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Abstract

This paper examines a certain class of links, called Torified Rational Links, with a focus on
bounds for stick number. These bounds are found by supercoiling the Torified Rational tangles
and attaching the coil to an outer skeleton, similar to that of a rational link. The bounds
obtained using this model are compared to the known upper bound for the stick number of
any link, s(L) ≤ 3

2(c(L) + 1), using relationships between crossing number and the maximal
and minimal degrees of the variables in the HOMFLY polynomial.

Introduction

In this section, we define the class of rational links, which we use as a model for constructing
Torified Rational Links. Then we supply the necessary background information on stick number,
supercoils, and the HOMFLY polynomial.

Constructing Torified Rational Links

A tangle is considered to be rational if it can be untangled by moving its endpoints around the
boundary of a sphere. All rational tangles are made up of a collection of integral tangles. Integral
tangles are simply two strands twisted together (see Figure 1).

(a) Vertical tangle.

(b) Horizontal tangle.

Figure 1: Examples of two kinds of integral tangles.
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Figure 2: Rational Link with n twist-boxes.

Each integral tangle can have any number of crossings, as long as all of the twists are of the same
type (i.e. all horizontal or all vertical). Stringing vertical integral tangles together in a particular
way, as is shown in Figure 2, produces a rational link. A rational link consists of twist-boxes, which
each contain an integral tangle, and an outer skeleton.

Definition 1. The skeleton of a link is the collection of strands that connect its twist-boxes.

In this paper, we are going to examine a similar class of links which can be created by swapping
out the integral tangles of rational links for a different kind of tangle, while preserving, up to parallel
cables , the skeletal structure of rational links. We will call such links Torified Rational Links. To
describe the tangles in the twist-boxes of Torified Rational Links, we will use σ moves.

Definition 2. A σ move, which we denote σ(12 · · ·n−1), moves the rightmost input strand across
all other strands (Figure 3).
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In each twist box of a Torified Rational Link, we have a σx(12 · · ·n− 1) tangle, where x is the
number of times that a strand is pulled across all of the other strands. Each σ move contributes
n− 1 crossings to the diagram.

Figure 4 is an example of a Torified Rational Link of two components. It has three twist-boxes
which contain σ3(1234), σ−1(1234), and σ4(1234) tangles, respectively. Consider the first tangle
(top). The number of strands coming out of the bottom are split: two go to the left and three go to
the right. If we changed the number of strands going each way, then we might get a different link.

For example, consider the two Torified Rational Links shown in Figure 5. Their twist-boxes are
identical, but their skeletons are different. The first link’s strands are broken up with three going
left and two going right. It is, in fact, a knot (a link of one component). However, the second link,
which has four strands going to the left and only one going to the right, has two components. Thus,
the two seemingly similar Torified Rational Links are clearly not the same.

An Introduction to Supercoiling

Many invariants can help to distinguish and define links. These include link and knot polyno-
mials, covers, colorings, etc. One such measure is called the stick number.

Definition 3. The stick number, s(L), of a link L is the minimum number of line segments
(sticks) needed to represent L. The sticks must be non-intersecting, and can only join with one
another at a common vertex.

In short, stick number is a measure of the complexity of a given link. Huh and Oh have shown
that, for any link L, s(L) ≤ 3

2
(c(L) + 1), where c(L) is the minimal crossing number of the link [6].

Improved bounds on stick number have been found for many individual classes of links. Most
recently, Insko and Trapp found a way to significantly improve this bound for sufficiently complex
2-bridge links. They used the shape and structure of DNA supercoils as a model for a non-minimal
crossing polygonal projection of rational tangles (Figure 6). The tangle in Figure 6 represents an
alternating, 13-crossing tangle with 12 sticks. Then, for every four sticks added, we get six more
crossings [7].

We can use a similar model to construct a polygonal representation of twist boxes of Torified
Rational Links. All we need to do differently is add in more strands, as shown in Figure 7. Notice

(a) Identity strands. (b) σ(1234). (c) σ−1(1234).

Figure 3: Example of σ moves using five strands.
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Figure 4: Torified Rational Link.

(a)
(b)

Figure 5: Two distinct Torified Rational Links.

that the supercoiling model gets more efficient as the number σ moves increases. The supercoiled
tangle shown in Figure 7 results in ten σ moves: five from the corners (Figures 7 (a) & (b)), and
five from the other crossings. The fact that such tangles can be realized geometrically has been
proven [8].
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Figure 6: Supercoil of a 2-bridge link’s rational tangle.

(a) Supercoiled sticks.

(b) Smoothed edges.

(c) Corner pulled straight.

(d) Resulting tangle from corner.

Figure 7: Simple supercoil using five strands.

The HOMFLY Polynomial and Minimal Crossing Number

In order to compare our bounds on stick number to that of Huh and Oh, we need to consider
the minimal crossing number, c(L), of our Torified Rational Link, L. We know that alternating
diagrams are of minimal crossing number. The difficulty for us lies in the fact that we are not
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dealing with alternating diagrams. There are many Torified Rational Link diagrams that make the
link seem far more complicated than it actually is. For example, Figure 8 shows a Torified Rational
Link with three twist boxes, which has 6 crossings, that is isotopic to the left-handed trefoil, which
has as few as 3 crossings. It isn’t obvious, at first glance, that this Torified Rational Link is merely
a trefoil.

(a) Representation as a Torified
Rational Knot with three twist-
boxes.

(b) Minimal crossing representation.

Figure 8: Two diagrams of the left-handed trefoil.

To address this problem, we need to use Gruber’s bound for c(L), which can be derived from
the HOMFLY polynomial of L. That is, for every link L,

c(L) ≥M +
1

2
(E − e), (1)

where M is the maximal non-zero exponent on z, E is the maximal non-zero exponent on v, and e
is the minimal non-zero exponent on v [4]. Naturally, the crossing number will not depend on the
orientation of our Torified Rational Links, so we can arbitrarily orient them to find bounds on the
crossing numbers of these unoriented links. We will use this method to determine wether or not
our bound on stick number found using supercoils is superior to that of Huh and Oh.

The HOMFLY polynomial is a two-variable polynomial that is defined using skein relations on
oriented knots and links.

Definition 4. Consider three oriented links, L+, L−, and L0. Let them be exactly the same except
in the neighborhood of one crossing, where they appear as in Figure 9. Then, L+, L−, and L0 are
called a skein triple.

The HOMFLY polynomial is given by:

P (unknot) = 1,
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(a) L+ (b) L− (c) L0

Figure 9: Skein Triple.

v−1P (L+; v, z)− vP (L−; v, z) = zP (L0; v, z). (2)

Additionally, it is important to realize that a bound on crossing number that does not rely on
knowing the minimal crossing number of a link is useful, even if it is not always better than the
other known bounds, because often we are presented diagrams of complex links, and the value of
c(L) is not evident and very difficult to calculate.

Results

Figure 10: The structure of
Torified Rational Links with
three twist-boxes.

In this section we will look at bounds on stick number for Torified
Rational Links with three twist-boxes. Then we will compare our
findings to the bound given by Huh and Oh. Finally, we generalize
our results for Torified Rational Links with n twist-boxes.

Links with three twist-boxes

We will start by looking at Torified Rational Links that have
three twist-boxes, like the one shown in Figure 4. These simple cases
of Torified Rational Links are constructed as in Figure 10, where the
wi represent the weights of the strands, i.e. the number of strands
along that edge of the link’s skeleton. Numerous relationships and
symmetries occur when we set the number of twist-boxes to three.

Claim 1. The weights of each section of the skeleton of a three-box
Torified Rational Link, w1, w2, ..., w6, are completely determined by
w1 and w2.

Proof. First, observe that the number of strands going into a twist-
box must equal the number of strands coming out of it. Therefore,
boxes a1, a2, and a3, respectively, give us the system of equations:

w1 + w2 = w3 + w4,

w2 + w4 = w5 + w6,

w3 + w5 = w1 + w6.
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It follows that w1 = w4 = w5, and w2 = w3 = w6. Therefore the two weights, w1 and w2, completely
determine the weight of each component of the link’s skeleton.

From the relationship described in Claim 1, we immediately discover a number of interesting
symmetries of Torified Rational Links with three twist-boxes. One such result is described in
Corollary 1.

Corollary 1. For any diagram, D, of a Torified Rational Link, L, with three twist-boxes, and
weights w1 = a and w2 = b, we can find an isotopic diagram, D′, with the same number of crossings
in each twist-box and with w1 = b and w2 = a.

Proof. Let’s start with an arbitrary diagram, D, of a Torified Rational Link, L, with three twist-
boxes and weights w1 = a and w2 = b, as shown in Figure 11.

A

B

F

a

a

a

b

b

b

Figure 11: Diagram D.

Then we can do the following series of isotopies of L:

8



A

B

F

a

a

a

b

b

b

(a) Flip box A vertically.

A

B

F

a

a

a

b

b

b

(b) Flip box B horizontally.

A

B

F
a

a

a

b

b

b

(c) Flip box F vertically to get D’

Figure 12: Isotopies that transform D into D′.

First notice that the twist-boxes have merely been flipped, so they still contain the same number
of crossings. In fact, they contain the same number of σ moves, but with σ−1 moves instead of σ
moves in all three boxes. Thus by following the isotopies, we have found that for any diagram, D,
we have an equivalent diagram, D′, with the same number of crossings in each twist box and with
w1 and w2 weights reversed.

We will use the results from Claim 1 and Corollary 1 to find a bound for the stick number of
the skeleton of our Torified Rational Link.

Lemma 1. Let a = min{w1, w2}, b = max{w1, w2}, and let a+ b = n. Then the number of sticks
needed to build the skeleton of a Torified Rational Link, L, with three twist-boxes, ss(L), is bounded
by:

ss(L) ≤ 4n+ a. (3)

Proof. Consider the diagram of an arbitrary Torified Rational Link with three twist-boxes, where
a = b = 1, as shown in Figure 13. We will show that this model of the skeleton can be constructed in
three-space without self-intersection, and in such a way that it will not intersect with the tangles,
which are completely contained inside the twist-boxes. When we construct the twist-boxes, the
input and output strands will connect through opposite sides of a twist-box.

In the model shown in Figure 13, let the bases of the three twist-boxes be coplanar. It is
apparent that the three central sticks can exist in three-space without intersecting each other, and
only intersect the twist-boxes at a point. For our purposes, intersection with a twist-box at a point
is a trivial intersection. The two outer a strands can also exist in three-space without intersecting
each other and without nontrivially intersecting the twist-boxes. The only strand left to consider is
the outer b strand, which does intersect two twist-boxes non-trivially. These regions of intersection
are circled in Figure 13.
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a

a

a
b

b

b

z

x y

Figure 13: Skeleton of a Torified Rational Link with three twist-boxes made from sticks.

We can choose a point at the lower right far enough away so that the encircled regions of
intersection occur within an angle of ε of the face of the twist-box. Therefore, though that portion
of the skeleton does have non-trivial intersection with two boxes, it can still exist in three-space
without intersecting the tangles in the boxes. Thus the skeleton of this link can be made from 9
sticks.

Figure 14: Increasing strand number.

Now we can generalize this for any weights a and b. Imagine that the skeleton shown in Figure
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13 is not a collection of sticks, but of tubes. Then each tube can contain as many strands as we
want without intersection (see Figure 14).

Recall Corollary 1, which tell us that we can let a ≤ b, since if it is not, then we can represent
the same link with a diagram where a and b are swapped. Note that other parts of the diagram may
be flipped as well, but this doesn’t effect the skeleton. This means that, without loss of generality,
we can construct the skeleton with 4b + 5a sticks by constructing it as in Figure 13. Finally, we
know that a+ b = n; so it follows that ss(L) ≤ 4n+ a.

Next we need to construct a bound for the number of sticks needed to create the Torified Rational
tangles sT (L). These will be clipped into the skeleton constructed in Lemma 1.

Claim 2. In R3, we can represent any twist box of n strands containing x σ moves, where |x| ≥ 1,
with 2(|x| − 1) + n sticks or fewer.

Proof. Suppose x > 0. As shown in Figure 15, if x = 1, we can construct our tangle with n sticks.

...

hh-

Figure 15: The stick representation of a Torified Rational tangle with one σ move.

Then, as we add on more σ moves, we can simply pile on similar boxes (see Figure 16). In this
model, we have line segments that go from height h− ε to h crossing over some segments which go
from height h to h− ε. We can choose the angle to drop down the overcrossing strand such that is
is above the other when it reaches the crossing. Thus we can build this model in three-space.

11



Figure 16: The stick representation of a Torified Rational tangle with x σ moves. The white vertices
are at height h, and the shaded vertices are at height h− ε.

Notice that each subsequent σ move requires the addition of two new sticks, which supports our
assumption about st(L). The formula st(L) ≤ 2(|x| − 1) + n directly follows from this model.

The same argument can be used for x < 0.

The above proof accounts for the cases where |x| > 0. For the trivial case of x = 0, we would
simply need n sticks.

Keeping Claim 2 in mind, we will consider supercoiling our tangles in order to see what kind
of bounds we can get on stick number that way. Ultimately, we will combine the two methods to
achieve an optimal bound.

Claim 3. We can represent any Torified Rational tangle, T , with (2+3k)n σ moves using (3+2k)n
sticks or fewer, where n is the number of strands and k ∈ Z.

Proof. Consider Figure 17. We know that two of the B regions correspond to n σ moves. This is
shown in more detail in Figure 7. Furthermore, each A region corresponds to n σ moves. That much
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is evident; just imagine pulling the ends tight. Then the red regions would each add a complete
twist, which is n σ moves.

Figure 17: Crossing contribution of a supercoiled Torified Rational tangle (A regions circled with
solid lines, B regions circled with dotted lines).

The rest of the proof follows from the Figure. It takes 3n sticks to create the simplest supercoil,
and then for each additional 2n sticks, we get B regions and two A regions, which represents 3n σ
moves. Hence (2 + 3k)n σ moves can be modeled using (3 + 2k)n sticks.

For the sake of clarity, in following argument we will assume that we are doing positive σ moves,
as opposed to inverse σ moves. The argument, however, works for both cases.

Lemma 2. Let T be a Torified Rational tangle of some Torified Rational Link, L. Let T have x σ
moves and n strands. Choose k to be the largest integer such that x = (2 + 3k)n + y, and y ≥ 0.
Then,

sT (L) ≤
{

(3 + 2k)n+ 2(y − 1) if y ≤ 3n(k + 1)
(5 + 2k)n+ 2(x− y − 1) if y > 3n(k + 1).

(4)

Proof. We have two options for how to create our stick representation of T : we can make a supercoil
and then add on the extra tangles using the method described in Claim 2, or we can make a larger
supercoil and then undo some of the tangles by that same method, but with σ−1 moves. It is easy
enough to compile these two moves since both allow for controlling the positions of the incoming
line segments. For the first option, we would need (3 + 2k)n sticks to make the coil, and then
2(y − 1) sticks to make the remaining σ moves. This gives us

(3 + 2k)n+ 2(y − 1) (5)

sticks. For the other option, we would need (3 + 2(k + 1))n sticks to make the supercoil, and then
2(x− y − 1) additional sticks to undo the superfluous σ moves. This gives us

(5 + 2k)n+ 2(x− y − 1) (6)
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total sticks.
Now all we need to do is show when it is optimal to use Equation 5 and when it is better to use

Equation 6. We should use Equation 5 when

(3 + 2k)n+ 2(y − 1) ≤ (5 + 2k)n+ 2(x− y − 1)

2y − 2 ≤ 2n+ 2x− 2y − 2

y ≤ 3n(k + 1)

This gives us Equation 4, and thus concludes our proof.

Though it may seem counter-intuitive to create too many crossings and then unravel some
of them, that is sometimes the most efficient way to represent the Torified Rational tangle with
sticks. For example, a five-strand Torified Rational tangle with 24 σ moves could be made from
the supercoil shown in Figure 17, and then subtracting a σ move. Since we are subtracting a single
σ move, we can represent it without adding in any more sticks (see Figure 15). Therefore, we can
create this tangle using only 25 sticks. Whereas, if we were to try and construct this tangle without
undoing crossings, it would require 43 sticks.

Corollary 2. The bound for stick number of a Torified Rational tangle, T , given by Equation 4 is
always at least as good as the bound in Claim 2: sT (L) ≤ 2(|x| − 1) + n.

Proof. Consider the first case of Equation 4, sT ≤ (3 + 2k)n+ 2(y − 1). We want to identify when
(3 + 2k)n+ 2(y − 1) ≤ 2(x− 1) + n. Using the fact that x = 3kn+ 2n+ y, we see that:

(3 + 2k)n+ 2(y − 1) ≤ 2(x− 1) + n

3n+ 2nk + 2y − 2 ≤ 2x− 2 + n

2n+ 2kn+ 2y ≤ 2x

n+ kn+ y ≤ x

n+ kn+ y ≤ 3kn+ 2n+ y

0 ≤ 2kn+ n,

which is always the case. Therefore the first case of Equation 4 is always at least as good as the
bound in Claim 2. Furthermore, since the second case of Equation 4 is only used when it gives a
better bound on stick number than the first, when we use it, it must also be at least as good as
2(|x| − 1) + n.

Claim 4. A Torified Rational tangle can always be constructed such that it is entirely contained
within a twist-box. In other words, each strand will only intersect the twist-box at its exit and entry
points, which are on opposite faces of the box.

Proof. Let T be a Torified Rational tangle of n strands. Then either T is not supercoiled, or it is.
The case where there is no supercoiling, as in Figure 16, is trivial. Clearly we can fit a tangle of
this kind in a twist-box in the desired way. The other case, however, is less straight-forward.
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r

q

Figure 18: Supercoil inside a twist-box.

Consider the supercoil in Figure 18. We can imagine that the single strand which is supercoiled
is actually a tube containing all n strands. Similarly, we notice that no matter how many twists we
put in our supercoil, we can extend the ends so that it is inside a twist-box it in this way. Therefore,
we can always fit T entirely in a twist-box, where each strand will only intersect the box at its exit
and entry points, which are on opposite faces of the box.

Corollary 3. Let L be a three-box Torified Rational Link. If all of the twist-boxes of L have
supercoils, then we can always attach the skeleton to the twist-boxes without adding any new sticks.

Proof. We have more flexibility when the Torified Rational Tangles are supercoiled because we can
pick the entry and exit angles of the strands.

1

2

3

4

5

6

a

a

a

b

b

b

A

B

C

Figure 19: Sticks needed to build the skeleton of a Torified Rational Link with three twist-boxes,
when all twist-boxes contain a supercoiled tangle.
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Consider Figure 19. The thick black lines inside the twist-boxes show the entry and exit angles
of the tangle within. We see that each portion of the skeleton contributes the following number of
sticks:

Portion of Skeleton Sticks Contributed
1 0
2 2b
3 -b
4 0
5 -b
6 0

The total maximum stick contribution of the skeleton is the sum of the contribution of each
component of the skeleton, which is zero. Hence we can always attach the skeleton to the twist-
boxes without adding any new sticks.

Theorem 1. Let L be a Torified Rational Link with three twist-boxes and n strands. Let the
twist-boxes have x1, x2, and x3 σ moves. Let the corresponding ki be the largest integers such that
xi = (2 + 3ki)n+ yi, and yi ≥ 0. Then define si(L) by:

si(L) =

{
(3 + 2ki)n+ 2(yi − 1) if yi ≤ 3n(ki + 1)
(5 + 2ki)n+ 2(xi − yi − 1) if yi > 3n(ki + 1).

(7)

Let a = min{w1, w2}. Then the number of sticks needed to build L is bounded by:

s(L) ≤ 4n+ a+
3∑

i=1

si(L). (8)

Proof. We can build L by constructing its tangles and then clipping in its skeleton. Since we know
from Lemma 1 that it takes at most 4n + a additional sticks to make the skeleton, the maximum
number of sticks we need is the number needed to create each tangle, which we get from Lemma 2,
plus 4n+ a.

Corollary 4. Let L be a Torified Rational Link with three twist-boxes and n strands. Let the twist-
boxes have x1, x2, and x3 σ moves. Suppose each twist-box contains a tangle that is supercoiled (i.e.
ki ≥ 0, for all i). Let the corresponding ki be the largest integers such that xi = (2 + 3ki)n + yi,
and yi ≥ 0. Then define si(L) as in Equation 7. Then, the number of sticks needed to build L is
bounded by:

s(L) ≤
3∑

i=1

si(L). (9)

Proof. This follows directly from Theorem 1 and Corollary 3, which saves us 4n+a sticks whenever
all three twist-boxes L contain supercoiled tangles.
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Comparative bound on stick number

Figure 20: Torified Rational Link.

To compare our bound on stick number
to that of Huh and Oh, we use Gruber’s
bound for c(L) (Equation 1). The more
complicated our Torified Rational Links
are, the better our bound on stick number
should be.

Often, our bound is better than that of
Huh and Oh. For example, the HOMFLY
polynomial of the link in Figure 20, arbi-
trarily oriented, yields M = 18, E = −2,
and e = −24. This means that c(L) ≥ 29,
and therefore Huh and Oh’s bound on stick
number is, at best, s(L) ≤ 45. How-
ever, using our bound (Equation 9), we get
s(L) ≤ 35, which is significantly better.

Links with n twist-boxes

Figure 21: A Torified Rational Link whose twist-boxes
do not all have the same box strand number.

Now we will consider the stick number
of these more complicated Torified Ratio-
nal Links. Fortunately, the construction
of the tangles is almost the same. The
only difference is that, unlike in the 3-box
case, the twist boxes do not always have
the same box strand number (see Figure
21).

Definition 5. Each twist-box of a Torified
Rational Link has a box strand number,
nb, which is the number of strands going
into (or, equivalently, coming out of) the
twist-box.

Claim 5. Let L be a Torified Rational
Link with m twist-boxes. Let the wi be the
weights of the strands, numbered in the or-
der shown in Figure 22. Then we will al-
ways have that w1 = w2m.

Proof. Consider Figure 22, which shows a Torified Rational Link with an odd number of twist-
boxes and one with an even number of twist-boxes. We know that the sum of the weights of the
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A

B
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D

1

2

3

4

5

W1W2

W3

W4

W5

W6

W7

W8

(a) Even number of twist-boxes.

A

B

W1

W2

W3

1

C

W4

W5

W6

W7

2

DW8

3

4

5
W9

E
W10

6

(b) Odd number of twist-boxes

Figure 22: Symmetries and properties of Torified Rational Links.

two clusters of strands going into any box must be the same as the sum of the weights coming out
of that box.

We want to show that the red lines in Figure 22 (a) intersect the same total number of strands.
We know that w1 +w2 = w3 +w4. Therefore w1 +w2 +w1 +w2 = w1 +w2 +w3 +w4, and so lines 1
and 2 intersect the same total number of strands. Now, from box B we see that w1 +w3 = w5 +w6,
so lines 2 and 3 intersect the same number of strands as well, since line 2 intersects w2+w4+w3+w1

strands, and line 3 intersects w2 + w4 + w5 + w6 strands. Similarly, the relationships between the
weights of the strands going through boxes C and D indicate that lines 3, 4, and 5 intersect the
same number of strands. This tells us that lines 1 and 5 intersect the same number of strands.
Therefore, w1 +w2 +w1 +w2=w2 +w8 +w8 +w2, and hence w1 = w8. In other words, in this case,
w1 = w2m. Notice that this pattern holds for any Torified Rational Link with an even number of
twist-boxes, since each new box will add another relation on the wi.

The odd case is essentially the same (See Figure 22 (b)). So we have that w1 = w2m for all
m.
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Claim 6. For any link, L, with m twist-boxes, n1 = nm.

Proof. This follows directly from Claim 5, since the weights of the strands going out of box m (the
last box) must equal the weights of the strands going into box 1 (the first box).

Claim 7. Let aT be any Torified Rational tangle of a Torified Rational Link, L, whose first (top)
twist-box has n1 = κ. Then nT ≤ 2κ− 2.

Proof. Again, this statement follows from the fact that the red lines in Figure 22 all intersect the
same number of strands. Each red line intersects four of the wi, at least two of which come from
a single twist-box. The first red line intersects 2(w1 + w2) strands, and w1 + w2 = κ, so each line
intersects 2κ strands. Consider the red line directly above aT . It intersects the two wi going into
aT and two other strands. We know that the sum of the two wi going into aT is equal to nT , and
each wi ≥ 1, so the maximum that nT can be is 2κ− 2.

In Figure 22, notice that some of the collections of strands, wi, intersect with one red line, and
others intersect with two or more. We notice that w1 and w2m intersect twice with red lines, and
w2 intersects with each red line at least once. Excluding those three collections of strands, only the
vertical inner wi intersect with red lines twice.

Definition 6. Define the pair strands, wli, to be those strands which are intersected more than
once by red lines, excluding w1, w2, and w2m.

Lemma 3. Let L be a Torified Rational Link with m twist-boxes. Let w1 + w2 = κ, and let

λ =
m−2∑
i=1

wli. Then the number of sticks needed to construct the skeleton of L is bounded by:

ss(L) ≤ m(2κ− w2)− λ+ w2. (10)

Proof. Consider Figure 23. By the same reasoning as for the case with only three twist-boxes (see
Lemma 1), we know that this structure can exist in R3. Therefore, we want to use one stick for each
strand in all clusters of strands except w1, w2, and w2m. We know that the dotted symmetry lines
shown in Figure 22 intersect exactly 2κ strands each. This means that lines 2, 3, ...,m intersect a
total of 2κ(m−1) strands of the skeleton of L. We know that each of the wi are intersected at least
once by this collection of lines. The ones that are intersected more than once are the wli , which are
each intersected twice, and w2, which is intersected m− 1 times. So the total number of strands in

the diagram is
2m∑
i=1

wi = 2κ(m− 1)− (m− 2)w2 − λ.
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x

y

z

W1

W2

W2m

Figure 23: Skeleton of a Torified Rational Link with m twist-boxes made from sticks.

However, for our stick number, we need to add in w2 + w1 + w2m more sticks. Hence we have
that ss(L) ≤ 2κ(m− 1)− (m− 2)w2− λ+w2 +w1 +w2m. We know that w1 +w2 = w2m +w2 = κ.
Therefore, ss(L) ≤ m(2κ− w2)− λ+ w2.

Now that we have a bound on the stick number of the skeleton of these Torified Rational Links,
we need to find how many sticks are necessary to construct the tangles within each twist-box.
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Theorem 2. Let L be a Torified Rational Link with m twist-boxes containing tangles T1, T2, ..., Tm.
Suppose each Ti has xi σ moves and has box strand number ni. Choose ki to be the largest integer

such that xi = (2 + 3ki)ni + yi, and y ≥ 0. Let w1 + w2 = κ, and let λ =
m−2∑
i=1

wli. Define si(L) as

in Equation 7. Then the stick number of L is bounded by:

s(L) ≤ m(2κ− w2)− λ+ w2 +
m∑
i=1

si(L). (11)

Proof. This follows from Lemma 2 and Lemma 3, since s(L) ≤
m∑
i=1

si(L) + ss(L). In other words,

the stick number of a Torified Rational Link cannot be greater than the number of sticks needed to
build its skeleton plus those needed to construct its tangles.

Open Questions

1. How could we generally prove that our bound on stick number is better than 3
2
(c(L)+1) using

the HOMFLY polynomial?

2. In this paper, we replaced the integral tangles of rational links with Torified Rational ones.
What would happen if we replaced them with other types of tangles?

3. A Torified Rational Link diagram with n twist-boxes looks like it should live on a genus n
handlebody. It would be interesting to look at different covers of these links and see if we can
find invariants based on the minimal genus handlebody it can inhabit.

4. There are many ways to approach identifying and studying a new class of links. What can
other link invariants tell us about Torified Rational Links?

5. If a link can be represented as a Torified Rational Link, then will there exist a minimal crossing
representation of that link that is also a Torified Rational Link?

6. If a Torified Rational Link, L, can be represented by a diagram, D, then will there always
exist other Torified Rational representations of that link? If so, how many?
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