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Abstract

Looking at the dependence relationship between algebraic curvature tensors gives us an idea of how we can
define an algebraic curvature tensor in terms of a linear combination of others. Given that ϕ is symmetric and
ψi skew-symmetric, knowing when {Rϕ, Rψ1 , . . . , Rψn} is linearly dependent is just one way of looking at this
problem. In this study, we attempt to narrow down the problem by find some cases of when {Rϕ, Rψ1 , . . . , Rψn}
is linearly independent. We will show {Rϕ, Rψ1} and {Rϕ, Rψ1 , Rψ2} are both linearly independent.

1 Introduction

Let V be a vector space with dimension n and let x, y, z, w ∈ V . Let V ∗ be the dual vector space. An algebraic
curvature tensor R ∈ ⊗4(V ∗) satisfies the following properties:

R(x, y, z, w) = R(z, w, x, y) = −R(y, x, z, w), and
R(x, y, z, w) +R(y, z, x, w) +R(z, x, y, w) = 0.

(1)

The second is referred to as the Bianchi Identity. Let A(V ) be the vector space of all algebraic curvature tensors
on V .

Let ϕ and ψ be bilinear forms on V . We define ϕ to be symmetric if ϕ(u, v) = ϕ(v, u) for all u, v ∈ V . We define
ψ to be skew-symmetric if ψ(u, v) = −ψ(v, u) for all u, v ∈ V . We define ϕ to be positive definite if ϕ(v, v) > 0 and
is negative definite if ϕ(v, v) < 0 for all v ∈ V . If ϕ(v, v) > 0 for all v ∈ V , then v is called spacelike. If ϕ(v, v) < 0
for all v ∈ V , then v is called timelike.

Let S2(V ∗) and Λ2(V ∗) be the spaces of symmetric and skew-symmetric bilinear forms on V . If ϕ ∈ S2(V ∗)
and if ψ ∈ Λ2(V ∗), then we define

Rϕ(x, y, z, w) = ϕ(x,w)ϕ(y, z)− ϕ(x, z)ϕ(y, w)
Rψ(x, y, z, w) = ψ(x,w)ψ(y, z)− ψ(x, z)ψ(y, w)− 2ψ(x, y)ψ(z, w).

(2)

Note that Rϕ, Rψ ∈ A(V ). In fact, [7]

spanψ∈Λ2(V ∗){Rψ} = spanϕ∈S2(V ∗){Rϕ} = A(V ).

If ϕ is positive definite and {e1, . . . , en} is an orthonormal basis with respect to ϕ, then there exists a unique
Θ : V → V so that θ(x, y) = ϕ(Θx, y). Let A∗ be the adjoint of A with respect to ϕ, characterized by the equation
ϕ(Ax, y) = ϕ(x,A∗y). If A∗ = A, then we deine A to be self-adjoint. If A∗ = −A, then we define A to be
skew-adjoint.

Claim 1. If θ ∈ S2(V ∗), then Θ is self-adjoint. If θ ∈ Λ2(V ∗), then Θ is skew-adjoint.

Proof. If θ ∈ S2(V ∗), then

ϕ(Θx, y) = θ(x, y) = θ(y, x) = ϕ(Θy, x) = ϕ(x,Θy)

Since we know that ϕ(Ax, y) = ϕ(x,A∗y), then Θ∗ = Θ.

If θ ∈ Λ2(V ∗), then

ϕ(Θx, y) = θ(x, y) = −θ(y, x) = −ϕ(Θy, x) = ϕ((−Θ)y, x) = ϕ(x, (−Θ)y)

Since we know that ϕ(Ax, y) = ϕ(x,A∗y), then Θ∗ = −Θ.
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The form Θ can be represented by n × n matrix. If ϕ is positive definite and {e1, . . . , en} is an orthonormal
basis with respect to ϕ, then Θij = θ(ej , ei) and [Θ∗] = [Θ]T , [4].

Furthermore, pending the same hypotheses, if θ ∈ S2(V ∗), then [Θ] = [Θ]T and if θ ∈ Λ2(V ∗) then, −[Θ] = [Θ]T .
So if θ ∈ S2(V ∗), then its matrix representation with respect to an orthonormal basis for ϕ is also symmetric and
if θ ∈ Λ2(V ∗), then its matrix representation with respect to an orthonormal basis for ϕ is also skew-symmetric.

As we look at the relationship between Rϕ, Rψ, and Rτ , we will assume that ϕ is symmetric and positive definite,
and that ψ and τ are skew-symmetric.

Claim 2. If A ∈ ⊗2(V ∗), then αRA = ±R√|α|A.

Proof. Suppose A ∈ S2(V ∗).

αRA(x, y, z, w) = (±
√
|α|)2[A(x,w)A(y, z)−A(x, z)A(y, w)]

= (±
√
|α|)2A(x,w)A(y, z)− (±

√
|α|)2A(x, z)A(y, w)

= ±[A(
√
|α|x,w)A(

√
|α|y, z)−A(

√
|α|x, z)A(

√
|α|y, w)]

= ±R√|α|A

A similar proof will show the same for αRA = ±R√|α|A for A ∈ Λ2(V ∗).

Using this claim, we see that αRA can be written as ±RB , where B =
√
|α|A. So, our perspective on the

problem shifts from studying what happens with
∑k
i=1 αiRAi

= 0 to
∑k
i=1 εiRBi

= 0, where εi = ±1. When
studying the dependence relationship in a set of two canonical algebraic curvature tensors and when αi 6= 0, we
can, then, refocus the study on the equation RB1 ±RB2 = 0. Similarly, when studying the dependence relationship
in a set of three algebraic curvature tensors and when αi 6= 0, we can study the equation RB1

+ εRB2
+ δRB2

= 0,
where ε, δ = ±1. We will focus most of our energy on studying the equation Rϕ + εRψ = δRτ .

To help us study cases where Rφ = 0, we provide the following definitions:

Definition 1. ker(Φ) := {v ∈ V | Φ(v, w) = 0 ∀ w ∈ V }.

Definition 2. ker(RΦ) := {v ∈ V | RΦ(v, x, y, z) = 0 ∀ x, y, z ∈ V }.

It is also important to note that if ϕ ∈ S2(V ∗) and ϕ is non-degenerate or positive definite, then ker(ϕ) = {0}.
In addition to the given definitions, we will use the following result in [7] to give us the desired result for the proof
in Theorem 4.2.

Lemma 1.1 (Gilkey, [7]). If Φ ∈ S2(V ∗) or Φ ∈ Λ2(V ∗) and Rank{Φ} ≥ 2, then ker(RΦ) = ker(Φ).

2 Motivation

To help understand the applications of this particular study for other areas in the realm of algebraic curvature
tensors, we provide the following definitions:

Definition 3. η(R) = inf{k | R =

k∑
i=1

αiRψi
where ψi ∈ Λ2(V ∗) and αi ∈ R}.

Definition 4. η(n) = sup{η(R) | R ∈ A(V )}.

Studying the results of linear dependence relationships of {Rϕ, Rψ, Rτ} allows us to narrow down the problem
of finding an upper bound for η(n). Specifically, we explore how many ψi’s are needed, when given Rϕ, so that

Rϕ =
∑η(ϕ)
i=1 εiRψi

, where εi = ±1. We can conclude by the end of this paper that η(ϕ) = 2 is definitely not the
upper bound over all such ϕ, in particular, those which are positive definite.
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3 Previously Known Results

Before tackling the issue of whether or not {Rϕ, Rψ, Rτ} is linearly independent, we look at smaller cases involving
the dependence relationship between Rϕ and Rψ. Utilizing Theorem 3.1 will help us specifically in studying
Rϕ = −Rψ as seen in Lemma 4.1.

Theorem 3.1. Given ϕ ∈ S2(V ∗), there exists a basis for V , {e−1 , . . . , e−p , e
+
1 , . . . , e

+
q , n1, . . . , ns}, so that

1. ϕ(e±i , e
±
j ) = ±δij,

2. ϕ(e+
i , e
−
j ) = 0, and

3. ϕ(ni, x) = 0 for any x ∈ V .

As we progress into studying {Rϕ, Rψ} in Theorem 4.2, we look more closely at rank conditions. This requires
us to use the following lemma. Theorem 3.3 will also give us the desired results for Theorem 4.2.

Lemma 3.2. (Gantmakher[5]). If ψ ∈ Λ2(V ∗), then Rank(ψ) must be even.

Theorem 3.3. (Treadway[8]). If ψ ∈ Λ2(V ∗), Rank(ψ) ≥ 4, then there does not exist ϕ ∈ S2(V ∗) so that Rϕ = Rψ.

Studying the final set of three algebraic curvature tensors calls for assistance in certain areas. The following
results will guide us through the proof for Theorem 4.3. As we study what happens when Rϕ + εRψ = δRτ , it is
also important to address the case where Rψ = ±Rτ .

Lemma 3.4. (Gilkey[7]).

1. Let Φi ∈ S2(V ∗). If Rank(Φ1) ≥ 3 and if RΦ1 = RΦ2 , then Φ1 = ±Φ2.

2. Let Φi ∈ Λ2(V ∗). If RΦ1
= RΦ2

, then Φ1 = ±Φ2.

Theorem 3.5 (Treadway [8]). If ψ ∈ Λ2(V ∗) and Rank(ψ) = 2k ≥ 4, then there does not exist τ ∈ Λ2(V ∗) such
that Rψ +Rτ = 0.

4 Results

Lemma 4.1. If ψ ∈ Λ2(V ∗), Rank(ψ) ≥ 4, there does not exists ϕ ∈ S2(V ∗) so that Rϕ = −Rψ.

Proof. For the sake of contradiction, suppose that there exists ϕ ∈ S2(V ∗) so that Rϕ = −Rψ.
The proposed solution ϕ may be negative definite with signature (p, 0), positive definite with signature (0, q), or

signature (p, q) where p, q 6= 0. There, then, exists an orthonormal basis {e−1 , . . . , e−p , e
+
1 , . . . , e

+
q , n1, . . . , ns} with

respect to ϕ by Lemma 3.1. Since it is implied that Rank(ϕ) ≥ 4, there exists at least two spacelike vectors {e+
1 , e

+
2 }

or at least two timelike vectors {e−1 , e
−
2 }. In the case that ϕ has at least two spacelike vectors, consider {e+

1 , e
+
2 }.

Since {e+
1 , e

+
2 } are orthonormal, we get

Rϕ(e+
1 , e

+
2 , e

+
2 , e

+
1 ) = ϕ(e+

1 , e
+
1 )ϕ(e+

2 , e
+
2 )− ϕ(e+

1 , e
+
2 )ϕ(e+

2 , e
+
1 )

= 1 · 1− 0
= 1

And,

−Rψ(e+
1 , e

+
2 , e

+
2 , e

+
1 ) = −[ψ(e+

1 , e
+
1 )ψ(e+

2 , e
+
2 )− ψ(e+

1 , e
+
2 )ψ(e+

2 , e
+
1 )− 2ψ(e+

1 , e
+
2 )ψ(e+

2 , e
+
1 )]

= −[0 + 3ψ(e+
1 , e

+
2 )2]

= −3ψ(e+
1 , e

+
2 )2

Which is to say
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1 = Rϕ(e+
1 , e

+
2 , e

+
2 , e

+
1 ) = −Rψ(e+

1 , e
+
2 , e

+
2 , e

+
1 ) = −3ψ(e+

1 , e
+
2 )2

This implies that −1

3
≥ 0. We arrive at a contradiction. We arrive at a similar result when we study the case

where ϕ has at least two timelike vectors and we consider {e−1 , e
−
2 } being orthonormal.

Using Lemma 4.1 will help us with our penultimate result, Theorem 4.2 as we study the relationship between
Rϕ and Rψ as we near the final result.

Theorem 4.2. If ψ ∈ Λ2(V ∗), Rank(ψ) ≥ 4, and ϕ ∈ S2(V ∗) be a positive definite inner product, then {Rϕ, Rψ}
is linearly independent.

Proof. Case 1a: Suppose Rϕ = 0. If Rϕ = 0 then ker(Rϕ) is equal to the whole vector space which, according to
Lemma 1.1, must also equal ker(ϕ). However, ϕ is a positive definite inner product and has full rank, which is to
say that ker(ϕ) = 0. This provides a contradiction.

Case 1b: Suppose Rψ = 0. We know from Lemma 1.1 that ker(Rψ) = ker(ψ) if Rank(ψ) ≥ 2. Then if Rψ = 0,
ker(Rψ) must be all of the vector space. However, if that is true then Rank(ψ) � 2. Therefore Rank(ψ) ≤ 1. Since
ψ ∈ Λ2(V ∗) and the rank of ψ must be even according to Theorem 3.2, then Rank(ψ) = 0. However, as one of the
conditions in the theorem, Rank(ψ) ≥ 4. This provides a contradiction.

Case 2: Suppose Rϕ = ±Rψ. According to Theorem 3.3, however, there does not exist ψ ∈ Λ2(V ∗) so that
Rϕ = Rψ. Also according to Lemma 4.1, there does not exist ψ ∈ Λ2(V ∗) so that Rϕ = −Rψ. We arrive at a
contradiction.

We now reach the culmination of all our work. Using the previous results attained with Lemma 4.1 and Theorem
4.2, we can now satisfy our curiosity as to what happens with {Rϕ, Rψ, Rτ}.

Theorem 4.3. Let ϕ ∈ S2(V ∗) be a positive definite inner product. Let ψ, τ ∈ Λ2(V ∗), Rank(ψ) ≥ 4, Rank(τ) ≥ 4,
and ψ 6= λτ for any λ ∈ R. Then {Rϕ, Rψ, Rτ} is linearly independent.

Proof. Theorem 4.2 illustrates that Rϕ = 0, Rψ = 0, Rτ = 0, and Rϕ = ±Rψ all provide contradictions. We are
left only to deal with two more cases:

(1) Rψ = ±Rτ
(2) Rϕ + εRψ = δRτ

Case 1: Suppose Rψ = ±Rτ . Lemma 3.5 has shown that if Rank(τ) ≥ 4 then there does not exist τ so that

Rψ = −Rτ . Theorem 3.4 has also shown that if Rψ = Rτ then ψ = ±τ , which is to say that ψ̃ = λτ̃ since we have
used the property that αRϕ = R√|α|ϕ for some α ∈ R to change from aRψ̃ = bRτ̃ to Rψ = ±Rτ . However, we

assumed that ψ 6= λτ , which provides a contradiction.

Case 2: Suppose Rϕ = εRψ + δRτ and also suppose s, t, p, q are distinct indices so that when we compute
Rϕ(es, et, et, es) + εRψ(es, et, et, es) = δRτ (es, et, et, es) we are given this result

τ2
ts =

1 + 3εψ2
ts

3δ
. (3)

And when we compute Rϕ(es, et, ep, es) + εRψ(es, et, ep, es) = δRτ (es, et, ep, es) we are given this result

εψtsψsp = δτtsτsp. (4)

Square both sides of Equation (2) and plug in τ2
ts =

1 + 3εψ2
ts

3δ
and τ2

sp =
1 + 3εψ2

sp

3δ
to achieve this equation

ψ2
ts + ψ2

sp = − ε
3
. (5)
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Doing the same process using {es, et, eq, es} and {es, ep, eq, es} will yield, respectively

ψ2
ts + ψ2

sq = − ε
3

(6)

and
ψ2
sp + ψ2

sq = − ε
3

(7)

It becomes evident that ψ2
sp = ψ2

sq from Equations (3) and (4). Using this result for Equation (5), we can see

that ψ2
sp = − ε

6
. This is to say that every non-diagonal entry in ψ is nonzero.

Replacing t with q in Equation (2) and multiplying both sides by τts, we get

εψspψsqτts = δτspτsqτts. (8)

Plug in δτsqτts = εψtsψsq to get
ψsq[ψspτts − τspψts] = 0. (9)

We know that ψsq 6= 0 so then

τts =
τspψts
ψsp

. (10)

Plug in Equation (8) into Equation (2) to get

τ2
sp =

εψ2
sp

δ
. (11)

However, we know that τ2
sp =

1 + 3εψ2
sp

3δ
, which is to say that 1 + 3εψ2

sp = 3εψ2
sp. Therefore we have a

contradiction.

5 Open Questions

1. Is {Rϕ, Rψ, Rτ} still linearly independent when Rank(ψi) ≥ 2?

2. Is {Rϕ, Rψ1
, Rψ2

, Rψ3
}, where ϕ is a symmetric bilinear form and ψi are skew-symmetric bilinear forms,

linearly dependent?

3. When is it the case that {Rϕ, Rψ1
, Rψ2

, . . . , Rψn
} is linearly dependent and ψi’s form a Clifford family?
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