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Abstract

We study the constant vector curvature condition in the simplest in-
teresting case, for model spaces in dimension three with positive definite
inner product.
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1 Introduction

In differential geometry, one studies the geometric properties of differentiable
manifolds. A manifold is a topological space which resembles Euclidean space
locally. A metric on a manifold introduces curvature to the manifold. An exam-
ple of a manifold is the surface of Earth: to an observer on Earth, the surface
of Earth seems linear, but an observer in space can discern that the surface
of Earth is curved. The utility of a manifold is that because it resembles Eu-
clidean space locally, it has a coordinate system which enables one to do calculus
in order to determine the curvature of the manifold. Johann Gauss proved the
Theorema Egregium in 1827: an inhabitant of a two-dimensional surface can
determine the curvature of the surface he or she inhabits without leaving the
surface by measuring distances and angles. In 1854, Bernhard Riemann gener-
alized the notion of curvature to manifolds of arbitrary finite dimension.
Curvature is one of the main properties of study in differential geometry, and
as a result, there are many questions concerning curvature, including questions
about different kinds of curvature. To answer a geometric question about a
manifold, one can use linear algebra and calculus to answer an algebraic ques-
tion about the tangent space to the manifold at a point, using a model space,
which consists of a vector space, inner product, and algebraic curvature ten-
sor. Omne crucial method for measuring the curvature of a model space is to
measure the sectional curvature of the 2-planes. A model space which has the
same value of sectional curvature for all of its 2-planes has constant sectional
curvature. Constant sectional curvature is an important curvature condition
because if a manifold has constant sectional curvature, then it is homogeneous,
meaning there exists an isometry between any two of its points. Such manifolds
are called space forms.
We study a new curvature condition which a model space can meet, the prop-
erty of having constant vector curvature, introduced in 6. A model space has
constant vector curvature e if all of its nonzero vectors are contained in a non-
degenerate 2-plane with sectional curvature €. Since constant vector curvature
is such a new condition, few things are known about the condition. Since con-
stant vector curvature is a weaker condition than constant sectional curvature,
in theory there should be model spaces which have constant vector curvature but
do not have constant sectional curvature. Furthermore, by studying constant
sectional curvature and constant vector curvature simultaneously, we can learn
more about the structure of model spaces with each of the respective curvature
conditions. We study the constant vector curvature condition in the simplest
interesting case, for model spaces in dimension three with positive definite inner
product and relate our findings to the eigenvalues of the associated Ricci tensor.
Let M = (V,{(-,-), R), where dim(V) = 3 and (-, ) is positive definite. Let p be
the Ricci tensor, so

spec(p) = {A1, A2, Az}

We prove the following theorems:

1. Constant vector curvature is well-defined.
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. M is Einstein if and only if M has csc(e) if and only if A\; = Ay = A3 = 2e.

. If M has cvc(e), then for an orthonormal basis which diagonalizes p, the

middle algebraic curvature tensor value of the possibly nonzero entries on
the basis vectors is e.

. M has extremal constant vector curvature if and only if at least two of

the eigenvalues of its Ricci tensor are the same. Specifically, if A\; = Ag,
then M has ecvc(%).

. If M has cve(0) and ||spec(p)|| = 3, then R = Ry £ Ry.
. If M has cvc(e), R = Ry, and ||spec(p)|| = 3, then € > 0 and for an

orthonormal basis which diagonalizes p, up to a change of sign, ¢ =

diag{\/; VT, \/g}, where 7 and § are the smallest and largest alge-

braic curvature tensor values of the possibly nonzero entries on the basis
vectors, respectively.

. There exists a model space such that ||spec(p)|| = 3 which has constant

vector curvature.

Definitions

In what follows, let V' be a real finite dimensional vector space. We first define
an algebraic curvature tensor.

Definition 1. Let z, y, z, and w be in V. An algebraic curvature tensor is a
function R:V xV xV xV — R such that

1. R(xz,y,z,w) is linear in every slot,
2. R(z,y,z,w) = —R(y,x, z,w),

R(z,y,z,w) = R(z,w,z,y), and

4. R(z,y,z,w) + R(z,z,y,w) + Ry, z,x,w) = 0,

where the fourth property is called the Bianchi Identity.

Definition 2. Let R be an algebraic curvature tensor. The kernel of R is

{z € V|R(z,y,z,w) =0 for ally €V, for all z €V, and for all w € V}.

The following is a sequence of the definitions of symmetric bilinear form,
inner product, and positive definite inner product, which progress from more

general to more specific.

Definition 3. Let v and w be in V. A symmetric bilinear form is a function

¢:V xV = R such that

1. ¢(v,w) is linear in every slot and



2. (v, w) = ¢(w7v)7
where the second property is called symmetry.

Definition 4. An inner product is a symmetric bilinear form (-,-) which is
nondegenerate, meaning that for all v in V., v # 0, there exists w in V such
that (v,w) # 0.

Definition 5. An inner product (-,-) is positive definite if for all v in V it is
the case that (v,v) > 0 if v #0 and (v,v) =0 if and only if v = 0.

We can now define a canonical algebraic curvature tensor, a special kind of
algebraic curvature tensor built from a symmetric bilinear form.

Definition 6. Let z, y, z, and w be in V. Let ¢ be a symmetric bilinear form.
Define the canonical algebraic curvature tensor Ry(x,y, 2, w) = ¢(z, w)d(y, z) —

o(z,2)0(y, w).
Remark 1. Ry is an algebraic curvature tensor. See S.

Definition 7. Let (-,-) be an inner product on V. Let R be an algebraic cur-
vature tensor on V. M = (V,(-,-), R) is a model space.

In differential geometry, one studies properties of manifolds, such as curva-
ture. A model space provides an algebraic portrait of the curvature of a manifold
with a metric at a point by studying the tangent space of the manifold at said
point.

Definition 8. Let M = (V,(-,-), R) be a model space. Let v and w be in V.
Let m = span{v,w}. 7 is a nondegenerate 2-plane if (-, )|, is nondegenerate.

Definition 9. Let M = (V,(-,-), R) be a model space. Let v and w be in V.

Let m = span{v,w} be a nondegenerate 2-plane. The sectional curvature of 7
_ R(v,w,w,v)
= (v} {w,w)—(v,w)(w,v) *

is k()

We show that x(7) is well-defined in 4 and that the denominator is nonzero
in 3.

Definition 10. Let M = (V,{(-,-), R) be a model space. M has constant sec-
tional curvature € if for all nondegenerate 2-planes 7 it is the case that k(mw) = €.
Denote constant sectional curvature € by csc(e).

With the definition of constant sectional curvature established, we introduce
the definition of constant vector curvature, first introduced in 6.

Definition 11. Let M = (V, (), R) be a model space. M has constant vector
curvature € if for allv in V, v # 0, there exists w in V such that k(span{v,w}) =
€. Denote constant vector curvature € by cvc(e).



The main difference between csc(e) and cve(e) is that csc(e) requires that
for every vector in a vector space, every plane which contains said vector has
sectional curvature e, whereas cvc(e) requires that for every vector in a vec-
tor space, there is some plane which contains said vector which has sectional
curvature e. Since csc(e) has a universal quantifier followed by another univer-
sal quantifier while cve(e) has a universal quantifier followed by an existential
quantifier, csc(e) implies cve(e).

Definition 12. Let M = (V,(-,-), R) be a model space. M has extremal con-
stant vector curvature € if M has cvc(e) and for all nondegenerate 2-planes
it is the case that either k(mw) < e or k(mw) > €. Denote extremal constant vector
curvature € by ecvc(e).

Remark 2. A manifold with an indefinite metric which has a bound on the
sectional curvature of its 2-planes has csc(e). See 5.

Definition 13. Let M = (V,{-,-),R) be a model space. Let v and w be in
V. Let {e1,...,en} be an orthonormal basis for V. The Ricci tensor is the
symmetric bilinear form p defined by

p(v,w) = Z(ei, eYR(v, e;, e;,w).
i=1
p is independent of the orthonormal basis chosen. See 3.

Definition 14. Let M = (V,{:,-},R) be a model space. M is Einstein if
p =c(, ) for some constant c.

Definition 15. Let M = (V,(-,-)) be a model space. Let A:V — V be a linear
function. The adjoint of A is the linear map A* : V — V such that for all v in
V and for all w in V it is the case that (A*v,w) = (v, Aw).

3 Lemmas

Lemma 1. Let M = (V,{-,-), R) be a model space. For all x in'V, for all v in
V., for all w in V, and for all z in V it is the case that R(x,z,v,w) = 0 and
R(z,v,w,2) = R(v,x, z,w).

Proof. By the second property of the definition of algebraic curvature tensor,
R(z,z,v,w) = —R(z,x,v,w). Hence, R(z,z,v,w) = 0. By the second and
third properties of the definition of algebraic curvature tensor,

R(z,v,w,z) = —R(v,z,w,z)
= —R(w,z,v,z)
= —(=R(z,w,v,x))
= R(z,w,v,z)
= R(v,z,z,w).



Lemma 2. Let M = (V,{-,-), R) be a model space. Let v and w be in V. Let
7w = span{v,w} be a nondegenerate 2-plane. Let {e1,ea} and {w,v} be bases for
w. Let A : span{ei,ea} — span{v,w} be a linear function which is one-to-one
and onto. Let a, b, ¢, and d be constants such that

Aei = v = aey + besg,
Aeg = w = ceq + des.

Then, (v, v){w,w) — (v, w)(w,v) = (ad — bc)?({e1, e1) (e, e2) — (e1, e2) (e, €1)).
Proof.

aey + bey, aey + bea){(ce + dey, ceq + deg)—
aey + bey, ceq + deg){cer + dea, aer + bes)
({ae1, aer) + (aeq, bes) + (bea, aer) + (bea, bes))
(cey,cer) + (cer,des) + (dea, cer) + (dea, des))]—
({ae1,cer) + (aeq, des) + (bea, cer) + (bea, des))
)]

(ceq,aer) + (ceq, bes) + (des, aer) + (des, bes)
a

(v,v)(w,w>—<v,w><w,v> = <
(
[
(
[
(
(
(

ad — be)?((e1, e1) (e, ea) — (e1,e2){ea, e1)).

O
Corollary 1. For A as in 2, ad — be # 0.
Proof. Since rank(A) = 2, ker(A) = {0}, so det(A) = ad — bc # 0. O

By definition, a 2-plane 7 is nondegenerate if and only if the inner prod-
uct (-,-)|» is nondegenerate. If (-,-}|, is nondegenerate, then there exists an
orthonormal basis for pi. In the nondegenerate setting, each orthonormal basis
vector either has length 1, in which case the basis vector is spacelike, or -1,
in which case the basis vector is timelike. This is different from the positive
definite setting, where each orthonormal basis vector has length 1.

We prove that the denominator of sectional curvature is nonzero.

Lemma 3. Let M = (V, (-,-), R) be a model space. Let v and w be vectors in V.
If 7 = span{v,w} is a nondegenerate 2-plane, then (v, v){w,w) — (v, w){w,v) #
0.

Proof. Assume © = span{v,w} is a nondegenerate 2-plane. Let {e1,es} be a
basis for m which is orthonormal with respect to (-,-). Let A be as in 2. So,

(v,v)(w,w) — (v, w)(w,v) = (ad—bc)*({e1,e1)(ez, €2) — (e1,e2)(ea, €1)).
= (ad —bc)*[(£1)(£1) — (0)(0)]
+(ad — be)?
0.

RN

We prove that sectional curvature is well-defined.

2d% — 2abed + b2c?) ({e1, e1){ea, e2) — (e1, e2)(ea, e1))



Lemma 4. Let M = (V,{-,-),R) be a model space. Let {e1,es2}, {f1, f2} be
bases for nondegenerate 2-planes. If m = span{ei,ea} = span{fi, fo}, then
k(span{ey,e2}) = k(span{ fi, f2}).

Proof. Assume m = span{ei,ea} = span{fi, f2}. Let A be as in 2. We evalu-
ate 70 5;;;’;};{?{;;?};% (ENOL computing the numerator and denominator sepa-
rately.

Numerator:

R(fhf?af%fl) -

R(aey + bea, cer + dea, cer + dea, aey + bes)

R(aeq, cer, cer,aer) + R(aeq, ceq, ce1, bes) + R(aeq, cer, des, aer )+
R(aeq,cep,des, bes) + R(aey, dea, cer,aer) + R(aeq, des, ceq, bea)+
R(aeq,des, des, aer) + R(aeq, des, des, bes) + R(bes, ce, cer, aeq)+
R(bes, ceq, cer,bes) + R(bes, ce1, des, aeq) + R(bes, cer,des, bes)+
R(bez, dez, cep, ael) + R(b@g, d62, ceq, beg) + R(beg, d€2, d€2, a€1)+
R(bez, dez, d€2, b62)

= a?d*R(e1,eq,e2,61) — 2abcdR(e1, €2, e2,e1) + b?c*R(eq, ez, €2, €1)

= (ad —bc)’R(ey, ea,€2,61).

Denominator:

(f1. f1)(fo, f2) = {fr f2)(f2, f1) = (ad — be)?({eq, e1) {ea, e2) — (€1, €2){ea, €1)).

Hence,
R(f1,f2,f2,f1) _ (ad—bc)*>R(e1,e2,e2,e1)
(fr.f1)(f2. f2)=(fr.f2)(f2.f1)  —  (ad=bc)?({e1,e1)(e2,e2)—(e1,e2)(e2,e1))
_ €1,€2,€2,€1
(e1,e1)(e2,e2)—(e1,e2)(ez,e1) "
Therefore, k(span{e1,e2}) = k(span{fi, f2}). O

Lemma 5. Let M = (V,{-,-),R). Let v be in V, v # 0, and w be in V,
w # 0, such that (v,v) =1, (w,w) =1, and (v,w) = 0. Then, k(span{v,w}) =
R(v,w,w,v).

Proof.
_ R(v,w,w,v)
K(spardv,w}) = ot oo ey
R(v,w,w,v
(1)(1)—(0)(0)

= R(v,w,w,v).

O

We prove a lemma which enables constant vector curvature to be classified
into three different general cases.

Lemma 6. Assume M = (V, (), R) has cvc(e). For some () =c(-,-), where
¢ is some constant, M = (V, (), R) has cve(d), where either 6 = —1, § = 0,
oré=1.



Proof. Assume M has cvc(e). If € = 0, then choose () = (). So, M =M,
which has cve(0). If € # 0, then choose (-,-) = |e|2 (-, -).
Since M has cvc(e), for all v in V', v # 0, there exists w in V such that

R(v,w,w,v) .
<U7 'U> <U), w> - <U, w> <w, ’U> o
But,
_ R~(v,w7w,~v) _ _ R(v,w,w,v)
(v,0) (w,w) —(v,w) (w,w) le] 2 (0,0) €] 2 (w,w) — €| 2 (v,) || 2 (w,0)
(o) (o) — (o, ) (w57

= 5
If € < 0, then l—; = —1. If ¢ > 0, then ﬁ = 1. Since v was chosen arbitrarily,
M has either cve(—1) or cve(1). Therefore, M = (V, (-, -}, R) has cvc(8), where
either = -1, =0, or 6 = 1. O

Lemma 7. Let M = (V,{-,-),R). If M has cvc(e) and ker(R) # {0}, then
e=0.

Proof. Let v be in ker(R), v # 0. Then, for all w in V|,

R(v,w,w,v)

li(span{v,w}) = (v,0) (w,w) — (v,w) (w,v)
= 0.

So, every nondegenerate 2-plane which contains v has sectional curvature 0.
Since M has cvc(e), some nondegenerate 2-plane which contains v must have
sectional curvature e. Therefore, e = 0. O

We introduce a series of lemmas from linear algebra which will be instru-
mental in proving subsequent lemmas and theorems.

Lemma 8. Let M = (V,{-,-)), where (-,-) is positive definite. Let A:V —V
be a linear function. If A = A*, then there exists a basis {e1,...,en} for V
which is orthonormal with respect to (-,-) such that

A0 0
A=110 . o0 |
0o 0 X\
where (e;,€;) = A;.
Proof. See 2. O

Lemma 9. Let M = (V,(-,-)) be a model space, where (-,-) is nondegenerate.
Let ¢ be a symmetric bilinear form. Then, there exists a unique linear function
AV — V such that for all v in V and for all w in V it is the case that
o(v,w) = (Av, w).



Proof. See 2. O

Lemma 10. Let M = (V,{(-,-)), where (-,-) is positive definite. Let ¢ be a
symmetric bilinear form. Let A : V. — V be the linear function such that for
all v and for all w it is the case that ¢(v,w) = (Av,w). Then, there exists
a basis {e1,...,en} for V which is orthonormal with respect to {-,-) such that
pleis e5) = (s €5)Ai.

Proof. We prove the well-known claim, which is proved in 2. Since ¢(v,w) =
(Av, w), we see that

(Av,w) =

P(v, w)
d(w,v
= (Aw,v)
= (v, Aw).

So, since (-,-) is positive definite, A = A*. A is as in 8, so there exists a basis
{e1,...,en} for V which is orthonormal with respect to (-,-) such that

Pleiej) = (Aei,ej)
= (\ieisej)
= <€i,€j>)\i.

O

Corollary 2. Let M = (V,{-,-), R) be a model space, where dim(V) = 3 and
(+,+) is positive definite. Then, there exists a basis {e1,ea,e3} for V which is
orthonormal with respect to (-,-) such that R(e;,e;,ex,e;) =0 wheni # j, i # k,
and j # k.

Proof. Let A and {ey, ea,e3} be as in 10. So,

R(ei,ej,ex,ei) = Rlej, e ei,ex) + Rlej, e, ¢4, ex) + Riej, e, ex, ex)
= plej,ex)
= (ej en)A;
= 0.

O

The following lemma relates constant sectional curvature and algebraic cur-
vature tensors.

Lemma 11. Let M = (V,(-,-), R). R = €R. .y if and only if M has csc(e).
Proof. See 3. O

Lemma 12. Let M = (V,{(-,), R), where dim(V) = 3 and (-,-) is positive
definite. R = Ry £ R if and only if, without loss of generality, A\; # 0, A\; # 0,
and )\k = )\z + >‘j'

Proof. See 1. O

10



We prove a series of lemmas which relate the Ricci tensor to algebraic cur-
vature tensors.

Lemma 13. Let M = (V,(,,-),R), where dim(V) = 3 and (-,-) is positive
definite. Let {eq,ea,es} be a basis for V which is orthonormal with respect to
(-,-) such that the Ricci tensor p(e;,ej) = (ej,ej)N;. Then, R(e;, ej,ej,e;) =
)\i+>\j—)\k
S,

Proof.

R(e;,eq,ei,e;)+R(e;ej,ej,e;.)+R(e;,er,er,e;)
R(ei,ej,ej,ei) = L] +

2
R(ej,ei,ei,(i]‘)JrR(e]‘ ,€5,€5 ,ej)R(ej,ek,ek,Ej)

2
R(er,ei eien)+R(er.ej.ej.erx)+R(er.er ek ek)

2
plei,ei)tplejei)—pler,ex)

2
s —

O
Lemma 14. Let M = (V,{-,-),R), where dim(V) = 3 and (-,-) is positive
definite. Let {e1,ea,e3} be a basis for V which is orthonormal with respect to
(-,-) such that the Ricci tensor p(e;,e;) = (e;, e;)\;. Then,
||{R(61’ €2, €2, 61)7 R(elv €3, €3, 63)’ R(€2, €3, €3, 62)}|| = Hspec(p)H
Proof. Assume
||{R(617 €2, €2, 61)7 R(ela €3, €3, 63)7 R(627 €3, €3, 62)}” =1

This is the case if and only if

R(eiaej,ejvei) = R(eivekaekaei) = R(ej,ek,ek,ej).

By 13,
AitAi—A
2; - R(ei,ejvejaei)
= R(ei,ek7ek,6i)
)\i+)\j7Ak
= .

Since the denominators of both expressions are the same,

Ai+Xj— A = A+ A — A, which is the case if and only if
Aj — A = Ap —Aj, which is the case if and only if
2\j —2X; = 0, which is the case if and only if

Aj— Ak 0, which is the case if and only if
A= A

By analogous reasoning, A; = A;, so A\; = A\; = A\;. Hence,

H{R(ela €2, €2, 61)7R(€1a €3, €3, 63)) R(e27 €3, €3, 62)}” =1

11



if and only if ||spec(p)|| = 1.
Assume
|[{R(e1,ea,ea,e1), R(e1, es,es,e3), R(ea, es,e3,e2)}| = 2.
Assume without loss of generality that
R(e1,ea,ea,e1) = R(eq,es,e3,e1) # R(ea, e3,e3,¢€2).
This is the case if and only if Ay = A\3. Suppose A\; = Ay. This is the case if and

only if
A2+A3—\1

R(ez,e3,e3,e2) = 5
A1+A3—Ao
2

= R(ey,es,€e3,€1).

This contradicts the assumption that R(ej,es,es,e1) # R(es,es,es3,e2). So,
A1 # A2, S0 A1 # A2 = A3. Hence,

[[{R(e1,e2,e2,€e1), R(e1,e3,€3,€3), R(ea, e3,€3,€2)}|| = 2

if and only if ||spec(p)|| = 2.
Assume

||{R(€17 €2, €2, 61)7 R(ela €3, €3, 63)7R(62a €3, €3, 62)}” =3.

Without loss of generality, suppose A1 = Ao. This is the case if and only if

A1+A3—Ao

R(el763763761) = 2
A2t+Az—\
2

= R(eq,es,e3,€2).
This contradicts the assumption that
[{R(e1, ez, e2,€1), R(e1, €3, €3, €3), R(ea, €3, €3, €2) }|| = 3.
So, A1 # A2. By analogous reasoning, A\; # A3 and Ay # A3. Hence,
[[{R(e1,e2,e2,€1), R(e1,e3,€3,e3), R(ea, e3,€e3,e2)}|| =3

if and only if ||spec(p)|| = 3.
O

The following lemma relates the geometry of a three-dimensional vector
space to the sectional curvature of its 2-planes, introduced in 4.

Lemma 15. Let M = (V,{(-,-),R), where (-,-) is positive definite. Let v be
inV,wbeinV, and u be in V such that (v,v) = 1, {(w,w) = 1, (u,u) =1,
(v,wy =0, (v,u) =0, and {(w,u) = 0. Let wyg = cosOw + sin bu. Then,

K (span{v,wg}) = cos? OR(v,w,w, v)+sin? O R(v, u, u,v)+2 cos O sin O R(v, w, u, v).

12



Proof.

R(v,wg,we,v)
<vﬁv><1Ue,1ve)—f<1ului?(tve’v>
R(v,cos Qw+sin fu,cos w+sin fu,v)
—  (v,v){cos Ow+sin Ou,cos Ow+sin Ou) — (v,cos Ow+sin Ou) (cos Qw-+sin Ou,v)
R(v,cos Qw,cos Ow,v)+ R(v,cos Qw,sin Ou,v)+ R(v,sin Ou,cos Qw,v)+ R(v,sin Ou,sin Ou,v)
((v,v))({cos Ow,cos Ow) +(cos Ow,sin Ou) + (sin Ou,cos Ow)+ (sin Ou,sin Hu)) -
R(v,cos Bw,cos fw,v)+ R(v,cos Ow,sin Ou,v)+ R(v,sin Ou,cos fw,v)+ R(v,sin Hu,sin Ou,v)
((v,cos Ow)~+(v,sin Ou)) ((cos Ow,v)+ (sin Ou,v))
cos? O R(v,w,w ,v)+2 cos 0 sin OR(U,w,u,v)+sin2 OR(v,u,u,v)

k(span{v,wy})

(v vg)(cos2 0(w,w)+2 cos 0 sin O {w,u)+sin?6(u, u)) (cos 0(v,w)+sin O(v,u))(cos O (w,v)+sin O{u,v))
cos® O R(v,w,w,v)+2 cos § sin O R(v,w,u,v)+sin® § R(v,u,u,v)
(1)&0052 0(1)+51n2 0(1))—(cos 0(0)+sm9( ))(cos 6(0)+sin 6(0))
cos? O R(v,w,w,v)+2 cos 0 sin O R(v,w,u,v)+sin? 0 R(v,u,u,v)
(D)
cos? OR(v, w, w,v) + 2 cos O sin OR(v, w, u, v) + sin® OR(v, u, u, v).

O

Lemma 16. Let M = (V,{(-,-), R), where dim(V) = 3 and {(-,-) is positive
definite. If \y = Xo, then M has cvc(28).

Proof. Let {e1,ez,e3} be a basis for V' which is orthonormal with respect to
(-,-) such that the Ricci tensor p(e;, e;) = (e;, ej)A;. Assume Ay = Ag. Then,

R(€17€3,€3761) = Wﬂ
— AMitA3—M
2
- A3
= 28
By analogous reasoning, R(es, e3,e3,€2) = % Let wg = cos fey +sin fes. Then,
by 15, let f(0) =
k(span{es,wg}) = cos?OR(ey,es,e3,e1)+sin? OR(eq, €3, e3,e2) + 2cossinOR(es, e1, ea, e3)
= cos? 9% + sin? 9%
— A3
= 28
Since f(0) for values of 6 from 0 to 7 represents every 2-plane which contains
e3, every nondegenerate 2-plane which contains e3 has sectional curvature %

Let v be in V, v # 0. If either v = —e3 or v = e3, then choose any w in
V,w# 0, w# —e3, w # e3. Without loss of generality, assume (v,v) = 1.
Since there exists some w’ such that (w',w') = 1, (v,w’) = 0, span{v,w} =
span{v,w'}, and k(span{v,w'}) = 22, r(span{v,w}) = 2. If v # —es and
v # eg, then choose w = e3. Since there exists some v’ such that (v/,v') = 1,
(w,w) =1, (V,w) =0, span{v,w} = span{v’,w}, and k(span{v’,w}) = %,
k(span{v,w}) = % So, for all v in V, v # 0, there exists w in V such that
k(span{v,w}) = 2¢. Therefore, M has cvc(32). O

We introduce a series of lemmas which relate orthonormal bases to canonical
algebraic curvature tensors.

Lemma 17. Let M = (V,(.,-),R), where R = Ry. There exists a basis
{e1,€2,e3} for V which is orthonormal with respect to (-,-) and orthogonal with
respect to ¢.

13



Proof. See 3. O

Lemma 18. Let M = (V,{-,-), R), where R = Ry. Let {e1,ea,e3} be a basis
for V. which is orthonormal with respect to (-,-) and orthogonal with respect to
¢. Then, R(e;, ej,ej,€e;) =nm;, where ¢(e;, e;) =mn;.

Proof.
R(ei,ej,ej,ei) = R¢(€i,6j,6j,€i)

= ¢(ei,e)d(ej,ej) — dlei, ej)p(e;, e;)
= 0y

O

Lemma 19. Let M = (V,{-,-), R), where dim(V') = 3, (-,+) is positive definite,
and R = Ry. Let {e1, es,e3} be a basis for V which is orthonormal with respect
to (-,-) and orthogonal with respect to ¢. If M has cvc(e) and

||{R(€1,62,62,61),R(€1,63763,61)7R(62,63,63,€2)}H = 37
then either my >ne >n3 >0 0r0>n3 > n2 > 1.

Proof. By 7, ¢ > 0. Without loss of generality assume
R(e1, e, e2,e1) = mmnz > R(e1, e3,e3,e1) = mns > R(ea, e3,e3,€2) = n213.

By 4, R(e1,es,e3,e1) = €. By 6, without loss of generality, assume ¢ = 1. Since
R(ey,es,e3,e1) = mns = 1, either both n; > 0 and n3 > 0 or both 73 < 0
and 73 < 0. Suppose 11 > 0 and n3 > 0. Since mn2 > mns, n2 > 0. Since
mmnz > mns > n2nz, M > N2 > N3. So, m > n2 > n3 > 0. Suppose m1 < 0 and
ns < 0. Since ming > mins, ne < 0. Since mimz > mnz > n2ns, N3 > M2 > M. So,
0>n3>mn2>m. O

Lemma 20. Let M = (V,{-,-), R), where dim(V) = 3 and (-,-) is positive
definite. Then,

)\1 = (S+O',
Ao = d+7,and
A3 = o+T

where R(e1,eq,ea,e1) =0, R(e1,es,e3,e1) =0, and R(ea, e3,€3,2) = T.

Proof. Let {e1,eq,e3} be a basis for V' which is orthonormal with respect to

14



(-,-) such that the Ricci tensor p(e;, e;) = (e;, €;)\;.

2)\
)\ - 2
A1+ A2—A3+A1+A3— A2

2
A1+Ao—A3 + A1+Az—XAo
2 2

R(ela €2, €2, 61) + R(ela €3, €3, 61)

0+ o.
22

2
A2+A1—A3+ Ao +A3 -\
2
Ao+A1—As + A2+A3—\1

A2

R(@l, €2, €2, el) + R(€2a €3, €3, 62)

o+ .
2Xg

2
AztA1—Ao+As+Ao—N\y
2
A3+A1— Ao + Az+A2—Ay

A3

R(eq,e3,e3,e1) + R(ez, e3,¢€3,€2)
= o+T.

4 Theorems
Theorem 1. Let M = (V,(-,-), R), where dim(V) = 3 and (-,-) is positive
definite. If M has cvc(e) and cve(d), then e = 6.

Proof. Assume M has cvc(e) and cve(d). By 10, let {e1,e2,e3} be a basis
for V' which is orthonormal with respect to (-,-) such that the Ricci tensor
plei,e;) = (ei,ej)Ai. Let v =ey.

Since M has cvc(e), there exists w in V' such that

R(v, w,w,v)

(0, ) (w, w) — (v, w)(w,0)

Since (-, -) is positive definite, every 2-plane is nondegenerate. Since span{v,w}

is a nondegenerate 2-plane, there exists w’ in V such that span{v, w} = span{v, w'},
where w’ is orthogonal to v, by the Gram-Schmidt process. By [Lemma 2],
k(span{v,w}) = k(span{v,w’}). Without loss of generality, assume (v, w) =0
and (w,w) = 1.

Since M has cve(d), there exists u in V' such that

R(v,u,u,v)

(o) () — (o, u{m o)

By analogous reasoning, assume (v, u) = 0 and (u,u) = 1.
Since M has cvc(9), there exists « in V' such that

R(w’ x? ‘/1:’ w)

=0.

(w,w){x, x) — (w, z){x, w)

15



By analogous reasoning, assume (w,z) = 0 and (z,z) = 1.
Since M has cvc(e), there exists y in V' such that

R(u,y,y,u)
<u7 u> <y’ y> - <u’ y> <y7 u>

= €.

By analogous reasoning, assume (u,y) = 0 and (y,y) = 1.
Let a, b, ¢, d, f, g, h, and j be constants such that

v =€,
w = aes + bes,
u = ceg + deg,
x = fer + g(bez — ae3),
y = hey + j(des — ces).

Then,

a® +b% =1,
A+ d? =1,
f2+g2:13
h? 4 j? =1.

And, by 5,

R(v,w, w,v) =€,
R(v,u,u,v) =0,
R(w,z,x,w) =0,
R(u,y,y,u) = €.

Hence,

R(v, w,w,v) R(ey,aes + bes, aes + bes, e1)

== R(ela aeg, acez, 61) + R(ela aeg, be37 61) + R(@l, be37 aeg, 61)+

R(el, b63, b63, 61)
= a’R(e1,ez,e2,61) +b*R(eq, e3,e3,¢€1)
= e

R(v,u,u,v) = Rey,ces + des,ces + des,er)
R(ey,des, des, eq)

= ?R(e1,ez,e2,e1) + d*R(e1, e3,e3,€1)
= 4.

16
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R(w,z,z,w)

R(u,y,y,u)

So,

I I I I IIIIIITD

(aez + bes, fer + g(bea — aes), fer + g(bez — aes), aea + bes)

(ae, fe1, fe1,aes) + R(ae, fe1, feq,bez) + R(aeq, fer, gbea, aea)+

(aea, fer, gbea, bes) + R(aes, fer, —gaes, aes) + R(aes, fer, —gaes, bes)+

(aea, gbea, fer, aes) + R(aes, gbea, fer, bes) + R(aeq, gbes, gbes, aes)+

(aes, gbea, gbea, bes) + R(aey, gbea, —gaes, aes) + R(aes, gbes, —gaes, bes)+

(aeq, —gaes, fe1,aes) + R(aes, —gaes, fe1,bes) + R(aes, —gaes, gbes, aes)+

(a’62a —gaes, gbeg, be3) + R(aeQa —gaes, —gaes, ae2) + R(aeQ, —gaes, —gaes, b€3)+
(bes, fe1, fe1,aez) + R(bes, fe1, fe1,bes) + R(bes, fe1, gbea, aez)+

(bes, fe1, gbea, bes) + R(bes, fer, —gaes, aes) + R(bes, fer, —gaes, bes)+

(bes, gbes, fe1,aes) + R(bes, gbea, fer,bes) + R(bes, gbes, gbes, aes)+

(bes, gbea, gbea, beg) + R(bes, gbea, —gaes, aes) + R(bes, gbes, —gaes, bes)+

(bes, —gaes, feq,aez) + R(bes, —gaes, fe1, bez) + R(bes, —gaes, gbea, aez )+

(bes, —gaes, gbez, bes) + R(bes, —gaes, —gaes, aea) + R(bes, —gaes, —gaes, bes)
2(a®R(e1, e, e2,e1) + b2 R(e1, e3,e3,e1)) + g%(a® + b?)2R(ea, e3, €3, €2)
2(a®R(e1, ez, e2,€1) + b2 R(e1, e3,e3,€1)) + g° R(ez, e3, €3, €2)

S

(cea + des, hey + j(dea — ces), hey + j(des — ces), cea + des)

(cea, hey, hey, ces) + R(cea, hey, hey,des) + R(cea, hey, jbes, cea)+

(cea, hey, jbea, des) + R(ceq, hey, —jces, ces) + R(cea, hey, —jces, des)+

(cea, jdes, hey, ces) + R(ces, jdea, hey, des) + R(cea, jdea, jdes, ces)+

(ces, jdes, jdes, des) + R(cea, jdes, —jces, cea) + R(ces, jdes, —jces, des)+
(ceq, —jces, he, ces) + R(ces, —jces, hey,des) + R(ces, —jces, jdes, cea)+
(CGQa 7jC€3,jd€2, de3) + R(6627 7].0637 7.7.0637 062) + R(062a 7.7’6633 7‘7‘063; d€3)+
(des, hey, hei, ces) + R(des, heq, hey,des) + R(des, hey, jdes, ces)+

(des, hey, jdes, des) + R(des, hey, —jces, cea) + R(des, hey, —jces, des)+

(des, jdes, hey, cea) + R(des, jdes, hey,des) + R(des, jdes, jdes, cea)+

(des, jdes, jdes, des) + R(des, jdes, —jces, ces) + R(des, jdes, —jces, des)+
(des, —jces, hey,cea) + R(des, —jces, hei, des) + R(des, —jces, jdes, cea)+
(des, —jces, jdes,de3) + R(dez, —jces, —jces, cea) + R(des, —jces, —jces, des)
h2(c?R(e1, ea,e2,e1) + d’R(eq, e3,e3,e1)) + 52(c® + d*)?R(ea, e3, €3, €2)
h2(c?R(e1,ea,e2,e1) + d?R(e1, e3,e3,e1)) + j2R(ez, e3, €3, €2)

€.

T I I I TN ITINTTID

€ =h?*6 + j2R(e, e3, €3, €2),
6 = fe+ g°R(ea, €3, €3, €2).

So, multiplying the first equation by g2 and the second equation by j2, we see

that

g% = g?h%5 + g*j%R(ea, e3, €3, €2),
3§20 = j%f%e + g%j?R(ea, €3, €3, €32).

So, subtracting the second equation from the first equation, we see that

g2 — j26 = g*h%5 — 212
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So, grouping similar terms together, we see that

g+ 57 fe =26 + g*h%s.

So,
get+jife = '25+g2h25 which implies
(*+52He = (52 +92h2)5 which implies
(*+ 721 —g%)e = (52 -|-g 21— ))5 which implies
(@*+72=9%%e = (PP+72-¢ J %)e.
Thus, elther e =90 or g° —l—] — 923 =0. If g + 52 — ¢%j% = 0, then since
9+ 7% - 9% = g+ [*57 —Oaundf2 = 0. So, g> = 0 and either
f2=0orj2 =0 Sinceg2 =0, f2=1-¢%> =1, so j2 = 0. Hence,
§ = f%2e+ g*R(ea, e3, €3, e2) = €. Therefore, in either case, € = 4. O

Theorem 2. Let M = (V, (), R), where dim(V) = 3 and (-,-) is positive
definite. M has csc(e) if and only if

)\1:>\2:>\3:26.

Proof. Assume M has csc(e). Let {e,ea,e3} be a basis for V' which is or-
thonormal with respect to (-,-) such that the Ricci tensor p(e;, e;) = (e;, €j) ;.
Then,

R(e1,ea,ea,e1) = R(e1,es,e3,e1) = R(ea, e3,e3,e9) =€

SO, by 14, )\1 = )\2 = )\3. SO,

A AitAi— A
2 2

2
R(ei, ej, ej, 6,‘)
= €.

This implies \; = 2¢. Hence,

)\1:>\2:>\3:26.
Assume

)\1:)\2:>\3:26.

Then,
R(eq, ez, e2,e3) = R(e1, e3,e3,e1) = R(ea, e3,e3,e2) =€

Let v bein V, v # 0, let w be in V, w # 0, and let a, b, ¢, d, f, and g be
constants such that

v aeq + bes + ces,
w = dey + fes + ges.

18



Without loss of generality, assume (v,v) = 1, (w,w) =1, and (v, w) = 0.
Since ad + bf + cg = 0, we see that

—2abdf — 2acdg — 2bcfg—
2abdf — 2acdg — 2befg—
2abdf — 2acdg — 2bcfg = 2(—ad(bf + cg)) — 2bcfg—

2abdf + 2(—cg(ad + bf))+
2(=bf(ad + cg)) — 2acdyg

—  2(—ad(~ad)) + 2(~cg(~cg)) + 2(~bf(~b]))~
2bcfqg — 2abdf — 2acdg, which implies

2(—2abdf — 2acdg — 2bcfg) = 2(a*d® + c*g* + b*f?), which implies
—2abdf — 2acdg — 2bcfg = a?d® + c2g® + b2 f2.

In the following calculations, we omit R terms which are 0, in order to simplify

the calculation

R(v, w,w,v)

R(aey + bes + ces,dey + fes + ges,der + fes + ges,aeq + bes + ce3)
R(aeq, fea,der, bes) + R(aeq, fea, fea,aer) + R(aer, ges, deq, ces)+
R(ae1, ges, ges, aer) + R(bea, de1, dey, bea) + R(bea, dey, fea, aer)+
R(bes, ges, fea, ce3) + R(bea, ges, ges, bea) + R(ces, dey, dey, cez)+
R(ces, dey, ges,aer) + R(ces, fea, fea, ces) + R(ces, fea, ges, bes)
2f2 (61, €2,€2,€ 1) — 2abde(€1, €2, €2, 61) + b2d%R (617 €2, €9, 61)—|-
a?g?R(e1,e3,e3,e1) — 2acdgR(eq, e3,e3,e1) + c2d?R(ey, e3, €3, €1 )+
b2 g*R(e, e3,e3,€2) — 2bcfgR(eg, e3, €3, €2) + ¢® f2R(e2, €3, €3, €2)
(a?f% — 2abdf + b2d® + ag? — 2acdg + c2d® + b%g® — 2bcfg + 2 f?)e
2%+ a?f? + a2g? + BPA® + VP2 0292 + Ad? + A2 f + PgP)e

(a
((a* +b* + ¢ )(d2+f2+92))6
(1)(1)e

Hence, since v and w were chosen arbitrarily, M has csc(e). O

Theorem 3. Let M = (V, (), R), where dim(V) = 3 and (-,-) is positive
definite. M is Einstein, where ¢ is some constant such that for all v in 'V and
for all w in V, the Ricci tensor p(v, w) = c(v,w), if and only if M has csc(5).

Proof. If:
Assume M has csc(5). Let A and {e1,ez,e3} be as in 10. Then, by 2,

)\1:)\2:>\3:C.

Suppose R = Ry £ Ry. Then, without loss of generality, Ay # 0, Ay # 0, and
A1+ A2 = A3. So, ¢+ ¢ = ¢, which implies that ¢ = A\; = 0, a contradiction to
the result that A\; # 0. Hence, R = Ry. Since M has csc(§), by 11, R = §R. ..
And,

c
R(eq,ez,e2,€e1) = R(e1, e3,e3,e1) = R(ea, e3,e3,e2) = 3
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Let v bein V, v # 0, let w be in V, w # 0, and let a, b, h, d, f, and g be
constants such that

v = aei + bey + hes,
w = dey+ fes + ges.

Then,
plv,w) = p(aer + bea + hes,der + fea + ges)

R(aey + bea + hes, eq,e1,der + fea + ges)+
R(aey + bes + hes, ea, ea,dey + fes + ges)+
R(aey + beg + hes, es, e3,dey + fea + ges)
R(e1,bea, fea,e1) + R(er, hes, ges,e1) + R(ea, aey, deq, ez)+
R(ez, hes, ges, ea) + R(es, ae,der, e3) + R(es, bea, fea, e3)
= 0bfR(es,e1,e1,e2) + hgR(es, e1,e1,e3) + adR(e, e, ea,e1)+
hgR(es, ez, ea,e3) + adR(ey, e3,e3,e1) + bf R(ea, €3, €3, €2)
= adp(er,er) +bfp(es,ea) + hgp(es, e3)
= ad/\1 + bf)\z + hg/\3
= (ad+bf + hg)c
= c¢((aey,der) + (bea, fea) + (hes, ges))
= c(ae; + bey + hes, de; + fes + ges)
= c(v,w).

Since v and w were chosen arbitrarily, p = ¢(-,-). Hence, M is Einstein.

Only if:

Assume M is Einstein. Let A and {e1, e2,e3} be as in 10. Since M is Einstein,
for all v in V and for all w in V, p(v,w) = ¢{v, w) for some constant c.

Since p(e;, e;) = (e, €i)\i = A, we see that

Xi = pleise)

I
Q
—
o

&
)
S
<

Hence, A\ = Ay = A3 = ¢. So,

AN~ Ak
2

AitAi—A;
2

Ai
2
c

R(ei, ej, ej,ei) =

2
So, R = $R,..y. Therefore, by 11, M has csc(5).

(4
2

The following theorem is a strengthening of Lemma 2.3 in 6.

Theorem 4. Let M = (V, (), R), where dim(V) = 3 and (-,-) is positive
definite. Let {e1,e2,e3} be as in 2. Assume without loss of generality that
R(e1,ea,ea,e1) > Rler,es,es,e1) > Rles,es,es,e3). Assume M has cvc(e).
Then, R(e1,es,es,e1) = €.
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Proof. Let

|
>

R(elv €2, €2, 61)
R(€1,€3,€37€1) = 1, and
R(ea,e3,e3,e2) = T.

Let wg = cosfey + sinfes. By 15, f(6) =

k(span{es,wy}) = cos?OR(es, ey, e1,e3)+sin?OR(es, e, e3,e3) + 2cosfsinfR(es, e, ea, €3)
= cos?6n + sin® 0.

Hence,
% = 2cosf(—sinf)n + 2sinf cos b7
= 2cosfsinf(1t — 7).
fl% = 2(1— n)(%(cos ) sin @ + cos 0%(51{1 6))

2(1 —n)(—sinfsin 6 + cos 6 cos )
2(7 —n)(cos? § — sin? 9).

Since 7 # n, for values of 6 from 0 to m, % =0when 0 =0,0 =7, or 0 =m.
Since T < 1,

k(span{es,wo}) = cos?0n+sin®07
= Wn+(0)r
d*f

2(7 —1)(cos? 0 — sin? 0)

2(T = n)((1) = (0))

2(T —n) < 0, which implies 7 is a local maximum.
cos® 5n + sin? 5T

/f(span{e3, wfraCﬂ'Z})

= O+ (D)7
= T
2
jgé = 2(7 —n)(cos® T —sin® Z)

2(7 = n)((0) = (1))
2(n — 1) > 0, which implies 7 is a local minimum.
cos® mn + sin®

k(span{es, w,})

= (Un+ )
2 - 77
Z—ﬂ’; = 2(7 —n)(cos? m — sin® 1)

= 2(r=n)((1) - (0))

= 2(7 —n) <0, which implies 7 is a local maximum.

Since these are the critical points and endpoints of f() for values of 6 from
0 to 7, and because f(6) for values of 6 from 0 to m represents every 2-plane
which contains es, es has sectional curvature between 7 and 7. Since M has
cve(e), some nondegenerate 2-plane containing es must have sectional curvature
€. Hence, 7 < e <.

Let ug = cosfey + sinfles. By 15, g(6) =

k(span{ei,up}) = cos?OR(ey,ea,e2,e1)+ sin0R(eq,es,e3,e1) + 2cosfsinfR(eq1,eq,e3,¢€1)
= cos? 66 + sin® On.
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Hence,

% = 2cosf(—sinfh)d + 2sin 6 cos Oy
= 2cosfsinf(n—9).
g%g = 2(17—5)(%(0050) sin@—kcos@%(sin&))

2(n — 6)(—sin@siné + cos 0 cos 9)
= 2(n—6)(cos? § — sin”h).

Since n # 9§, for values of 8 from 0 to , % =0 when 0 =0,0 =7, or 0 =m.
Since n < 4,
w(span{es,wo}) = cos?08 + sinOn
= L)+ 0)n
= 4.
% = 2(n—6)(cos? 0 — sin? 0)

1l

N DN

—~ =~

S 3
\

S S O O
S~—
—
—
—
—

\
~—~
(an)
S~—
S~—

H(Span{e& wframrQ}) = COS + sin 37
= (05 +(1)n
d*g -7 )
az: = 2(n — 6)(cos® 5 —sin? %)
= 2(n—106)((0) = (1))
= 2(6 —n) > 0, which implies 7 is a local minimum.
r(span{es,ws}) = cos®wd + sin® 7y
= (15 +(0)n
= 4.
% = 2(n—6)(cos® 7 — sin® 1)

2(n —=0)((1) = (0))

= 2(n—J) <0, which implies J is a local maximum.

Since these are the critical points and endpoints of f(#) for values of 6 from
0 to 7, and because f(6) for values of 6 from 0 to m represents every 2-plane
which contains eg, esg has sectional curvature between n and 4. Since M has
cvc(e), some nondegenerate 2-plane containing es must have sectional curvature
€. Hence, n <e <4.

So, n < e < 7. Therefore, R(e1,es,e3,e1) =1 = €. O

Theorem 5. Let M = (V,(-,-), R), where dim(V) = 3 and (-,-) is positive
definite. M has ecvc(e) if and only if ||spec(p)|| < 2.

Proof. We prove the logically equivalent statement that M does not have ecvc(e)

if and only if ||spec(p)|| = 3. Let {e1, ea,e3} be a basis for V' which is orthonor-

mal with respect to (-,-) such that the Ricci tensor p(e;, e;) = (e;, ;).

If:

Assume |[[spec(p)|| = 3. Then, Ay # Ao, A1 # A3, and Ay # A3. So, by

14, R(e1,e2,ea,e1) # Rlei,es,e3,e1), R(e1,e2,ea,e1) # Rlea, e3,€3,e3), and
R(e1,e3,e3,e1) # R(ea, e3, e3,ea). Assume without loss of generality that R(eq, ea, e,e1) >
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R(e1,e3,e3,e1) > R(es, e3,es,es). Suppose M has ecvc(e). Then, since M has
cvc(e), R(ey,es,es,e1) = e. But, then R(ej,eq,es,e1) > € > R(ea, e3,e3,€2).
So, by 5, € is neither an upper bound nor a lower bound on the sectional curva-
tures of the nondegenerate 2-planes, contradicting the assumption that M has
ecve(e). So, M does not have ecvc(e).

Only if:

Assume ||spec(p)|| # 3. Then, ||spec(p)|| < 2. If ||spec(p)|| = 1, then by 2, M
has csc(e), which implies M has ecvc(e). So, suppose ||spec(p)|| = 2. Then,
by 16, M has cvc(e). Assume without loss of generality that R(eq, ez, e2,€1) >
R(€1,63,63,61) > R(€2,€3,€3,62). Thena by 4’ R(€1,€3,€3761) =€ By 14, ei-
ther R(e1,ea,e9,e1) = R(e1,e3,e3,e1) or R(eq,es,e3,e2) = R(eq,es,e3,¢€1).
Suppose R(eq, es,ea,e1) = R(e1,es,e3,e1). Then, R(e1,ea,ea,e1) = R(eq,e3,e3,e1) =
€ > R(ea,e3,e3,60) =9 =¢— 7, where 7 > 0. Let v be in V, v £ 0, w be in V,
w # 0, and let a, b, ¢, d, f, and g be constants such that

v = aeq + bey + ces,
w = de; + fea + ges.

Without loss of generality, assume (v, v) = 1, (w,w) = 1, and (v, w) = 0. Then,

R(v,w,w,v)
R(aey + beg + ces,dey + fes + ges,dey + fea + ges,aey + besy + ce3)
= R(aey, fea,der,bes) + R(aeq, fea, fea, aer) + R(aeq, ges, dey, ces)+
R( R(
(

k(span{v,w})

aet, ges, ges,ae1) + R(bez, dey, deq, bez) + R(bez, dey, fea, aer )+

R(bes, ges, fea, ces) + R(bes, ges, ges, bea) + R(ces, deq, deq, ces)+
R(ces, dey, ges,aer) + R(ces, fea, fea, ces) + R(ces, fea, ges, bea)

= a?f?R(ey,e2,e9,e1) — 2abdf R(e1, €2, e2,e1) + b2d?R(eq1, e2, €2, 1)+
a’g?R(ey1, e3,e3,e1) — 2acdgR(e1, e3, e3,e1) + c2d*R(ey, e3, e3, e1)+
b?g%R(e, e3,e3,e2) — 2bcfgR(e2, €3, €3, €2) + 2 f2R(ez, €3, €3, €2)

= a?f%e — 2abdfeb®>d?e + a®g%e — 2acdge + de+
b2g%5 — 2bcfgd + 2 f26

= a?f%e — 2abdfeb*d?e + a’g%c — 2acdge + c*de+

b2g%(e — 1) — 2bcfgle — 7) + 2 f2(e — 1)

(a®f? — 2abdf + b%d? + a?g? — 2acdg + 2d?® + b2g? — 2bcfg + 2 f2)e+

(=b%¢® + 2bcfg — S f*)T

= (B + %2 1 a2 + B + B2 f2 4 0P + AP+ P f? 4 Eg?)et

(= b292+2bCf9 AT

((a® +0* + ) (d® + f2 + g%))e + (=b*g* + 2bcfg —  f2)7

= ()1t (B9 + 2befg — )

= e—(bg—cf)’r<e

Hence, since v and w were chosen arbitrarily, for all v in V' and for all w in V,
k(span{v,w}) <e.

Suppose R(eq, es, es,e3) = R(e1,es,es,e1). Then, e+7 =0 = R(ey,e9,e9,e1) >
R(eq,es,e3,e1)e = R(ea, e3,€3,e2), where 7 > 0. Let v be in V, v # 0, w be in
V,w #0, and let a, b, ¢, d, f, and g be constants such that

v = aej + bey + ces,
w = dey + fes + ges.
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Without loss of generality, assume (v, v) = 1, (w,w) = 1, and (v, w) = 0. Then,

U, W, W, V)
aey + beg + ces,de; + fea + ges,de + fea + ges,aeq + bea + ces)

k(span{v,w}) = R(

(

(ae1, fez,dey, bea) + R(aey, fea, fea,aer) + R(ae1, ges, dey, ces)+
( R(

(

R
R
R(ae1, ges, ges, aer) + R(bes, dey, dey, bea) + R(beg, dey, fea, ae)+
R(bea, ges, fea, ce3) + R(bes, ges, ges, bea) + R(ces, der, dey, ce3)+
R(ces, dey, ges,aer) + R(ces, fea, fea, ces) + R(ces, fea, ges, bea)
= 2f2 (61, €2, €2, € 1) — 2@1)de(€1, €9, €2, 61) + b2d?R (61, €9, €2, 61)+
a’g?R(e1, e3,e3,e1) — 2acdgR(e1, e3, e3,e1) + c2d?R(ey, e3, e3, e1)+
b2 g?R(ea, e3,e3,e3) — 2bcfgR(e2, e3,e3,e3) + 2 f2R(ea, e3, €3, €2)
= a?f%e — 2abdfeb®*d?e + a®g%e — 2acdge + d’e+
b2g26 — 2bcfgé + 2 f26
= a?f%e — 2abdfeb®>d?e + a’g%e — 2acdge + c2d’e+
b2g%(e + 1) — 2bcfg(e +7) + 2 f2(e + 1)
(a 2f2 — 2abdf + b*d? + a®g? — 2acdg + 2d* + b2g? — 2bcfg + * f?)e+
(1%9® — 2bcfg + 2 f2)r
(a 2d2 +a?f? 4+ a%g? + 2> + 022 + 0292 + Pd? + A2 f? + 2g?)et
(ng2 —2befg + A f7)T
((a® + b + )@ + 2 + ¢°))e + (0*g* = 2befg + A )T
(D(D)e + (529 —2befg + A f)r
e+ (bg —cf)*r > e

Hence, since v and w were chosen arbitrarily, for all v in V and for all w in V,
k(span{v,w}) > e. Therefore, M has ecvc(e). O

Corollary 3. Let M = (V,{-,-), R), where dim(V) = 3 and (-,-) is positive
definite. If \; = X\, then M has ecvc(%).

Proof. Assume without loss of generality that A; = A;. By 16, M has cve( ’\Q—k)
By 5, M has ecvc(e). Therefore, by 1, M has ecvc(%). O
Theorem 6. Let M = (V,{-,-), R), where dim(V) = 3 and (-,-) is positive
definite. If M has cvc(0) and ||spec(p)|| = 3, then R = Ry + Ry.

Proof. Assume M has cve(0). Let {e1, e2, es} be a basis for V' which is orthonor-
mal with respect to (-, -) such that the Ricci tensor p(e;, e;) = (e;,e;)A;. Assume
|[spec(p)|| = 3. Then, by 14, R(e1, ez, e2,€1) # R(e1, e3,¢e3,¢€1), R(e1, e2,e2,e1) #
R(ea, €3, e3,€2), and R(el,eg,eg,el) # R(eq, e3,e3,e3). Assume without loss of
generality that R(ej,es,ea,e1) > R(ey,es,¢e3,e1) > R(es, es,€e3,e2). Then, by
4, R(el, €3, €3, 61) =0. SO,

w = R(€1,63,€3,€1)
= 0, which implies
A1+ A3 = .
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But,

R(61362762a61) = W
— At AidAz—As
TV
= 2
= A #£0.
By analogous reasoning, R(ea,es3,e3,€2) = A3 # 0. So, Ay # 0, A\3 # 0, and
A1+ A3 = Ao. Therefore, by 12, R = Ry £ Ry. O

Theorem 7. Let M = (V,(-,-), R), where dim(V') = 3, {-,-) is positive definite,
and R = Ry. Let {e1, ea,e3} be a basis for V which is orthonormal with respect
to (-,-) and orthogonal with respect to ¢. If M has cvc(e) and

||{R(61762762561)7R(ela63763a61)7R(627€3563762)}H = 37
then € > 0.

Proof. Without loss of generality, assume R(ej,ea,e2,e1) > R(e1,es,e3,e1) >
R(es, e3,e3,e2). By 4, R(ey,es,e3,e1) = €. By 6, assume without loss of gen-

erality that either ¢ = —1, ¢ = 0, or ¢ = 1. By the contrapositive of 6, ¢ £ 0.
Suppose € = —1. So, R(e1,es,es,e1) = mns = —1, which implies n3 = 1711

Since M has cvc(—1), for all v in V, v # 0, there exists w in V such that
k(span{v,w}) = —1. Without loss of generality, assume (v,v) = 1, (w,w) = 1,
(v,w) =0, and ¢(v,w) = 0.

R(v,w,w,v
Kk(spanfv,w}) = (v,v)(w,(w)fw,w)g(w,v)

Ry (v,w,w,v

<v'u>gw w)— (vu?(wv)

_ ¢ (v,v)p(w,w) w)p(w,v)
(v,v) (w,w) —(v,w)(w,v)
= ¢(v, v)¢(w w), which implies
¢(U7v)¢(w7w) = -L

We show that there exists a v in V', v # 0, such that ¢(v,v) = 0, so that for all
win V, ¢(v,v)p(w,w) =0 # —1.
If 1 = 0, then R(ey,es,e3,e1) = mns = 0, contradicting the assumption that
R(ey,es3,e3,e1) = —1. So, 1 # 0. If 5y = 19, then
R(ela €3, €3, 61) =mng = 1213 = R(627 €3, €3, 62)7
contradicting the assumption that
[[{R(e1,e2,e2,€1), R(e1,e3,e3,e1), R(ez, e3,e3,e2)}|| = 3.

So, n1 # n2. Let a, b, and ¢ be constants such that v = aey + bes + ces. Let

c24c2nine—nin2

n1(n1—72)
T ——cdmmtmm 454
n1(n1—n2) ’
le] < 1
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So,

n1(n—mn2) n1(n—n2)

_ Hlmne—mne ——cmm+mm
- ) 7712(771 n2) + 2771(2711 n2) +c2

A mnp—mny | —e’—cimmidtmm ¢ 01 (m1—n2)

, mg(m—nz) ) 2171(n1—772) ) n1(m—n2)
cHetmnz—ninz—c” —c mmt+mm+cini (n—n2)
5 5 n1(n1—n2)
—  Cmm—nz)=cm (m—n2)+m(n1—n2)

71 (n1—"n2)

a2 +bZ +62 — \/02+02n1n2—771172 4 \/—62—6 771771+U1771 +C2

1 (n1—n2)
n1(n1—m2)
1.

Hence, (v,v) = 1, as required. But,

(v, v)

gi)(ael + bey + ces, aeq + bes + ce3)
= a ¢(€1, e1,) + b?¢(ez, e2) + (e, e3)
a? 771 +b2772+0 73
— a m + b2n2 _c
1o 2
_ c2tc?mine—mn [=c2—c?mni+mn _ 2
- 771(7711 2?72)1 =t 711(7711*;72) S m

_ 2+Pmne— muz, ——Fmmtmm, S (m—n2)
n1(n1—n2) 1

) E ?71(;71 7722) 2 = i n—ns
etz | —Cc 2 tmmnz _ C (n1—n2)

, 1 (M —72) ) , 71 (1M —n2) 5 M1 (1M —n2)
EmActmmne—mmnz—c*nz—cmninz+nininz—c® (m —n2)
, , 1 (n1—m2)
_ ¢ (m1—n2)—c”(m —n2)
07]1(771*772)

n1(m —n2)
Hence, M does not have cvc(—1), contradicting the assumption that M has
cve(—1). So, € # —1. Hence, ¢ = 1. Therefore, € > 0. O

Theorem 8. Let M = (V,(-,-), R), where dim(V') = 3, {-,-) is positive definite,
and R = Ry. Let {e1, es,e3} be a basis for V which is orthonormal with respect
to (-,-) and orthogonal with respect to ¢. If M has cvc(e) and

||{R(€1, €2, €2, 61)7 R(ela €3, €3, 61)7R(62a €3, €3, 62)}” = 3’

then either

m = - 2,
Ne = 6T, and
n = z,

or
no = +/or, and
m = \/?



where
R(el,eg,eg,el) =40 > R(el,eg,eg,el) =€ > R(62,€3,63,62) =T.

Proof. By 7, ¢ > 0. By 6, without loss of generality, assume ¢ = 1. Then,
R(e1,e2,e2,e1) = mmnz2 = 6, R(e1,e3,€e3,e1) = mnz = 1, and R(ea, e3,€3,€2) =
mens = 7. If 0 > n3 > n2 > 1, then

771:*77%

m
73

— _ ninz
n2mM3
g
T
— 2
n2 = Ub)

= —/T727273

= —+V/07, and
_ 1
= T

If 91 > n2 > n3 > 0, then

m = n

Il
=
NN

n2

|
ﬁ:)
=

3

[\

3

no

3

w

I
(e %)
B
©
=
a

O

Theorem 9. There exists M = (V, (-,-), R), where dim(V') = 3, (-,-) is positive
definite, and R = Ry such that ||spec(p)|| = 3 and M has cvc(e).

[\
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Proof. Let {e1, ea,e3} be a basis for V which is orthonormal with respect to (-, -)
and orthogonal with respect to ¢. By 7, if M has cvc(e), then € > 0. Without
loss of generality by 6, we show there exists M which has cve(1).

Let
R(el,eg,eg,el) =mn2 = o> 1,
R(e1,ea,e9,e1) =mns = 1, and
R(eq,es,e3,e9) =mams = T <L

By 19, m1 > m2 > n3 > 0, so ¢ is positive definite. We show that for all v in
V, v # 0, there exists w in V such that x(span{v,w}) = 1. Without loss of
generality, let (v,v) =1, (w,w) =1, (v,w) =0, and ¢(v,w) = 0. Let a, b, ¢, d,
f, and g be constants such that

v = aey + bey + cez # 0 and
= dey + fea + ges.

Then,

k(span{v, w}) RO R Lo
Ry v,wm),vi

(v,0) {(w,w) — (v,w) {w,v)
_ ¢(127U)<§(w7w)—¢>(U71>U<)¢(H;»U)
_ I I T

(1)(1)—(0)(0)
B(v,v)p(w, w)
o(aey + bey + ces, aeq + bes + cez)p(der + fea + ges,der + fea + ges)
(a*p(e1, e1) + b7¢(ea, e2) + Pp(es, e3))(d*pler, e1) + f2¢(ea, e2) + g Ples; €3))
(a®m + %02 + ¢*n3) (P + 212 + g°n3)

= o(v,0)(dPm + 702 + g*n3).

Since (,-) and ¢ are both positive definite and v # 0, ¢(v,v) # 0, so we find
w such that (a?n; + b%n2 + ;—j)(d%l + 2 + f’]—j) = 1. To do this, we use the
Lagrange Multipliers Method and the Intermediate Value Theorem. We first
find the extrema of hi(a,b,c) = ¢(v,v) = a®n; + b*n2 + c*n3 subject to the
condition that ji(a,b,c) = 1 —a? — b?> — ¢ = 0. The extrema occur when there
exists a formula oq such that Vhi(a,b,c) + 01Vji(a,b,c) = 0. So, we find oy
such that

2am; — 2a01 =0,
2bns — 2bo; = 0, and
2¢cn3 — 2coq1 = 0.

We see that
0 = 2an —2a0;
= 2a(nm —o1)
= a(m —o1),
O = 2b772 — 2b01
= 2b(n2 — 01),
= b(ne—o1), and
0 = 2cn3—2co;
= 2c(nz —01)
= c(nz —o1).
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So,a=0o0ro; =n,b=00r oy =1y, and ¢ =0 or g1 = n3. Since v # 0, either
a#0,b#0,or c#0. So, either 01 =1, 01 =12, or 01 = n3. If sigma; = ns,
then @ = 0 and b = 0, which implies ¢ = —1 or ¢ = 1. If sigma; = 12, then

a = 0 and ¢ = 0, which implies b = =1 or b = 1. So, v = —eg or v = ey. If
sigmay = 11, then b = 0 and ¢ = 0, which impliesa = —1 or a = 1. So, v = —e;
or v =e;. S0, v = —eg or v = e3. Hence, v = —e3, v = €3, v = —€g, U = €9,
v = —ey, or v = e;. So, the extrema of hy(a,b,c) = ¢(v,v) are ¢p(—e3, —e3) =

d(es, e3) = m3, P(—e2, —e2) = P(e2,€2) = 12, and ¢(—e1, —e1) = d(e1, 1) =M.
Since 0 < 13 < 2 < 11, 13 is the global minimum of ¢(v, v) and 7 is the global
maximum of ¢(v,v). So, n3 < ¢(v,v) < M.

We find the extrema of ho(d, £, g9) = ¢(v,v)p(w, w) = ¢(v, v)(d*n + f2n2+g*n3)
subject to the conditions that jo(d, f,g) = 1 —d? — f?> — g*> = 0 and j3(d, f,g9) =
ad+bf 4+ cg = 0. The extrema occur when there exist formulae o2 and o3 such
that Vha(d, f,g) + 02Vja(d, f,g) + 03V js(d, f,g) = 0. So, we find o9 and o3
such that

2dmo(v,v) — 2dog +acs = 0,
2fna¢(v,v) —2fos +bog = 0,and
2gn3¢(v,v) — 290z +coz = 0.

From this set of equations, we see that by multiplying each equation by d, f,
and g, respectively, it is the case that

2d*n1¢(v,v) — 2d%09 + adoz = 0,
212m2¢(v,v) — 2f%09 + bfos = 0, and
29°130(v,v) — 29209 + cgoz = 0.

The sum of the three equations is

0 = 0+0+0
= 2d°m1¢(v,v) — 2d*09 + adoz+
2f2map(v,v) — 2f209 + bfos+
29%136(v,v) — 29°02 + cgos
= 2(Pm A+ P2 + " n3)p(v,0) = 2(d* + f2 + g*)og + (ad + bf + cg)os
2¢(w, w)o(v,v) — 2(1)o2 + (0)os
2¢(v,v)Pp(w, w) — 209
d(v,v)p(w,w) — o9, which implies
B0, 0)b(w, w).
Also from the set of equations, we see that by multiplying each equation by a,
b, and c, respectively, it is the case that

09 = y

2(ld7]1¢(1), U) - 2ad02 + 0203 = O7
2bfn2¢(,uv U) - 2bf02 + b20'3 = 07 and
2cgn3d(v,v) — 2cgos + oy = 0.
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The sum of these three equations is

0 = 0+40+0
= 2adné(v,v) — 2adoy + a*os3+
20fne¢(v,v) — 2bfos + b2o3+
2cgn39(v,v) — 2cqog + c*o3
= 2(adn; + bfne + cgn3)p(v,v) — 2(ad + bf + cg)os + (a® + b? + ¢?)o3
2(adg(e1,e1) + bfd(ez, e2) + cgg(es, e3))p(v,v) — 2(0)oz + (1)o3
2(¢(aey, der) + ¢(bea, fea) + d(ces, ges))d(v,v) + o3
2¢(aey + beg + ces, dey + fes + ges)d(v,v) + o3
2¢(U’ w)qb(v, U) + g3
2(0)p(v,v) + o3
o3, which implies

o3 = 0.
So,
0 = 2d771¢)(7}, ’U) - 2d¢(v7 U)(b(wa UJ) + a(O)
= 2d¢(v,v)(m — ¢(w,w))
= do(v,v)(m — d(w,w))

0 = 2f772¢(va ’U) - 2f¢(v7 U)¢(w7 w) + b(O)
2f¢(va U)(772 - ¢(wa w )v
fo(v,v)(n2 — p(w,w)),
0 = 2gm3¢(v,v) = 29¢(v,v)p(w, w) + ¢(0)
= 29¢(va)(773 - (]5(?1),11])), and
= gd)(va U) (773 - ¢(wa ’LU))

Since v # 0 and ¢ is positive definite, ¢(v,v) # 0. This implies either d = 0 or
¢(w,w) =, either f =0 or ¢(w,w) = 12, and either g = 0 or ¢(w,w) = ns.
Since w # 0, either d # 0, f # 0, or g # 0. So, either ¢(w, w) = 3, d(w,w) =
N2, or p(w,w) = n1. If ¢(w,w) = n3, then since n3 # 11 and Nz # 192, d(w, w) #
71 and ¢(w,w) # 12, so d = 0 and f = 0, which implies g = —1 or g = 1. So,
w = —ez or w = ez. If p(w,w) = 19, then since 1y # m and 12 # 13, d(w,w) #
7 and ¢(w,w) # ns, so d = 0 and g = 0, which implies f = —1 or f = 1. So,
w = —ey or w = ey. If (w,w) =ny, then since n; # ne and n # N3, ¢(w, w) #
N2 and ¢(w,w) # n3, so f =0 and g = 0, which implies d = —1 or d = 1. So,
w= —e; or w=e1. Hence, w = —e3, w = €3, W = —eg, W = €9, W = —€1, OF
w = ej1. So, the extrema of ha(d, f, g) = ¢(v,v)d(w,w) are (v, v)P(—esz, —e3z) =
¢(v,v)¢(63,€3) = 773¢)(”U,”U), ¢(v’v)¢(7627762) = ¢('U,’U)¢(62,62) = 772¢(’U,1)),
and ¢(v,v)@(—e1, —e1) = ¢(v,v)d(e1, e1) = Mme(v, v).

Since v # 0 and ¢ is positive definite, ¢(v,v) > 0. So, since 0 < 73 < N9y <
N1, N3p(v,v) < mao(v,v) < Mme(v,v). So, n3¢(v,v) is the global minimum of
o(v,v)p(w,w) and 1 ¢(v,v) is the global maximum of ¢(v,v)P(w,w). Hence,
n3o(v,v) < o(v,v)P(w,w) < Mme(v,v). Since the maximum of ¢(v,v) is n,
the largest the minimum 73¢(v,v) can be is n3m; = 1. Since the minimum
of ¢(v,v) if n3, the smallest the maximum n;¢(v,v) can be is mn3 = 1. So,
w1 < P(v,v)d(w,w) < wse, where w; < 1 and wy > 1. Since ¢(v,v)Pp(w, w) is a
real continuous function, it attains every value between and including its global
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minimum and global maximum. Since 1 is between the global minimum of
@(v,v)p(w,w) and the global maximum of ¢(v,v)¢(w,w), by the Intermediate
Value Theorem, there exists w such that ¢(v,v)¢(w,w) = 1. Therefore, since
v was chosen arbitrarily, for all v in V', v # 0, there exists w in V such that
k(span{v,w}) = 1.

O

Conjecture 1. For 9, for arbitrary v in V, v # 0, w = aej + beg + ces, where

\/((%Cf(l — 22 =42 = 1))(@®f2(mnz — 1) + 2abdf (1 — mnz) + b2d?(mmnz — 1) + A f2(72 — 1)) 42

m

g:

262(E — 1)

Proof. Note: This proof is incomplete.

k(spanf{v,w})

R(v,w,w,v)

<vyv)<w,w)—(v,wg(w7v>
& (v, w,w,v

(v,v) {(w,w)— (v,w) {w,v)
¢(v7v)¢(wvw)*¢8U’w)¢(w-,v)

(v,0) {(w,w) —(v,w) (w,v)
¢(ae1+bestces,aer+beatces)p(der+featges,der+featges)—p(aer+beatces,der+featges)p(der+fea+ge

(ae1+bea+ces,ae1 +beatces)(de1+ fea+ges,der+ fea+ges)—(aei+bea+ces,dei+ fea+ges)(de1+ fea+ges,a
(a®p(e1,e1)+b°p(e2,€2)+c* p(es,e3)) (d>d(e1,e1)+F Pea,e2)+9° d(es,es))—(add(er,es)+bfd(ea,ea)+cgd(es,e

, (a2 (e1,e1) 402 (e2,e2) +c%(es,e3))(d? (er,e1) +f2 (ea,e2) +9% (es,ea)) —(ad{er,e1) +bf (ez,e2) +eg(es,ea)) (:
(@®m+b na+c*ns) (d m+f n2+gn3)—(adni+bfna+cgns)

(a2+2b2+62)(d2+f2+922)—((ld+bf+cg)2
(a2771+b2772+,%1)(d2771+f2772+f7*1)*(ad171+bf?72+%)2
(a?+b2+c?)(d?+f?+g%)—(ad+bf+cg)? )

If b = 0, then v is in span{e;, e3}). Since R(e1,es,e3,e1) = 1, by 5, k(span{er,es}) =
1, which by 4 means there exists w in span{e1, es} such that k(span{v,w}) = 1.
So, suppose b # 0. Since 17173 # 17213, N2 7 71, SO Z—z #1, so Z—z —1#0. Let

m

\/((QbCf(l — 122 =42 = 1))(@®f2(mnz — 1) + 2abdf (1 — mnz) + b2d*(mmnz — 1) + A f2(02 — 1)) 42

9= 202(12 — 1)
Uh!
Then,
((2bef (1= 32)? —4@? (72 =1))(a® 2 (nyn2—1
2 2 . 2
(@®m4b"na+ ) (dPm+ P02+ L) —(adm+bfne+52)2 (@m0 ne+ 20 ) (P ni+f 22+
21 p24¢2)(d2 2 2Y_(ad+b 2 - cf(1—=T2\2 _4(p2(N2 _ a2 f2(n —
(a?4+b%+c?)(d?+f2+9%) - (ad+bf+cg) (a2+b2+02)(d2+f2+((2b FO=729)2-402 (72 ~1)) (a2 £2 (n1n2 — 1)+

The proof remains incomplete.

5 Conclusion

The study of constant vector curvature is a new field of inquiry in the realm of
curvature conditions, with many intriguing questions to be asked and answered.

31



Our results use the Ricci tensor and the algebraic curvature tensor to classify
when a model space in dimension three with positive definite inner product
has constant vector curvature. A unique characteristic of this project is that it
involves an algebraic study of a geometric object. Other cases for investigation
by this method include model spaces in dimension four or higher, model spaces
with nondegenerate inner product, and model spaces in dimension three with
positive definite inner product which have a noncanonical algebraic curvature
tensor.

6 Open Questions

1. Is constant vector curvature well-defined when dim(V) > 47 When (-, -)
is nondegenerate?

2. When dim(V') = 3, the Ricci tensor completely characterizes the algebraic
curvature tensor of a model space, and so its eigenvalues enable a classifi-
cation of constant vector curvature. To what degree do the eigenvalues of
the Ricci tensor enable a classification of constant vector curvature when
dim(V) > 47 When (-, -) is nondegenerate?

3. Assume M = (V,(-,-), Ry = Ry), where dim(V) = 3 and (-, -) is positive
definite. When does M have cvc(e)?

4. Assume M = (V, (-,-), R), where dim(V) = 3 and (-, -) is positive definite.
If M has cve(0), then does ker(R) # {0}?
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