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Abstract

We construct two new families of pseudo-Riemannian manifolds which
are curvature homegeneous of type (1, 3). The first family given has sig-
nature (2k, 2k + 1) and is curvature homogeneous of type (1, 3) but not
curvature homogeneous. The second family given has signature (1, 2) and
is curvature homogeneous of type (1, 3) of all orders but not locally homo-
geneous, showing there is no finite Singer number for this type of curvature
homogeneity.

1 Introduction

Let (M, g) be a pseudo-Riemannian manifold, and ∇ be its Levi-Civita connec-
tion. We begin with some preliminaries and definitions.

1.1 Curvature Homogeneous Manifolds

Let X denote the ring of smooth vector fields on M . Let TM denote the tangent
bundle of M , and T ∗M its dual. The Riemann curvature tensor R of type (1,3),
that is, R ∈ TM ⊗ (T ∗M)3 is then given by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, (1)

where X,Y, Z ∈ X . The Riemann curvature tensor R is a tensor of type (0, 4),
that is, R ∈ ⊗4(T ∗M), and is given by

R(X,Y, Z,W ) = g(R(X,Y )Z,W ). (2)

Let p ∈M , and TpM denote the tangent space of M at p. Singer [8] defines
a pseudo-Riemannian manifold to be curvature homogeneous (CH) if for any
points p, q ∈ M , there exists a linear isometry F : TpM → TqM such that
the pullback F ∗ satisfies F ∗gq = gp and F ∗Rq = Rp. Let ∇rR denote the
r-th covariant derivative of R. A pseudo-Riemannian manifold is curvature
homogeneous up to order n (CHn) if there exists a linear isometry F which also
satisfies F ∗∇rRq = ∇rRp for all r ≤ n.
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Singer proved the following theorem in the Riemannian setting, which mo-
tivated the study of curvature homogeneity [8].

Theorem 1.1. Let M be an m-dimensional manifold. There exists an integer
km so that if M is curvature homogeneous of order km, M is locally homoge-
neous.

Later, Podesta and Spiro proved an analogous theorem for the pseudo-
Riemannian case [7].

Theorem 1.2. Let (M, g) be a pseudo-Riemannian manifold of signature (p, q).
There exists an integer kp,q so that if (M, g) is curvature homogeneous of order
kp,q, (M, g) is locally homogeneous.

A generalization of this is given by Kowalski and Vanz̆urová in [5] and [6]. A
pseudo-Riemannian manifold is curvature homogeneous of type (1,3) (CH(1,3))
if for any pair p, q ∈ M , there exists a linear homothety φ : TpM → TqM such
that the pullback φ∗ satisfies φ∗Rq = Rp. We say that the manifold is curvature
homogeneous of type (1,3) of order n (CHn(1, 3)) if for every r ≤ n there exists
a linear homothety φr whose pullback satisfies φ∗r∇rRq = ∇rRp.

There has been quite a bit of work done on curvature homogeneous manifolds
of higher signatures. The cases most closely related to this paper include the
ones which are of balanced signature researched by Dunn, Gilkey, and Nikc̆ević
in [3] and [2], as well as those which are nearly balanced researched by Dunn
in [1]. CH(1,3) manifolds have been researched only in the Riemannian case by
Kowalski and Vanz̆urová in [5] and [6]. We will make use of the following results
in [6]:

Theorem 1.3. Let (M, g) be a pseudo-Riemannian manifold of dimension m,
and suppose that for every 0 ≤ r ≤ n there exists and with an orthonormal
moving frame {E1, . . . Em} on M , such that for fixed p ∈ M and any q ∈ M ,
∇rR(Ei, Ej , Ek, El;Es1 , . . . , Esr )|q = Θr(q)∇rR(Ei, Ej , Ek, El;Es1 , . . . , Esr )|p
where Θr is a smooth positive function. Then (M, g) is CHn(1, 3).

1.2 Model Spaces

Let V be a finite dimensional real vector space. A bilinear symmetric function
σ : V → R is an inner product on V if for every non-zero vector v, there exists
some vector w such that σ(v, w) 6= 0.

We say a multilinear function R : V 4 → R is an algebraic curvature tensor
if

R(x, y, z, w) = −R(y, x, z, w) = R(z, w, x, y),

R(x, y, z, w) +R(z, x, y, w) +R(y, z, x, w) = 0.

We call the collection (V, σ,R) a model space. The collection (V,R) is called
a weak model space. For example, for any p ∈ M , (TpM, g|p, R|p) is a model
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space, where g|p and R|p denotes the metric and curvature at p, respectively,
and (TpM,R|p) is a weak model space.

Consider two model spaces (V, σ,R) and (W,υ, S). These model spaces are
isomorphic if there exists an isomorphism of vector spaces H : V → W which
satisfies

σ(x, y) = υ(H(x), H(y)),

R(x, y, z, w) = S(H(x), H(y), H(z), H(w)).

Two weak model spaces (V,R) (W,S) are isomorphic if there exists an isomor-
phism of vector spaces G : V →W which satisfies

R(x, y, z, w) = S(G(x), G(y), G(z), G(w)).

Let ϕ be a symmetric bilinear form on V . Rϕ is an algebraic curvature
tensor given by

Rϕ(x, y, z, w) = ϕ(x,w)ϕ(y, z)− ϕ(x, z)ϕ(y, w).

If there exists such a symmetric bilinear % so that R = ±R%, we say R is a
canonical algebraic curvature tensor. The following theorem may be found in
[4].

Theorem 1.4. Let ϕ be a symmetric bilinear form with rank greater than or
equal to 3. If Rϕ = R%, ϕ = ±%.

It is evident that a space is curvature homogeneous if and only if the model
spaces at every pair of points are isomorphic. This motivates another kind
of curvature homogeneity. A pseudo-Riemannian manifold is weakly curvature
homogeneous if the weak model space at every pair of points are isomorphic.

1.3 Weyl Scalar Invariants

Let {x1, . . . , xm} be local coordinates on a pseudo-Riemannian manifold (M, g).
Adopt the Einstein convention of summing over repeated indices, and denote

∇∂j1 . . .∇∂jrR(∂xi1 , ∂xi2 )∂xi3 = Ri4i1i2i3j1...jr∂xi4 .

We may construct scalar invariants by contracting all indices with other curva-
ture entries or with the metric tensors gij and gij . A scalar invariant formed in
this method is a Weyl scalar invariant. They were defined by Weyl in [9].

For our purposes, we will be most interested in the scalar curvature τ , the
norm of the Ricci tensor |ρ|2, and the norm of the curvature tensor |R|2. These
scalars are defined by

τ = gijRkkij ,

|ρ|2 = gi1j1gi2j2Rkki1j1R
l
li2j2 ,

|R|2 = gi1j1gi2j2gi3j3gi4j4R
i4
i1i2i3

Rj4j1j2j3 .
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1.4 Geodesics

A curve γ : [a, b] ⊂ R → M is a geodesic at t0 if ∇ dγ
dt

dγ
dt |t=t0 = 0. We say γ

is a geodesic if it is a geodesic at all t ∈ [a, b]. If every geodesic in a pseudo-
Riemannian manifold extends for infinite time, we say the manifold is complete.

1.5 The Manifold Mf,h

Let Mf,h = (R4k+1, gf,h), where R4k+1 has coordinates given by
(x0, x1, . . . , x2k, y1, . . . y2k), and the metric gf,h has non-zero entries:

gf,h(∂x0
, ∂x0

) = e2f(x1),

gf,h(∂x2i−1
, ∂x2i

) = 2h(x0), 1 ≤ i ≤ k,
gf,h(∂xs , ∂ys) = 1, 1 ≤ s ≤ 2k,

where f and h are smooth functions. We prove the following theorem in Section
2.

Theorem 1.5. Let h′ and h′′ be non-vanishing.

(a) τ , |ρ|2, and |R|2 all vanish on Mf,h.

(b) Mf,h is CH(1,3) if and only if f ′′ = −2f ′.

(c) Mf,h is CH if and only if h′′ 6= h′.

(d) If Mf,h is CH(1,3), then it is not complete if f ′ is non-vanishing.

1.6 The Manifold Mf

Let Mf = (R3, gf ), where R3 has coordinates given by (x0, x1, y1), and the
metric gf has non-zero entries:

gf (∂x0
, ∂x0

) = e2f(x1),

gf (∂x1
, ∂y1) = 1,

where f is smooth. We prove the following theorem in Section 3.

Theorem 1.6. Suppose (f ′)2 6= −f ′′.

(a) τ , |ρ|2, and |R|2 all vanish on Mf .

(b) Mf is CH(1,3) of all orders.

(c) Mf is weakly CH2 if and only if (f ′)2 + f ′′ is constant.
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2 The Geometry of Mf,h

Lemma 2.1. For Mf,h,

(a) The non-zero Christoffel symbols are given by:

∇∂x0∂x0
= −f ′e2f∂y1 ,

∇∂x0∂x1
= f ′∂x0

+ h′∂y2 , 1 ≤ i ≤ k
∇∂x0∂x2i = h′∂y2i−1 ,

∇∂x0∂x2l−1
= h′∂y2l , 2 ≤ l ≤ k,

∇∂x2i−1
∂x2i

= − h′

e2f
∂x0

.

(b) Up to the usual Z2 symmetries, the non-zero entries of R are given by:

R1001 = −e2f ((f ′)2 + f ′′),

R(2i−1)00(2i) = −h′′,
R1(2i)0(2i−1) = −f ′h′,
R1(2l−1)0(2l) = −f ′h′,

R(2i−1)(2j)(2i)(2j−1) =
(h′)2

e2f
, 1 ≤ j ≤ k,

R(2i−1)(2j−1)(2i)(2j) = (1− δij)
(h′)2

e2f
,

where all indices denote subscripts of a ∂x∗ .

Proof. The proof is evident, using the Christoffel symbols of the second kind,
characterized by

Γijk = g(∇∂xi∂xj , ∂xk),

and may be calculated by

2Γijk = ∂xig(∂xj , ∂xk) + ∂xj (∂xi , ∂xk)− ∂xkg(∂xi , ∂xj ). (3)

From here, we may simply use equations (1) and (2) to calculate the curvature.

There are two moving frames β1, β2 which will be particularly useful. Let
β1 = {X0, X1, . . . , Y1, . . . , Y2k}, where

X0 =
∂x0

ef
,

X2i−1 = λ2i−1(∂x2i−1
− h∂y2i),

X2i = λ2i(∂x2i
− h∂y2i−1

),

Ys =
1

λs
∂ys ,
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where λs is a smooth, non-vanishing function on Mf,h. Let
β2 = {X̄0, X̄1, . . . , Ȳ1, . . . , Ȳ2k}, where

X̄0 = X0,

X̄s =
1√
2

(Xs + Ys),

Ȳs =
1√
2

(Xs − Ys).

Note that β2 is an orthonormal frame. In the frame β2, the curvature entries
are given by:

R1001 = −λ
2
1

2
((f ′)2 + f ′′), (4)

R(2i−1)00(2i) = −λ2i−1λ2i
2

h′′

e2f
, (5)

R1(2i)0(2i−1) = −λ1λ2i−1λ2i
2
√

2

f ′h′

ef
, (6)

R11(2l−1)0(2l) = −λ1λ2l−1λ2s
2
√

2

f ′h′

ef
, l 6= 1, (7)

R(2i−1)(2j)(2i)(2j−1) =
λ2i−1λ2iλ2j−1λ2j

4

(h′)2

e2f
, (8)

R(2i−1)(2j−1)(2i)(2j) =
λ2i−1λ2iλ2j−1λ2j

4
(1− δij)

(h′)2

e2f
, (9)

where each subscript may be the subscript of either a X̄ or Ȳ .

2.1 A few Weyl Scalar Invariants on Mf,h

Proof of Theorem 1.5 (a). We note that it is simpler to calculate the listed in-
variants in the orthonormal frame, as then we need only consider terms which
have gss or gss. Then one must take care to calculate the entries of the (1, 3)
tensor. This may be done quite readily from the entries of the (0, 4) tensor,
as the metric is reduced to an orthonormal one. It is then immediate that τ ,
|ρ|2, and |R|2 vanish, as any curvature entry which uses an X̄ will be cancelled
out by the entry with a corresponding Ȳ in that spot, as g(Xs, Xs) = 1 and
g(Ys, Ys) = −1. To demonstrate this, we will look specifically at τ .
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Using our orthonormal frame, τ is given by:

τ =
∑
s,r

gssgrrRrssr

= g(X̄0, X̄0)R1001(g(X̄1, X̄1) + g(Ȳ1, Ȳ1))

+ g(X̄0, X̄0)R0110(g(X̄1, X̄1) + g(Ȳ1, Ȳ1))

+
∑
i≤k

R(2i)(2i−1)(2i−1)(2i)g(X̄2i−1, X̄2i−1)(g(X̄2i, X̄2i) + g(Ȳ2i, Ȳ2i))

+
∑
i≤k

R(2i)(2i−1)(2i−1)(2i)g(Ȳ2i−1, Ȳ2i−1)(g(X̄2i, X̄2i) + g(Ȳ2i, Ȳ2i))

+
∑
i≤k

R(2i−1)(2i)(2i)(2i−1)g(X̄2i, X̄2i)(g(X̄2i−1, X̄2i−1) + g(Ȳ2i−1, Ȳ2i−1))

+
∑
i≤k

R(2i−1)(2i)(2i)(2i−1)g(Ȳ2i, Ȳ2i)(g(X̄2i−1, X̄2i−1) + g(Ȳ2i−1, Ȳ2i−1))

Note that every entry has a term g(Xs, Xs) + g(Ys, Ys), which is equal to 0.
Therefore, the scalar curvature vanishes, and one may use a similar set up to
show ρ2 and |R|2 also vanish.

2.2 Curvature Homogeneity on Mf,h

Proof of Theorem 1.5 (b). Case I: f ′ 6= 0. We operate in the orthonormal frame
β2. Suppose that each of these entries is non-zero, and that all are equal to some
function a. Note that because Equation (8) holds even if i = j, Equation (9) in
conjunction with Equation (8) give us that

λ2i−1λ2i = λ2j−1λ2j

for all i, j. Then without loss of generality, we may proceed using only λ1 and
λ2. Dividing the square of Equation (5) by Equation (8) gives us

a =

(
h′′

h′ef

)2

. (10)

Note that because h′, h′′ 6= 0, a is both well-defined and positive. Dividing
Equation (6) by Equation (8) yields

1 = −
√

2f ′h′e2f

λ2(h′)2ef
,

which implies

λ2 = −
√

2f ′ef

h′
.

However, we may also attain λ2 by dividing Equation (4) by Equation (6). After
simplification, we obtain

λ2 =

√
2ef ((f ′)2 + f ′′)

f ′h′
.
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Both expressions must be valid, so we get that f satisfies

f ′′ = −2(f ′)2.

Now that we have λ2, we may use it in conjuction with Equations (5) and (10)
to find

λ1 =

√
2h′′ef

h′f ′
.

For all other λi, they need only satisfy

λ2i−1λ2i = − 2h′′

(h′)2

to make all non-vanishing curvature entries equal to ±a at every point.
For some fixed p ∈Mf,h, we may define a function ϕp by

ϕp(q) =
a(q)

a(p)
.

We have then that
Rijkl(q) = ϕp(q)Rijkl(p)

for all q ∈ Mf,h. As ϕp is smooth and positive and we are on an orthonormal
frame, we have Mf,h is CH(1,3) by Theorem 1.3.

Case II: f ′ = 0. If f ′ = 0, we have non-zero curvature entries given in β2 by

R(2i−1)00(2i) = −λ2i−1λ2i
2

h′′

e2f
, (11)

R(2i−1)(2j)(2i)(2j−1) =
λ2i−1λ2iλ2j−1λ2j

4

(h′)2

e2f
, (12)

R(2i−1)(2j−1)(2i)(2j) =
λ2i−1λ2iλ2j−1λ2j

4
(1− δij)

(h′)2

e2f
. (13)

Assume all non-zero entries are equal to some function a. We may use a
similar trick from the first part to get that

λ1λ2 = λ2i−1λ2i.

We divide the square of Equation (11) by Equation (12) and get once again,

a(p) =

(
h′′

h′ef

)2

.

Now we have that all non-zero entries are this function, provided

λ2i−1λ2i = − 2h′′

(h′)2
.

We see that as we are still on the orthonormal frame β2, we may define ϕ in an
identical manner so Mf,h is CH(1,3).
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Consider the symmetric bilinear form φp on TpM , which has non-zero entries
given the following on the basis β1.

φp(X0, X0) = −1,

φp(X0, X1) = ε(f),

φp(X0, Y0) = ε(f),

φp(X2i−1, X2i) = 1,

φp(X2i−1, Y2i) = 1,

φp(Y2i−1, Y2i) = 1,

where ε(f) = 0 if f ′ = 0, and is otherwise 1. After a few calculations, it is
verified that the canonical algebraic curvature tensor −R√

a(p)φp
is the Riemann

curvature tensor at p.

Proof of Theorem 1.5 (c). If we have a scalar invariant of the 0-model which
varies from point to point, the space will not be curvature homogeneous. Con-
sider the trace of the form

√
a(p)φp. This is not invariant to the space, as the

curvature tensor is also defined by −
√
a(p)φp. But by Theorem 1.4, these are

the only canonical algebraic curvature tensors possible. Therefore, a quantity
invariant to both forms is invariant to the space. The square of the trace is such
a quantity.

We calculate the trace by looking at the self-adjoint operator
√
a(p)Φp as-

sociated to
√
a(p)φp in the orthonormal basis β2. This is given by:

√
a



−1 ε(f) 0 0 0 . . . 0 0 ε(f) 0 0 0 . . . 0 0
ε(f) 0 1 0 0 . . . 0 0 0 1 0 0 . . . 0 0

0 1 0 0 0 . . . 0 0 1 0 0 0 . . . 0 0
0 0 0 0 1 . . . 0 0 0 0 0 1 . . . 0 0
0 0 0 1 0 . . . 0 0 0 0 1 0 . . . 0 0
...

...
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 . . . 0 1 0 0 0 0 . . . 0 1
0 0 0 0 0 . . . 1 0 0 0 0 0 . . . 1 0

−ε(f) 0 −1 0 0 . . . 0 0 0 −1 0 0 . . . 0 0
0 −1 0 0 0 . . . 0 0 −1 0 0 0 . . . 0 0
0 0 0 0 −1 . . . 0 0 0 0 0 −1 . . . 0 0
0 0 0 −1 0 . . . 0 0 0 0 −1 0 . . . 0 0
...

...
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 . . . 0 −1 0 0 0 0 . . . 0 −1
0 0 0 0 0 . . . −1 0 0 0 0 0 . . . −1 0



.

It is easy to see then that the trace of ±
√
a(p)Φp = ∓

√
a(p). This invariant is

then equal to a(p), which is constant for all p if and only if h′ = c0h
′′, where c0

is a constant. Conversely, if a(p) is constant for all p, then Rijkl(q) = Rijkl(p),
so (M, g) is CH.
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2.3 Incompleteness of Mf,h

Proof of Theorem 1.5 (d). If Mf,h is CH(1,3) and f ′ 6= 0, then f is given by

f =
1

2
log(2x1 + c1) + c2,

where c1 and c2 are arbitrary constants. Mf,h is defined only for x1 > − 1
2c1.

Consider the curve γ(t) = (0,− 1
2c1(1− 2t), 0, . . . , 0). Differentiating, we get

dγ

dt
= c1∂x1

,

and it follows from Lemma 2.1 that

∇ dγ
dt

dγ

dt
= (c1)2∇∂x1∂x1 = 0.

γ is therefore a geodesic. It is not defined for t = 1, so the space is not complete.

3 The Geometry of Mf

Lemma 3.1. For Mf ,

(a) The non-zero Christoffel symbols are given by:

∇∂x0∂x0
= −f ′e2f∂y1 ,

∇∂x0∂x1 = f ′∂x1 .

(b) Let ∆ = (f ′)2+f ′′. Up to the usual Z2 symmetries, the non-zero curvature
entry of R is given by:

R1010 = e2f∆,

where all indices are of some ∂x.

(c) Up to the usual Z2 symmetries, the non-zero entry of ∇rR is given by:

∇rR1010;1...1 = e2f∆(r).

Proof. As in Lemma 2.1, we may use Equation 3 to calculate part (a), and
Equations 1 and 2 to calculate part (b).

For part (c), we note that the non-zero curvature entry can only be differ-
entiated by ∂x1 , as differentiating by ∂y1 will yield zero outright by (a), and
differentiating by ∂x0

must be zero because of the symmetries. The derivative
of the exponential portion will cancel out when the ∂x0

entries are differentiated
by ∂x1

. For this manifold, the derivative of the zero entries of R and ∇rR is
always zero.
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We construct two particularly useful moving frames on our manifold b1 and
b2. Let b1 be given by:

X0 =
∂x0

ef
,

X1 = λ∂x1
,

Y1 =
1

λ
∂y1 ,

where λ is a smooth, non-vanishing function on Mf . b2 is an orthonormal basis
given by:

X̄0 = X0,

X̄1 =
X1 + Y1√

2
,

Ȳ1 =
X1 − Y1√

2
.

In b2, the curvture entries are given by:

∇rR1010;1...1 =
λr+2

2
√

2
r∆(r),

where the index 1 may be an index of either X̄1 or Ȳ1.

Proof of Theorem 1.6 (a). We operate in the orthonormal frame b2. As in the
case of Mf,h, each entry with a g(X̄1, X̄1) will be cancelled out by an entry with
a g(Ȳ1, Ȳ1). We calculate τ to demonstrate this.

In an orthonormal frame, we have

τ =
∑
s,r

gssgrrRrssr

= g(X̄0, X̄0)R1001(g(X̄1, X̄1) + g(Ȳ1, Ȳ1))

+ g(X̄0, X̄0)R0110(g(X̄1, X̄1) + g(Ȳ1, Ȳ1)).

Each term has g(X̄1, X̄1) + g(Ȳ1, Ȳ1) in it, which is zero. Therefore, τ vanishes
on Mf . In a similar method, one may show |ρ|2 and |R|2 also vanish.

Proof of Theorem 1.6 (b). We use the frame b2. Fix some point p ∈ M , and
define a function ω : Mf → R defined by

ω(q) =
∇rR1010;1...1(q)

∇rR1010;1...1(p)
.

At any point q ∈Mf , the non-zero curvature entries are given by ω(q)∇rR1010;1...1(p).
We may do this independently for each r. By Theorem 1.3, Mf is CHr(1, 3).

Lemma 3.2. Mf is weakly CH1.
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Proof. Consider the frame b3 = {X̃0, X̃1, Ỹ1}, where

X̃0 = X0

X̃1 = µX1

Ỹ1 = Y1,

where µ = (∆′)−1. In this frame, then, every non-zero curvature entry is given
by ±1. The space is then weakly curvature homogeneous.

Consider all bases which preserve this weak 1-model. Represented in b3,
these are bases obtained under the action of the matrix

A =

 ±d−1 b 0
0 d 0
s t c

 ,

where d, c are non-zero.

Proof of Theorem 1.6 (c). Suppose Mf is weakly CH2. Then the function

∇2R1010;11

(∇R1010;1)2

must be constant in all frames of the form Ab3, as these are the frames where
∇R1010;1 is constant, and if the space is weakly CHn, some frame must make
all curvature entries constant. Thus this quantity may be expressed as

∇2R1010;11

(∇R1010;1)2
=
d2∆′′

d2
= ∆2.

This can only be constant if ∆2 is constant.

4 Further Work

The work done on this paper motivate a few new questions.

• Can the involved metric be generalized further and preserve CH(1,3)?

• Do all Weyl scalar invariants vanish on these manifolds?

• In general, the manifolds given are not complete. Are these manifolds
non-extendible?

• Is it possible to have a space which is CH(1,3) of order 1, but not curvature
homogeneous?

• Does WCHn imply CHn+1(1, 3)?
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