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Abstract

The purpose of this paper is to examine structure groups of algebraic curvature tensors in dimension
three. In dimension two, the structure group of algebraic curvature tensors is known to always be SL±

2 .
In dimension three, there is more than one non-zero algebraic curvature tensor, up to multiple, which
complicates the task. The two main goals used in this paper were, first, to consider an invertible 3×3 matrix
A, one of each Jordan Normal form, and find the subspace of algebraic curvature tensors preserved by A. In
particular, in the cases where the subspace of curvature tensors preserved by a given matrix was of dimension
one, the algebraic curvature tensor that spans that subspace is found. This is to see, given an element A, is
it in the structure group of some algebraic curvature tensor.The second goal is to classify the Lie algebras of
the three non-trivial cases of Lie algebras of the structure groups of algebraic curvature tensors in dimension
three which are known. The idea is to categorize these Lie algebras and then given a Lie group, it is possible
to see if it is a structure group of some algebraic curvature tensor based on certain properties of its Lie
algebra. The general question is: given a subgroup H of GLn, does there exist an algebraic curvature tensor
R such that its structure group is H?

1 Introduction

The structure group of an algebraic curvature tensor is the group of matrices that fix the tensor, in other
words, its group of symmetries. The general problem is to explain the relationship between an algebraic
curvature tensor R and its structure group. In particular, given a subgroup of GLn, does there exist an
algebraic curvature tensor R for which that subgroup is a structure group of R? Kaylor showed [6] that the
structure group of an algebraic curvature tensor on a vector space of dimension two is SL±

2 , which is the
group of endomorphisms of V with determinant plus or minus one. The case with the algebraic curvature
tensor in three dimensions is more complicated because, in the previous case, there was only one algebraic
curvature tensor entry up to the symmetries given in Definition 1, and this time, there are six. In order
to examine this question in dimension three, Kaylor posed the opposite question and developed a method
to consider a single matrix A in a subgroup of GLn, the group of invertible n × n matrices, and ask if
there is an algebraic curvature tensor such that R is preserved by A. The matrices considered were the
various Jordan Normal forms for 3 × 3 matrices because every matrix is conjugate to a unique matrix in
Jordan Normal form (up to rearrangements of Jordan Blocks) [3]. This method finds the dimension of the
subspace of algebraic curvature tensors preserved by A. The second method used to examine this question
was to study a classification of Lie algebras in order to see, given a Lie group, if it is the structure group
of an algebraic curvature tensor. Obeidin showed [8] that all of the nontrivial structure groups of algebraic
curvature tensors in three dimensions fall into one of three cases: Lie group dimension three, four, or six.
Classifying these Lie algebras can make it possible to see, given a Lie group, if it is a structure group of some
algebraic curvature tensor.

2 Preliminaries

The following includes definitions and motivating examples for the method and results in this paper.
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2.1 Algebraic Curvature Tensors

Definition 1. Let V be a vector space and R : V × V × V × V → R be linear in each slot. R is an

algebraic curvature tensor if the following properties hold ∀x, y, z, w ∈ V :

1. R(x, y, z, w) = −R(y, x, z, w),

2. R(x, y, z, w) = R(z, w, x, y),

3. R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0.

The vector space of algebraic curvature tensors is denoted A(V ).

Claim 1. R(x, x, y, z) = 0.

Proof. R(x, x, y, z) must satisfy the first property in definition 1, so that R(x, x, y, z) = −R(x, x, y, z) but
R(x, x, y, z) = −R(x, x, y, z) =⇒ 2R(x, x, y, z) = 0, so R(x, x, y, z) = 0.

Definition 2. Let x, y, z, w ∈ V and let ϕ be symmetric (ϕ(x, y) = ϕ(y, x)) and bilinear.

The canonical algebraic curvature tensor, Rϕ is defined as

Rϕ(x, y, z, w) = ϕ(x,w)ϕ(y, z)− ϕ(x, z)ϕ(y, w).

It is not difficult to check, using the properties in Definition 1, that Rϕ is in fact an algebraic curvature
tensor. [3]

2.2 Structure Groups

The following includes a definition of the structure group of an algebraic curvature tensor, two simple ex-
amples of structure groups to illustrate, and a proof of the fact that the structure group is in fact a group.

R(Ax,Ay,Az,Aw) is the algebraic curvature tensor R(x, y, z, w) precomposed with A, and is denoted
A∗R(x, y, z, w).

Definition 3. Given R ∈ A(v), the structure group of R is {A ∈ GL(V )|R(x, y, z, w) = R(Ax,Ay,Az,Aw)}
and is denoted GR.

Below are two examples of structure groups of algebraic curvature tensors:

Example 1. When R is the zero tensor, the structure group GR is GLn(V ).
This is true because If R(x, y, z, w) = 0 then A can be any matrix in GLn(V ) and 0 = R = A∗R = 0 will

always hold.

Lemma 1. [6] Let V be of dimension two, A ∈ GL2(V ), and R ∈ A(V ), then A∗R = (detA)2R.

Proof. R(e1, e2, e2, e1) this is the only nonzero entry of R in dimension two up to the symmetries listed in

Definition 1. Let A =

�
a b
c d

�
so that detA = ad− bc. Then Ae1 = ae1 + be2 and Ae2 = ce1 + de2 and so

A∗R(e1, e2, e2, e1) = R(Ae1, Ae2, Ae2, Ae1)
= R(ae1 + be2, ce1 + de2, ce1 + de2, ae1 + be2)
= R(ae1, de2, ce1, be2) +R(ae1, de2, de2, ae1) +R(be2, ce1, de2, ae1) +R(be2, ce1, ce1, be2)
= abcdR(e1, e2, e1, e2) + a2d2R(e1, e2, e2, e1) + abcdR(e2, e1, e2, e1) + b2c2R(e2, e1, e1, e2)
= (ad− bc)2R(e1, e2, e2, e1).

Example 2. If V is of dimension two, 0 �= R ∈ A(V ), and A ∈ GR, then by the previous lemma A∗R =
(detA)2R ⇔ detA = ±1 and this group (the structure group of this R) is called SL2(V )±.
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Claim 2. The structure group GR is in fact a group:

Proof. Let A,B ∈ GR, then closure, associativity, identity, and inverses are checked, in that order:

1. (AB)∗R(x, y, z, w) = R(ABx,ABy,ABz,ABw) = A∗R(Bx,By,Bz,Bw)
= A∗(B∗R(x, y, z, w))
= A∗R(x, y, z, w) since B is in the structure group of R
= R(x, y, z, w) since A is in the structure group of R
Thus, AB ∈ GR.

2. Since the operation being considered is composition of functions, this set is known to be associative.

3. The structure group contains the identity element because I∗R(x, y, z, w) = R(x, y, z, w) since Ix = x,
Iy = y, Iz = z, and Iw = w.

4. By assumption, if an element A is in the structure group of R, then A−1 exists. Since A is in the
structure group A∗R(A−1x,A−1y,A−1z,A−1w) = R(A−1x,A−1y,A−1z,A−1w), but this implies that
R(x, y, z, w) = (A−1)∗R(x, y, z, w) thus A−1 ∈ GR.

2.3 Jordan Normal Form

Since part of what is done to examine the relationship between algebraic curvature tensors and their structure
groups is to look at what dimension the subspaces of algebraic curvature tensors are preserved by matrices
A, one of each Jordan Normal form, the following includes a definition of Jordan Normal forms, the theorem
that motivated this method (the fact that every matrix is conjugate to a matrix in Jordan Normal form),
and a list of the four Jordan Normal forms examined in dimension three.

Definition 4. A real Jordan Block of size k is the k × k matrix composed of eigenvalues λ ∈ R, denoted
J(k, λ), is defined as

J(k, λ)=





λ 1 0 ... 0 0
0 λ 1 ... 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 ... λ 1
0 0 0 ... 0 λ




.

A Jordan Block of size k corresponding to the complex conjugate eigenvalues a± bi is the 2k× 2k matrix

denoted J(k, a, b), is defined as

J(k, a, b)=





A I 0 ... 0 0
0 A I ... 0 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 0 0 ... A I
0 0 0 ... 0 A




, where A =

�
a b
−b a

�
, b > 0, and I =

�
1 0
0 1

�
.

Suppose Ai are square matrices i = 1...n, define
�n

i=1 Ai=





A1 0 0 0
0 A2 0 0

0 0
. . . 0

0 0 0 An





Matrices in which the Ai are Jordan Blocks are called Jordan Matrices; these matrices are said to be in
Jordan Normal Form.
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Theorem 1. [3] For all A : V → V , there exists a unique Jordan Normal Form of A up to rearrangement

of blocks. In other words, every matrix is conjugate to a unique matrix in Jordan Normal Form.

In examining the question of structure groups of algebraic curvature tensors on a vector space of di-
mension three, it is useful to look at one matrix for every possible Jordan Normal Form for matrices of
dimension three (there are four, listed below), because every 3× 3 matrix is conjugate to one of these forms,
so considering each form gives information about all possible structure groups containing a given element.

It is easy to check that the Jordan Normal Forms for three dimensional matrices with real entries are as
follows:
1. J(3, λ),
2. J(2, λ)⊕ J(1, η),
3. J(1, λ)⊕ J(1, η)⊕ J(1, τ),
4. J(1, λ)⊕ J(2, a, b).

2.4 Lie Groups and Lie Algebras

The structure groups of these algebraic curvature tensors are Lie groups (see Definiton 5). The second
method of looking at the problem of finding the structure group for algebraic curvature tensors in dimension
three involved looking at Obeidin’s [8] cases of the Lie algebras (see Definition 6) of the structure groups in
dimension three and classifying them. The idea being that given a Lie group, the classification of these Lie
algebras could determine if it is the structure group of some algebraic curvature tensor.

Definition 5. A Lie Group is a group that is also a differentiable manifold such that the group operations

(g1, g2) �→ g1g2 and g �→ g−1 are smooth.

The following examples of Lie Groups are well known:

Example 3. GLn(R)={A ∈ Mn(R)|det(A) �= 0}.

Example 4. SLn(R) = {A ∈ Mn(R)|det(A) = 1}.

Example 5. SL±
n (R) = {A ∈ Mn(R)|det(A) = ±1}.

Example 6. O(n)={A ∈ Mn(R)|ATA = I}.

Example 7. SO(n) = O(n) ∩ Sl(n).

More examples can be found in [4].

Definition 6. A Lie algebra is a vector space over a field of characteristic zero (for the purposes of this

project, use F = R) with a bilinear form [a, b] that is skew symmetric [a, b] = −[b, a] and satisfies the Jacobi

Identity [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Example 8. gl(n) is the Lie algebra of n× n matrices.

Let V be a vector space over a field of characteristic zero. The set of linear transformations from V → V
is a ring with the operation of multiplication, but with the Lie bracket operation, it becomes a Lie algebra.
When the Lie algebra is embedded into a matrix ring, the Lie bracket is defined as [a, b] = ab − ba, it is a
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skew-symmetric bilinear form satisfying the Jacobi identity.

The Lie algebra associated to the Lie group is the tangent space of the manifold associated to the identity

matrix I. The exponential map exp for matrices is defined as exp(A) =
�∞

k=0
Ak

k! and A0 = I; this maps
elements from the Lie algebra to the Lie group, exp : g → G [5].

Below is a short demonstration of this relationship between Lie group and Lie algebra.

Example 9. o(n) is the Lie algebra consisting of skew-symmetric matrices s.t. AT = −A.

Take the Lie group O(n) = {AAT = I}, At is a path in O(n) and A0 = I. Then
d
dt (At)|t=0 is in

the Lie algebra of O(n)
d
dt (AtAT

t )|t=0 = d
dt |t=0(I) = 0 but

d
dt (AtAT

t )|t=0 = d
dt (At)|t=0 ∗ AT

t |t=0 + At|t=0 ∗
d
dtA

T
t |t=0=A(0)I + IAT (0) = A(0) + AT (0) = 0 so o(n) consists of matrices such that AT = −A (i.e. the

skew symmetric matrices).

Below are a few properties of Lie algebras, used later in categorization of Lie algebras of known structure
groups:

Definition 7. The structure constants of a Lie algebra are defined as Cijk for [Xi, Xj ] =
n�

i=1
CijkXk.

Definition 8. A Lie algebra isomorphism is a bijective map φ : g1 → g2 such that:

1. φ is a linear map, φ(cX + dY ) = cφ(X) + dφ(Y ) ∀c, d ∈ R, and
2. φ([X,Y ])g1 = [φ(X), φ(Y )]g2 .

Proposition 2. [1] Let g1 g2 be two Lie algebras of finite dimension. Suppose each has a basis with respect

to which the structure constants are the same. Then g1 and g2 are isomorphic.

Definition 9. A Lie algebra is said to be abelian if [a, b] = 0 for all a, b ∈ g.

Definition 10. If a subspace I ⊆ g satisfies the property that [I, g] ⊆ I, then I is an ideal in the Lie algebra

g.

Definition 11. A Lie algebra is said to be simple if it is non-abelian and its only ideals are 0 and itself.

Definition 12. A Lie algebra is said to be semisimple if it is a direct sum of simple Lie algebras.

Definition 13. The adjoint map ad : g → gl(g) is defined by adX�(Y �) = [X �, Y �] for X �, Y � ∈ g. [1]

Theorem 3. [4] An equivalent condition for a Lie algebra to be semisimple is for its Killing form k(x, y) =
tr(ad(x)ad(y)) is non-degenerate.

Obeidin found all cases for possible Lie algebras of the structure groups for algebraic curvature tensors
in dimension three and part of this project was to find the Lie bracket relations in order to classify these
Lie algebras and determine whether or not they are semisimple with the goal of being able to, given a Lie
group, see if it the structure group of some algebraic curvature tensor by looking at its Lie algebra.

3 Method

3.1 Jordan Normal Forms

Let V be a vector space and let {ei} be a basis for V . The R(ei, ej , ek, el) can be enumerated as R1, R2,
etc. In the case where V is of dimension three, there are six possible non-zero algebraic curvature entries on
any basis {e1, e2, e3}, up to these symmetries and we define the Ri as follows:

R1 = R(e1, e2, e2, e1),
R2 = R(e1, e3, e3, e1),
R3 = R(e2, e3, e3, e2),
R4 = R(e1, e2, e3, e1),
R5 = R(e2, e1, e3, e2),
R6 = R(e3, e1, e2, e3).
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From each Jordan Normal form, one can find relations for the algebraic curvature tensors by writing each
entry of R(Aei, Aej , Aek, Ael), as linear combinations according to the values in the matrix A. Then, this
can be expanded to get a collection of relations that must hold (see, for example, Section 4.1).

Given a matrix A ∈ GLn, the relations A∗R(ei, ej , ek, el) = R(ei, ej , ek, el) can be expressed as Kx = x
for some matrix K (Kaylor [6] was the first to study this matrix), where x = [R1, R2, ..., R6]T . This is
equivalent to (K − I)x = 0 which has solutions when x = 0 (which is the trivial case of the zero tensor) or
when det(K − I) = 0,which has dimension equal to the nullity of K − I. So the solution space, the set of al-
gebraic curvature tensors that are preserved by the matrix A, has the same dimension as the nullity of K−I.

A lattice is constructed by computing the nullities of K − I for the conditions when each element of the
complete factorization is equal to zero; this forms the base level or first row of the lattice. Higher levels
are constructed by choosing any two elements of the first row and finding the nullity of K − I under the
condition that they are both satisfied, and subsequently checking of those conditions simultaneously satisfy
any other elements on the base level. This process is repeated for higher levels of the lattice until all entries
in A are determined.

In particular, the cases of nullity one are of interest because if it is possible to find an algebraic curvature
tensor that is preserved by the matrix A, then that curvature tensor spans the space of algebraic curvature
tensors that are preserved by that matrix.

In sum, there are five main steps to this process:

1. Find the relations A∗R(ei, ej , ek, el) = R(ei, ej , ek, el) and express them in a matrix K.

2. Compute the determinant of K − I (factor, if needed).

3. Find solutions to det(K − I) = 0 compute the nullity of K − I when those factors are equal to zero.

4. Display this information in a lattice by putting irreducible factors of the characteristic polynomial on
the lowest level and connecting dots on the higher levels of the lattice to indicate a situation in which
multiple factors equal zero.

5. In cases of nullity one, find the algebraic curvature tensor that spans the solution space.

3.1.1 Previous results

The results in this (sub)subsection are due to Kaylor [6]

As before, the four cases for the Jordan Normal forms of dimension three with real entries are J(3, λ),
J(2, λ)⊕ J(1, η), J(1, λ)⊕ J(1, η)⊕ J(1, τ), and J(2, a, b)⊕ J(1, λ). The case with three distinct real eigen-
values and the case with two complex conjugate eigenvalues are part of the results section (i.e. new). The
case with one eigenvalue of multiplicity three and the case with one eigenvalue of multiplicity two and one
other real eigenvalue have been analyzed previously. The results are as follows:

In the case with one eigenvalue of multiplicity three, the determinant of K − I is (λ4 − 1)6. It is clear
that the determinant equals zero iff λ = ±1. When λ = ±1, the rank of K − I is four and thus the nullity is
two. So, the space of algebraic curvature tensors preserved by this matrix A is two dimensional. The lattice
is as follows:

N=2
λ+ 1

N=2
λ− 1
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In the case with one eigenvalue of multiplicity two and one different real eigenvalue, the determinant of
K−I is (λ4−1)(λ2η2−1)3(λ3η−1)2. This determinant is equal to zero when λ4−1 = 0, when λ2η2−1 = 0,
and when λ3η − 1 = 0 (or a combination of these). Kaylor found that for each of these individual factors to
be equal to zero, the nullity of the matrix K − I is 1. In the case that both λ2η2 − 1 = 0 and λ4 − 1 = 0,
λ = ±1 and η = ±1, those conditions give the matrix nullity two. In the case that both λ4 − 1 = 0 and
λ3η − 1 = 0, then λ = η = ±1, which gives K − I a nullity of three. A complete factorization shows that,
there is a subspace of algebraic curvature tensors of dimension one preserved when any one of the following
are satisfied: λ− 1 = 0, λ+ 1 = 0, λη − 1 = 0, λη + 1 = 0, λ3η − 1 = 0, a subspace of dimension two when
the pairs {λ − 1 = 0, λη + 1 = 0} and {λ + 1, λη − 1 = 0} are simultaneously satisfied, and a subspace of
dimension three when the triples {λ − 1 = 0, λη − 1 = 0, λ3η − 1 = 0} and {λ + 1 = 0, λη − 1 = 0, and
λ3η − 1 = 0} are satisfied. The following lattice can be constructed:

N = 3* N = 3** N = 2*** N = 2****

N=1
λ− 1

N=1
λ+ 1

N=1
λη − 1

N=1
λη + 1

N=1

λ3η − 1

*λ = η = −1
**λ = η = 1

***λ = 1, η = −1
****λ = −1, η = 1

In the bottom row of the lattice, when those factors are equal to zero, K − I has a nullity of one. In
these lattices, N =nullity of K − I.

In both of these cases, the possible nullities of K − I are one, two, and three.

3.2 Classification

The classification of the Lie algebras of structure groups is displayed according to the Lie bracket relations
and whether or not the given Lie algebra is semisimple. According to Theorem 3, the Lie algebra is semisim-
ple if its killing form is non-degenerate, and the Lie bracket [a, b] = ab − ba since the Lie algebra can be
embedded into a ring of matrices. The categorization of the Lie algebras of structure groups is displayed
according to the Lie bracket relations and whether or not the given Lie algebra is semisimple.

Obeidin [8] had classified the possible Lie algebras for structure groups of dimension three, the goal
here is to better understand them by categorizing. He did this by reducing all but three of the curvature
components to zero, the first case is when all three nonzero tensors are equal to one or only one of them is
−1 and the other two are 1, the second case is where one of the components is zero, and the third is when all
but one of the remaining three components is zero. In this paper, these known cases are categorized based
on whether they are semisimple.

4 Results

4.1 Jordan Normal Forms

The following two subsections detail the findings of the cases where the matrix A has Jordan Normal forms
J(1, λ)⊕ J(1, η)⊕ J(1, τ), and J(2, a, b)⊕ J(1, λ). Referring to the methods section, this includes steps one,
two, three, and four in that order.
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4.1.1 Three Distinct Real Eigenvalues

For A = J(1, λ)⊕J(1, η)⊕J(1, τ), A =




λ 0 0
0 η 0
0 0 τ



This means Ae1 = λe1;Ae2 = ηe2;Ae3 = τe3. So the

relations are:

Since A∗R1221 = R(λe1, ηe2, ηe2, λe1) = λ2η2R(e1, e2, e2, e1),

A∗R1 = λ2η2R1.

Since A∗R1331 = R(λe1, τe3, τe3, λe1) = λ2τ2R(e1, e3, e3, e1),

A∗R2 = λ2τ2R2.

Since A∗R2332 = R(ηe2, τe3, τe3, ηe2) = η2τ2R(e2, e3, e3, e2),

A∗R3 = η2τ2R3.

Since A∗R1231 = R(λe1, ηe2, τe3, λe1) = λ2ητR(e1, e2, e3, e1),

A∗R4 = λ2ητR4.

Since A∗R2132 = R(ηe2, λe1, τe3, ηe2) = λτη2R(e2, e1, e3, e2),

A∗R5 = η2λτR5.

Since A∗R3123 = R(τe3, λe1, ηe2, τe3) = λ2η2R(e3, e1, e2, e3),

A∗R6 = τ2ληR6.

Using these relations, one obtains this matrix:





R1

R2

R3

R4

R5

R6




=





λ2η2 0 0 0 0 0
0 λ2τ2 0 0 0 0
0 0 η2τ2 0 0 0
0 0 0 λ2ητ 0 0
0 0 0 0 η2λτ 0
0 0 0 0 0 τ2λη









R1

R2

R3

R4

R5

R6




, and so

Det(K − I) = (λ2η2 − 1)(λ2τ2 − 1)(η2τ2 − 1)(λ2ητ − 1)(η2λτ − 1)(τ2λη − 1).

This can be factored into irreducible components:

Det(K − I) = (λη − 1)(λη + 1)(λτ − 1)(λτ + 1)(ητ − 1)(ητ + 1)(λ2ητ − 1)(η2λτ − 1)(τ2λη − 1).
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To find the dimension of the solution space of K − I = 0, find a condition for when det(K − I) = 0 is
satisfied and compute the nullity of the Kaylor matrix given that condition. The dimension of the nullity of
K − I gives the dimension of the space of algebraic curvature tensors preserved by the matrix A. A lattice
is constructed by putting irreducible factors of the polynomial det(K − I) on the bottom row of the lattice.
The higher levels of the lattice consist of situations when one or more of the bottom elements are satisfied
at once, nullity is computed in the same way.

Below are two incomplete lattices, the first shows the irreducible factor λη− 1 and combinations of that
factor with other factors and the nullities of the matrix given several conditions including λη−1 are satisfied
at once and the second similarly displays the factor λη + 1. The remaining cases have not been filled in
because the lattice would be difficult to read. By the symmetric nature of this case, the rest of the lattice
follows in a similar way.

N = 6

N = 3 N = 2 N = 3 N = 2 N = 2

N=1
λη− 1

N=1
λη+1

N=1
λτ−1

N=1
λτ+1

N=1
ητ−1

N=1
ητ+1

N=1

λ2ητ−1
N=1

λη2τ−1
N=1

λητ2−1

Since the Kaylor matrix is diagonal in this case, it is not difficult to see that each of the irreducible
elements, when equal to zero, give the matrix K − I at least nullity one. More specifically, when each of the
bottom elements are individually satisfied, the nullity is one, when combinations of them are satisfied, the
nullities N are given.

In the diagram above, it shows that when λη− 1 = 0, λτ − 1 = 0, and λ2ητ − 1 = 0 are satisfied at once
(λη− 1 = 0 and λτ − 1 = 0 implies λ2ητ − 1 = 0), K − I has nullity three. When λη− 1 = 0 and λτ +1 = 0
are both satisfied, K − I has nullity two, and so on.

N = 3 N = 2 N = 3 N = 2 N = 2

N=1
λη− 1

N=1
λη+1

N=1
λτ−1

N=1
λτ+1

N=1
ητ−1

N=1
ητ+1

N=1

λ2ητ−1
N=1

λη2τ−1
N=1

λητ2−1

This diagram shows that when λη + 1 = 0 and λτ − 1 = 0 are both satisfied, the matrix has nullity two
and when λη+1 = 0 and λ2ητ − 1 = 0 are satisfied at once, the matrix has nullity two. There are no higher
levels of this lattice because no two elements from the second row can be satisfied at once.
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4.1.2 One Real and Two Complex Conjugate Eigenvalues

For A = J(2, a, b)⊕ J(1, λ), A =




λ 0 0
0 a b
0 −b a



 . This means Ae1 = λe1;Ae2 = ae2 − be3;Ae3 = be2 + ae3.

So the relations are:

Since A∗R1221 = R(λe1, ae2 − be3, ae2 − be3, λe1)
= R(λe1, ae2, ae2, λe1) +R(λe1, ae2,−be3, λe1) +R(λe1,−be3, ae2, λe1) +R(λe1,−be3,−be3, λe1)
= a2λ2R1221 − 2λ2abR1231 + λ2b2R1331,

A∗R1 = a2λ2R1 + b2λ2R2 − 2abλ2R4.

Since A∗R1331 = R(λe1, be2 + ae3, be2 + ae3, λe1)
= R(λe1, be2, be2, λe1) +R(λe1, be2, ae3, λe1) +R(λe1, ae3, be2, λe1) +R(λe1, ae3, ae3, λe1)
= b2λ2R1221 + 2λ2abR1231 + λ2a2R1331,

A∗R2 = b2λ2R1 + a2λ2R2 + 2abλ2R4.

Since A∗R2332 = R(ae2 − be3, be2 + ae2, be2 + ae2, ae2 − be3)
= R(ae2, ae3, be2,−be3) +R(ae2, ae3, ae3, ae2) +R(−be3, be2, ae3, ae2) +R(−be3, be2, be2,−be3)
= a2b2R2332 + a4R2332 + a2b2R2332 + b4R2332

= (a2 + b2)2R2332,

A∗R3 = (a2 + b2)2R3.

Since A∗R1231 = R(λe1, ae2 − be3, be2 + ae3, λe1)
= R(λe1, ae2, be2, λe1) +R(λe1, ae2, ae3, λe1) +R(λe1,−be3, be2, λe1) +R(λe1,−be3, ae3, λe1)
= abλ2R1221 + a2λ2R1231 − b2λ2R1231 − abλ2R1331,

A∗R4 = abλ2R1 − abλ2R2 + λ2(a2 − b2)R4.

Since A∗R2132 = R(ae2 − be3, λe1, be2 + ae3, ae2 − be3)
= R(ae2, λe1, be2,−be3) +R(ae2, λe1, ae3, ae2) +R(−be3, λe1, be2,−be3) +R(−be3, λe1, ae3, ae2)
= b2aλR2132 + a3λR2132 + b3λR3123 + a2bλR3123

= λa(b2 + a2)R2132 + λb(b2 + a2)R3123,

A∗R5 = aλ(b2 + a2)R5 + bλ(a2 + b2)R6.

Since A∗R3123 = R(be2 + ae3, λe1, ae2 − be3, be2 + ae3)
= R(be2, λe1, ae2, ae3) +R(be2, λe1,−be3, be2) +R(ae3, λe1, ae2, ae3) +R(ae3, λe1,−be3, be2)
= −a2bλR2132 − b3λR2132 + a3λR3123 + b2aλR3123
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= −bλ(a2 + b2)R2132 + aλ(a2 + b2)R3123,

A∗R6 = −bλ(a2 + b2)R5 + aλ(a2 + b2)R6.

One obtains the following matrix:





R1

R2

R3

R4

R5

R6




=





a2λ2 b2λ2 0 abλ2 0 0
b2λ2 a2λ2 0 −abλ2 0 0
0 0 (a2 + b2)2 0 0 0

−2abλ2 2abλ2 0 (a2 − b2)λ2 0 0
0 0 0 0 aλ(a2 + b2) −(a2 + b2)bλ
0 0 0 0 bλ(a2 + b2) aλ(a2 + b2)









R1

R2

R3

R4

R5

R6





Det(K − I) = (−1 + a2 + b2)(1 + a2 + b2)(P1)(−1 + a2λ2 + b2λ2)(P2)
P1 = (1 + 4abλ4 − 2a2λ2 + 2b2λ2 + a4λ4 − 2a2b2λ4 + b4λ4)

P2 = (1− 2a2aλ+ a4aλ2 − 2aλb2 + 2a2aλ2b2 + aλ2b4 + a4bλ2 + 2a2b2bλ2 + b4bλ2)

N = 2

N = 2** N = 2*

N=1

a2 + b2 = 1
N=1

λ2(a2 + b2) = 1
N=?
P2

N=?
P1

* λ2 = 1, a = 0, b = −1, **λ2 = 1, a2 + b2 = 1
In the bottom row of the lattice, when a2+ b2 = 1 and λ2(a2+ b2) = 1 are satisfied, K−I has a nullity of

one. The nullities when P1 and P2 are equal to zero is not known. There are no higher levels of this lattice
because no two elements in the second row can be satisfied at once.

This completes the analysis for all four Jordan Normal forms.

Proposition 4. There does not exist a matrix in Jordan Normal Form such that the Nullity of K − I = 4
or 5 for algebraic curvature tensors over a vector space of dimension three.

4.2 Expressing one-dimensional null spaces in terms of Rϕ

In the cases of nullity one, it is possible to find an algebraic curvature tensor which spans the space preserved.
There is a theorem by Diaz-Ramos and Garcia-Rio [5] that explains different constructions of curvature ten-
sors, based on properties of the associated Ricci tensor. The two cases examined in this paper involve
expressing the tensor that spans the solution space in terms of one Rϕ and as a linear combination of an
Rϕ1 and an Rϕ2 .

The process involves looking at which curvature tensor entries can be nonzero to be in the kernel of K−I,
and using the property that g(Φei, ej) = ρ(ei, ej), where g is a metric defined so that gij = g(ei, ej) = 0,

i �= j and gii = g(ei, ei) = 1 and ρ(x, y) is the Ricci tensor, defined by ρ(x, y) =
n�

i=1
R(x, ei, ei, y). Below,
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the known cases are listed:

• J(1, λ) ⊕ J(1, η) ⊕ J(1, τ) when λη = 1, the only non-zero entry of the tensor is R1, and in this case

R = kRϕ, where k is a scalar and Rϕ has ϕ=




1 0 0
0 1 0
0 0 0



.

• J(1, λ)⊕ J(1, η)⊕ J(1, τ) when λη = −1, the only non-zero entry of the tensor is R1, and in this case

R = kRϕ, where k is a scalar and Rϕ has ϕ=




1 0 0
0 1 0
0 0 0



.

• J(1, λ) ⊕ J(1, η) ⊕ J(1, τ) when λτ = 1, the only non-zero entry of the tensor is R2, and in this case

R = kRϕ, where k is a scalar and Rϕ has ϕ=




1 0 0
0 0 0
0 0 1



.

• J(1, λ)⊕ J(1, η)⊕ J(1, τ) when λτ = −1, the only non-zero entry of the tensor is R2, and in this case

R = kRϕ, where k is a scalar and Rϕ has ϕ=




1 0 0
0 0 0
0 0 1



.

• J(1, λ) ⊕ J(1, η) ⊕ J(1, τ) when ητ = 1, the only non-zero entry of the tensor is R3, and in this case

R = kRϕ, where k is a scalar and Rϕ has ϕ=




0 0 0
0 1 0
0 0 1



.

• J(1, λ)⊕ J(1, η)⊕ J(1, τ) when ητ = −1, the only non-zero entry of the tensor is R3, and in this case

R = kRϕ, where k is a scalar and Rϕ has ϕ=




0 0 0
0 1 0
0 0 1



.

• J(1, λ)⊕ J(1, η)⊕ J(1, τ) when λ2ητ = 1, the only non-zero entry of the tensor is R4, and in this case

R = kRϕ, where k is a scalar and Rϕ has ϕ=




0 0 0
0 0 1
0 1 0



.

• J(1, λ)⊕ J(1, η)⊕ J(1, τ) when λη2τ = 1, the only non-zero entry of the tensor is R5, and in this case

R = kRϕ, where k is a scalar and Rϕ has ϕ=




0 0 1
0 0 0
1 0 0



.

• J(1, λ)⊕ J(1, η)⊕ J(1, τ) when λητ2 = 1, the only non-zero entry of the tensor is R6, and in this case

R = kRϕ, where k is a scalar and Rϕ has ϕ=




0 1 0
1 0 0
0 0 0



.

• J(1, λ)⊕ J(2, a, b) when −1 + a2λ2 + b2λ2 = 0, the first and second rows of K − I with this condition
are multiples of one another, so R1 and R2 are the only nonzero entries for the tensor.
Then, R, the tensor that spans the one dimensional space, is R = k(−Rϕ1 −Rϕ2) where k is a scalar

and Rϕ1=




0 0 0
0 1 0
0 0 −1



 and Rϕ2=




1 0 0
0 0 0
0 0 −1



.
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• J(1, λ)⊕ J(2, a, b) when −1+ a2 + b2 = 0, the only non-zero entry of the tensor is R3, and in this case

R = kRϕ, where k is a scalar and Rϕ has ϕ=




0 0 0
0 1 0
0 0 1



.

4.3 Classification

The three nontrivial cases for the structure groups of dimension three must have Lie group dimension three,
four, and six. The following are elements in the Lie algebra of the structure groups: [8]

Dimension 3




0 x1 −x2

−x1 0 −x3

x2 x3 0



 (i.e. so(3)) ;




0 −x3 x2

−x3 0 x1

−x2 x1 0



 (i.e. so(1, 2))

Dimension 4




x1 0 0
x3 −x1 x2

x4 −x2 −x1





Dimension 6




x1 x2 0
x3 −x1 0
x4 x5 x6





Dimension 3: The Lie algebra so(1, 2) or so(3).
Dimension 4: Lie bracket relations [e1, e3] = −2e3; [e2, e3] = −e4; [e1, e4] = −2e4; [e2, e4] = e3.
Dimension 6: Lie bracket relations [e5, e6] = −e5; [e3, e5] = −e4; [e4, e6] = −e4; [e2, e4] = −e5;
[e2, e3] = e1; [e1, e5] = e5; [e1, e4] = −e4; [e1, e3] = −2e3; [e1, e2] = 2e2.

Proposition 5. If dimV = 3, then there are only two semisimple Lie algebras corresponding to any GR

for R ∈ A(V ). These are isomorphic to so(3) and so(1, 2).

5 Conclusion

The remaining two cases of the Jordan Normal forms have been examined, in sum, the only nullities that
did not appear were four or five (Proposition 4). The known Lie algebras of the structure groups of alge-
braic curvature tensors have been classified, and given a Lie group, if its Lie algebra is semisimple but not
isomorphic to so(3) or so(1, 2), then it is known that the group is not the structure group of an algebraic
curvature tensor in dimension three.

6 Open Questions

1. Find relationships between Jordan Normal forms used in the first part of the paper and the known
structure groups, are any of these Jordan Normal forms in the known structure groups?

2. Find properties of Lie algebras of Lie groups which are structure groups of an algebraic curvature
tensor in dimension n (simple, semisimple, abelian).

3. Construct lattices for dimension four (and higher).

4. Examine lattices and their different levels, why sometimes combining m components from the bottom
row gives a nullity of K − I that is equal to n where n �= m.

5. Know, out of curvature tensors in three dimensional space which subgroups of GL3 are structure groups
of algebraic curvature tensors.

6. When is the lattice disconnected?

7. When is the Kaylor matrix symmetric/skew-symmetric?
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