cuboctahedral FALs obtained by performing some number

of vertex hexagon expansions on the simple cuboctahedral FAL.

2 A Combinatorial View of Cuboctahedra

Worrell presents a cuboctahedral FAL that cannot be created using the vertex

hexagon expansion. We introduce a construction that can be used to not

only get this example, but that can be used to create an infinite family of

cuboctahedral FALs that do not belong to the 1st Family.

Figure 6: Central Quadrilateral Subdivision

Definition 2.1. (Central Quadrilateral Subdivision) Take any quadrilateral

and insert a quadrilateral inside of it. At each vertex of the new quadrilateral

attach an edge extending outward. At the other end of the new edge, create

two edges branching off that connect on either side of a vertex of the original

quadrilateral (see Figure 6).

7



(a) Subpacking of circle with 4
points of tangency

(b) After central quadrilateral
subdivision on circle with 4 points
of tangency

Figure 7: Central Quadrilateral Subdivision performed on a circle packing

Remark 2.2. Performing the central quadrilateral subdivision on a quadri-

lateral in the crushtacean of a polyhedral FAL results in altering the circle

packing as described in Figure 7b.

Theorem 2.3. The central quadrilateral subdivision can be performed on the

crushtacean of any FAL containing a quadrilateral.

Proof. Let F be an FAL with associated crushtacean T and let C be the

circle packing corresponding to P+ of F . Then we know there exists some

subpacking containing a circle with four points of tangency. Pick one such

point of tangency, call it p, and send it to infinity. Then our subpacking will

look like Figure 8a. We can then glue two cubeoctahedrons along a shaded

edge to get Figure 8b. This introduces a problem though, as there are now four

shaded regions that are quadrilaterals, two in the center, and two along the

left and right vertical edge, which is not allowed for fundamental polyhedra.

We remedy this by placing a circle in the two interstices in the middle, and

by gluing half of a cubeoctahedra on either side of the packing as described

in Figure 8c. When we pull p back from infinity, we get the subpacking as

described in Figure 4 as desired.
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Corollary 2.4. The central quadrilateral subdivision can be performed indef-

initely.

Proof. In order to perform the central quadrilateral subdivision we must have a

FAL that contains a quadrilateral. Since the central quadrilateral subdivision

always introduces 5 new quadrilaterals, as long as no other procedure has been

introduced, the central quadrilateral subdivision can always be performed.

(a) Subpacking with a
point at infinity

(b) Gluing another
copy of the subpacking
along a shaded region

(c) Subpacking after glu-
ing four circles to the
quad-interstices

Figure 8: Central Quadrilateral Subdivision performed on an FAL

3 A Geometric View of Cuboctahedra

We now shift towards a geometric view of cuboctahedral FALs with the goal

of understanding the way in which cuboctahedra are glued through Central

Quadrilateral Subdivision.

Lemma 3.1. If two cuboctahedra, A and B, are glued along an unshaded face

U , then the resulting shaded quadrilateral is a square.

Proof. Consider two cuboctahedra, A and B, glued along an unshaded quadri-

lateral U . By Lemma 1.12, there exists a cuboctahedron G made of half of A

and half of B. Thus G is made of two regular ideal 4-Antiprisms, resulting in
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(a) Addition of a 4-antiprism
(b) The 4-antiprism after rescal-
ing

Figure 9

a regular ideal cuboctahedron. Thus the shaded quadrilateral faces of G are

squares.

Lemma 3.2. A circle added to a shaded square interstice whose edges are

those of distinct quadrilaterals produces a regular ideal 4-antiprism.

Proof. Consider a square interstice, where each edge is that of a distinct

quadrilateral. Adding a circle that is mutually tangent to the edges of the

existing quadrilateral interstice yields four new points of tangency, thus pro-

ducing a new unshaded quadrilateral. Connecting consecutive points of tan-

gency yields eight triangles, with 4 being shaded and 4 unshaded, resulting

in a 4-Antiprism as seen in Figures 9a and 9b. The angles between shaded

triangles and the unshaded quadrilateral are always π
2
, and the angles between

unshaded triangles and the shaded quadrilateral are π
2
by Lemma 3.1. Thus

the resulting 4-Antiprism is a regular ideal 4-Antiprism.

Lemma 3.3. Central Quadrilateral Subdivision produces six new cuboctahe-

dra.

Proof. We begin by considering the circle packing of P+, C. Without loss of

generality, consider the innermost circle of C, I. By reflecting C across the
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Figure 10: Circle packing after Central Quadrilateral Subdivision

plane bounded by I, we obtain a new cuboctahedron, N , that is glued to an

unshaded quadrilateral face of P+.

I is no longer present because this face is interior to the polyhedron P+∪N .

Accounting for the reflection in P−, we have a current total of 2 additional

cuboctahedra as seen in Figure 4b.

Now consider an interstice between P+ and N in our circle packing. Note

that this is a shaded square whose edges are those of distinct quadrilaterals.

By Lemma 3.2, adding a circle to this interstice results in a regular ideal 4-

antiprism, connecting to its reflection in P− to form a cuboctahedron with the

familiar shading. Repeating this process in each quadrilateral interstice yields

four new cuboctahedra.

The circle packing obtained from these processes is that of the Central

Quadrilateral Subdivision as seen in Figure 10, thus the Central Quadrilateral

Subdivision results in six new cuboctahedra.

Note in the above proof that a cuboctahedron produced by the gluing of

two 4-antiprisms, one in P+ and one in P−, is a cuboctahedron glued to a

shaded quadrilateral face. This is the shaded face of the cuboctahedron no-

ticed by the gluing of two existing cuboctahedra, as in Lemma 1.12. Adding

a cuboctahedron to each shaded quadrilateral face will return the entire poly-

hedron to its proper shading.
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4 A New Class of Cuboctahedral FALs

By our combinatorial and geometric analysis of cuboctahedral FALs, we’ve

found a family of cuboctahedral FALs different from Worrell’s 1st Family.

Theorem 4.1. Performing the central quadrilateral subdivision on the crush-

tacean of a cuboctahedron with a quadrilateral unshaded face part of a 4-

antiprism produces a cuboctahedral FAL.

Proof. Let F be a cuboctahedral FAL where the associated circle packing C of

P+ of F contains a circle with 4 points of tangency. By Theorem 2.3, we know

that if F contains a quadrilateral, we can perform the central quadrilateral

subdivision on it. Further, by Lemma 3.4, we know this process adds exactly 6

new cuboctahedra to F . Then since F initially decomposed into cuboctahedra,

F will still be cuboctahedral.

Remark 4.2. Part of the central quadrilateral subdivision requires two cuboc-

tahedra to be glued together along unshaded edges. This process is distinct of

octahedral FALs, as Purcell rules out the possibility of a similar gluing pattern

in her work [2].

We claim that the central quadrilateral subdivision produces an infinite

family of cuboctahedral FALs that are distinct from the 1st Family. Before

we prove this, we will prove a short lemma related to the crushtacean of any

FAL belonging to the 1st Family.

Lemma 4.3. The crushtacean belonging to any FAL in the 1st Family must

contain the vertex hexagon expansion subgraph.

Proof. Let F be an FAL belonging to the first family, that is not the simple

cuboctahedral FAL. The only way to get an FAL belonging to the first family is

by performing some number of vertex hexagon expansions on the crushtacean

of the simple cubeoctahedral FAL. Then it must be the case that the last move

performed to get F must have been a vertex hexagon expansion. This process

replaces a vertex with the hexagon subgraph, meaning F contains the hexagon

expansion subgraph. If F is the simple cuboctahedral FAL, then the whole
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graph is exactly the hexagon expansion with the 3 outer edges meeting at the

same vertex.

Theorem 4.4. The central quadrilateral subdivision does not produce members

of the first family.

Proof. By Lemma 2.5, in order to be 1st Family, you must contain the hexagon

expansion subfigure as part of your graph. The crushtacean of the simple

cuboctahedron does contain the hexagon subfigure, however, by performing

the central quadrilateral subdivision on any quadrilateral, it is now the case

that every quadrilateral in the new crushtacean is adjacent to a hexagon. In

order to contain the hexagon expansion subfigure, we must have 3 adjacent

quadrilaterals, which is not possible in the current crushtacean. Further, while

any additional iterations add 5 quadrilaterals to the crushtacean, none of the

five are adjacent to each other. Additionally, the central quadrilateral subdivi-

sion must be performed on an existing quadrilateral in the crushtacean. Since

no quadrilateral is adjacent to any existing quadrilateral, the new quadrilater-

als added by the central quadrilateral subdivision will not be adjacent to any

other quadrilaterals, for any number of iterations of the central quadrilateral

subdivision. Therefore, it is not possible for the central quadrilateral subdi-

vision to generate a member of the first family, as the resulting crushtacean

does not contain the hexagon expansion subfigure.

5 Further Questions

• Are the two moves outlined in this paper the only way to create cuboc-

tahedral FALs?

The cuboctahedral FALs belonging to the 1st Family classify all FALs

that decompose into cuboctahedra such that no cuboctahedron is split

between P+ and P−. We know the cuboctahedra formed by the cen-

tral quadrilateral subdivision can be decomposed in such a way that

cuboctahedra are split between P+ and P−, however, it’s unclear if this
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is the only move capable of creating cuboctahedra that split across the

reflection plane.

Additionally, preliminary results suggest that combining the vertex hexagon

expansion with the central quadrilateral subdivision also creates cuboc-

tahedral FALs.

• Is there a way to glue unshaded regions together for octahedra?

In both Worrell and Purcell’s papers, the move of gluing octahedral and

cuboctahedral FALs to each other along unshaded regions is deemed to

be impossible, as it affects the shading pattern, in the case of cuboctahe-

dra, we end up with shaded quadrilaterals, which are not possible in P+/−

by Purcell 2.2. In the cuboctahedral case, we were able to correct this

by adding circles to each quad-interstice. Is there a corresponding move

then that would allow the gluing of unshaded regions in the octahedral

case? Preliminary results were unsuccessful in finding a corresponding

move for cuboctahedra.

• What do all of the embedded totally geodesic surfaces look like in a

cuboctahedral FAL that comes from Central Quadrilateral Subdivision?

We saw in Lemma (?) that an embedded totally geodesic surface can

be realized by the gluing of two regular ideal cuboctahedra. This helped

us understand how and where the cuboctahedra were glued that came

from the gluing of an unshaded circle to a shaded quadrilateral inter-

stice. Thus, it would be interesting to know what the embedded totally

geodesic surfaces looked like after central quadrilateral subdivision to

gain new information.

• What happens if we belt-sum FALs from the two different families?
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