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Abstract

In this article the cyclic cutwidth of the n-dimensional cube is ex-
plored. It has been conjectured by Dr. Chavez and Dr. Trapp that the
cyclic cutwidth of Qn is minimized with the Greycode numbering. Several
results have been found toward the proof of this conjecture.

1 Introduction

Let G = (V, E, ∂) represent a graph with a set, V , of vertices, a set, E,

of edges, and a function ∂ : E →
(

V
2

)
which identifies the two distinct

vertices incident to each edge. G has often been analogised to an electric
circuit in the literature.
A numbering of the vertices, η, is a function that assigns a distinct number
from 1 to m to each of the vertices in G, where m = |V |. A numbering can
most naturally be thought of as an embedding of G into a linear chassis,
though other host graphs may be considered. The main emphasis of this
paper will be with a circular host graph. To distinguish these two host
graphs, the letters ‘l’ and ‘c’ will be used as a prefixes for linear and cyclic,
respectively.
There are three major properties of an embedding of a graph: bandwidth
(bw), wirelength (wl), and cutwidth (cw) [4].

lbw(G, η) = max{|η(v)− η(w)|: {v, w} ∈ E}.

That is, lbw is the maximum distance between two vertices connected
by an edge. For the graph, lbw(G) is the minimum of these lbw(G, η)’s
over all numberings.

lwl(G, η) =
∑

{v,w}∈E

|η(v)− η(w)|.

That is, lwl is the sum of the lengths of all the edges. lwl(G) is the
minimum, again, over all numberings.
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lcw(G, η) = max
l
|{{v, w} ∈ E : η(v) ≤ l < η(w)}|.

That is, lcw is the maximum number of edges that pass between two
consecutively numbered vertices. lcw(G) is the minimum of these maxima
over all numberings. cbw, cwl, and ccw are defined similarly to their
linear counterparts, with the appropriate adjustments made, particularly,
vertices are numbered congruence classes instead of numbers. In this
paper only wl and cw are of interest. Note: For cbw, cwl, and ccw there
are two choices for which direction an edge should go. For cbw and cwl
we clearly only want to choose the direction that minimizes the length of
the edge. However, there are graphs with numberings that have a smaller
ccw when an edge goes the long way around.
In finding the values of cw(G), wl(G) and bw(G), a useful function from
the area of discrete isoperimetric problems, the theta function, can be
used. This function will be limited in its use here as follows:

θ(S) = |{v, w} ∈ E, v ∈ S, w 6∈ S|

and θ(l) = min
|S|=l

θ(S).

In other words, θ(S), S ⊆ V is the number of edges that have exactly
one vertex in S, and over all sets S ⊆ V of size l, θ(l) is the least number
of edges that have exactly one vertex in the set. The notation θn(S) and
θn(l) will be used when G is Qn. For clarity, lowercase letters will be used
to represent numbers and uppercase letters will be reserved for sets.
Finding the value of cw(G) is called the cutwidth problem. The cutwidth
problem is NP-complete for graphs in general [4]. However, the solution to
the cutwidth problem is know for special cases like an n-dimensional cube
(Qn) embedded on linear and grid host graphs. (When the host graph
is a grid, the term congestion is used instead of cutwidth.) A conjecture
has been made for cw(Qn) when the host graph is a circle, called the CT
conjecture.
The CT conjecture (named after Chavez and Trapp) states that the Grey-
code numbering gives ccw(Qn). Or, as a formula, the CT conjecture

asserts ccw(Qn) = b 5·2n−2

3
c when n ≥ 2. The Greycode numbering is

recursively defined with a base case in Q2. Qn is two copies of Qn−1, so
if we know the numbering for Qn−1, that numbering is copied in reverse
on the second Qn−1 to give the numbering for Qn. One feature of the
Greycode numbering is that consecutively numbered vertices are adjacent
to each other.
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Diagram 1: Generating the Greycode numbering for Q3 from Q2.

2



After some historical background, there is a section summing up many
of the important results, several of which are unpublished, pertaining to
ccw(Qn). The fourth section presents the results from Ching J. Guu’s
Ph.D. dissertation [5], which are used in the new results of the fifth section.

2 Historical background

Before 1996 ccw(Q3) was already known from using exhaustive search-
ing by computer. In [7] Beatrice James found an alternate method of
determining ccw(Qn) and applied it to Q3 and to Q4. Her method is ex-
tendable to higher dimension cubes, however, the number of cases blows
up. In 2001 Ryan Aschenbrenner used another method [1] to find ccw(Q5).
His method is also extendable, but has similar problems. Currently, Candi
Castillo [3] is using Aschenbrenner’s method to prove ccw(Q6). So far as
has been tested, the CT conjecture has held.
During this 1996-present period other advances have been made with vari-
ations on the ccw(Qn) problem. In 1997 Ching J. Guu claimed in [5] that
cwl(Qn) is minimized with the Greycode numbering. In 2000 Bezrukov
et al. [2] published their proof that lcw(Qn) is minimized with a lexico-
graphic numbering. In the proof they used an equivalent discrete isoperi-
metric problem. Also proved in that paper is the congestion of Qn, which
is closely connected to lcw(Qn). In [6] the Hale’s numbering is shown to
minimize lwl(Qn).

3 Important results

3.1 ccw(Qn)–Methods

James’s method [7] is based on the fact that as far as cuts are concerned,
there are only two ways of looking at each disjoint Q2. A Q2 can contribute
one cut all the way around the cycle or two cuts in a local region. This
method can be extended in two ways–simply increase the cases as Qn goes
up in dimension or increase the size of the subcubes. The second way
increases the number of cases because the number of ways of representing
larger subcubes increases. It appears that neither extension is suitable for
proving ccw(Qn).
Aschenbrenner’s method [1] involves a diameter that cuts the cycle in two
pieces and a pair of disjoint Qn−1’s that are split by the diameter. One
can look at the size of the split given a particular pair of Qn−1’s with
respect to a particular diameter. The split size is the number of vertices
from each Qn−1 that are on one side of the diameter. However, more
than one diameter may be considered. In fact, the diameter is free to
move around the cycle, and the choice of Qn−1’s is free as well, so long as
they are complementary Qn−1’s.
In looking at a single diameter, Aschenbrenner developed a useful notation
to help find cutwidth. His use of the notation is for Qn−1’s, though it can
be extended to consider any pair of complementary subgraphs:
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|A| |eAB | |B|
|eAC | |eAD|+ |eBC | |eBD|
|C| |eCD| |D|




In the most general sense of the notation, vertex set A ∪ C is that of
one subgraph, and vertex set B∪D is the set for the other subgraph. The
first row indicates what is on one side of the diameter. The other side of
the diameter is indicated by the third row. The middle row counts the
number of edges that cross the diameter. The number of edges that have
one vertex in X and the other vertex in Y is |eXY |.
In Aschenbrenner’s paper it is mentioned that when there is a 5/11 split
(or 11/5 split, depending on which Q4 you count first and on which side of
the cycle you count) the problem was easy for Q5. Generally, if there is a
2
3
/ 1

3
split the problem is solved. More precisely, a 2n+(−1)n+1

3
/ 2n−1+(−1)n

3

split is an easy split for Qn.

3.2 Proof for a 2
3
/1

3
split

Theorem 1: When there is at least a 2n+(−1)n−1

3
/ 2n−1+(−1)n

3
split, the

largest cut is at least 5·2n−2−1
3

when n is odd or 5·2n−2−2
3

when n is even.
Lemma: When there is a split greater than x/y, an x/y split also occurs.
Proof of Lemma: With no loss in generality we can assume x ≥ y. Let
k ≥ 0. If an x + k/y − k split exists, the diameter can be rotated one
vertex pair at a time, 2n−1 times. At that point, the diameter will be in
the same position but oppositely oriented to its original position, giving a
y−k/x+k split. With each rotation the left side of the split can increase
by 1, decrease by 1, or stay the same. Since y−k ≤ x ≤ x+k, the left side
of the split must have been x at some point. Thus, an x/y split exists.

Proof of Theorem 1: From the lemma, only a 2n+(−1)n−1

3
/ 2n−1+(−1)n

3

split has to be proven. Using Aschenbrenner’s notation, this split is writ-
ten:




2n+(−1)n+1

3
2n−1+(−1)n

3
2n−1+(−1)n

3

θn−1(
2n−1+(−1)n

3
) 2n−1+2(−1)n+1

3
θn−1(

2n−1+(−1)n

3
)

2n−1+(−1)n

3
2n−1+(−1)n

3
2n+(−1)n+1

3


 .

Each vertex in each Qn−1 is connected by an edge to one vertex in

the other Qn−1. So 2n−1+(−1)n

3
edges connecting Qn−1’s is the maximum

that can stay on each side of the diameter. This minimizes the number of
edges between Qn−1’s that go through the diameter (See Diagram 2 and
accompanying example).
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Diagram 2: Q5 as Q3 ×Q2. Solid vertices represent vertices on one side of

the diameter. Q4’s are separated by the solid line.

In Aschenbrenner’s notation Diagram 2 would be represented:



11 5 5

10 6 10

5 5 11


 .

Hence, the minimum number of edges that cross the diameter is

2 · θn−1

(
2n−1+(−1)n

3

)
+ 2n−1+2(−1)n+1

3
, and ccw(Qn) is at least half of

this. In [2] a recursion is given for finding θn(l):

θn(l) =

{
2l + θn−2(l) if 0 ≤ l ≤ 2n−2

2n−1 + θn−2(l − 2n−2) if 2n−2 ≤ l ≤ 2n−1

Two cases arise–one when n is odd, and one when n is even.
Case I. When n is odd

ccw(Qn) ≥ θn−1

(
2n−1 − 1

3

)
+

2n−2 + 1

3

= θn−1(1 + 22 + 24 + · · ·+ 2n−3) +
2n−2 + 1

3

= 2

(
2n−1 − 1

3

)
+

2n−2 + 1

3

=
5 · 2n−2 − 1

3
.

This is the same as ccw(Qn, Greycode) for odd n.
Case II. When n is even

ccw(Qn) ≥ θn−1

(
2n−1 − 2

3
+ 1

)
+

2n−2 − 1

3

= θn−1(1 + 21 + 23 + · · ·+ 2n−3) +
2n−2 − 1

3

=
2n − 1

3
+

2n−2 − 1

3

=
5 · 2n−2 − 2

3
.

This is the same as ccw(Qn, Greycode) for even n.
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4 Cyclic wirelength of Qn

In Ching J. Guu’s Ph.D. dissertation [5], a proof for cwl(Qn) is claimed.
Her claim is that the Greycode numbering minimizes cyclic wirelength.
En route, she creates a derived network to convert the problem into a
discrete isoperimetric problem. Then she defines Type(S), S ⊆ Vn. There
are 2n Qn−1’s in Qn, which are denoted Hi.

Type(S) = min
1≤i≤2n

|S ∩Hi|.

That Type(S) and the size of a split are related is not immediately
obvious, so a more formal (and slightly restrictive) definition for split size
will be used in this section. For S ⊆ Vn, the size of the split of S is,

Split(S) = max
1≤i≤2n

|S ∩Hi|.

This definition gives only the bigger side of the split, but allows the
spliting line to be a nondiameter. Now it should be fairly evident that
Type(S) + Split(S) = |S|, and that consequently, the splits used earlier
are Type(S)/Split(S) or Split(S)/Type(S), depending on the orientation
of the splitting line.

4.1 big and small

When |S| = 2n−1, 0 ≤ Type(S) ≤ 2n−2. Guu abbreviates Type(S) with t,
and calls a set big if t ≥ 2n−3 and small if t ≤ 2n−3. When a path in the
derived network goes from a set to its complement, if all the sets in the
path are small, the Greycode numbering is shown to minimize cwl(Qn).
When a set, S′, in the path is of big type, Guu claims that θn(S′) ≥ 3

4
·2n,

which is large enough to not need any further consideration. Her proof
of this inequalty, however, contains at least one error. It has not been
determined how grave the error is. Since the approach may have some
utility, the outline is included here.
First, f(x) = 3

4
− 64

7
(x − 1

2
)2 is introduced, which has the property

that f(x − t) + f(x + t) + 2t ≥ 2f(x) when 0 ≤ t ≤ 7
64

. Next, it is

demonstrated that when 2n

24
≤ Type(S) ≤ ( 1

24
+ 7

64
)2n and |S| ≤ 2n−1,

θn(S) ≥ f(x) · 2n. The third and final step is that when
Type(S) ≥ ( 1

24
+ 7

64
)2n, θn(S) ≥ f(x) · 2n.

An error occurs in the proof of the final step. She takes S1∪S2 = S, with
S1 ∩ S2 6= {}. Then she continues |S1|+ |S2| = |S|.

5 New results

5.1 A new lower bound

Up to this point, the best lower bound known for ccw(Qn) was ccw(Qn) ≥
1
2
lcw(Qn). We also know an upper bound for ccw(Qn) (which is sharp at

least up to n = 6) is ccw(Qn) ≤ b 5
8
lcw(Qn)c. (This formula is incorrect

for the trivial cases of n ≤ 1, when no cycles exist.) For this section it
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will be assumed that Guu’s results are correct, and that the Greycode
numbering minimizes the cyclic wirelength of Qn. With this assumption,
a larger lower bound can be calculated. Before calculating this new lower
bound we first must know what the value of cwl(Qn) is.
Claim: cwl(Qn) = 22n−2 + 22n−3 − 2n−1

Proof of Claim: This claim will be proven by summing the lengths
of each wire in the Greycode numbering. Starting with the horizontal
and vertical wires, there are 4 each of wires with length 1, . . . , 2n−3, 2n−1.
There are 22 groups of edges along primary diagonals whose wires have
lengths 1, . . . , 2n−2 − 3, 2n−2 − 1. There are 23 groups of edges along
secondary diagonals whose wires have lengths 1, . . . , 2n−3 − 3, 2n−3 − 1,
etc.

Diagram 3: One quarter of a Q5 Greycode.

For example, Diagram 3 depicts a quarter of a Q5 Greycode. The wires
along the primary diagonal are solid, the wires along the secondary diag-
onals are dashed, and the wires along the tertiary diagonals are dotted.
The dot in the lower left corner is the location of the center of the cycle.
Keep in mind, the horizontal and vertical wires have been truncated in
the diagram, and that there are four times as many copies of each of the
diagonal wires.
The grand sum of lengths of wires for Qn is thus:

cwl(Qn) = 4[(2n−1 − 1) + (2n−1 − 3) + · · ·+ 1] +

22[(2n−2 − 1) + (2n−2 − 3) + · · ·+ 1] +

23[(2n−3 − 1) + (2n−3 − 3) + · · ·+ 1] + · · ·+ 2n−1

= 4(22n−4) + 22(22n−6) + 23(22n−8) + · · ·+ 2n−1

= 22n−2 + 22n−4 + 22n−5 + · · ·+ 2n−1

= 22n−2 + 22n−3 − 2n−1

Therefore, ccw(Qn) ≥ cwl(Qn)
2n = 2n−2 + 2n−3 − 1

2
. Or, in terms of

lcw(Qn): ccw(Qn) ≥ b 9
16

lcw(Qn)c.

5.2 Open conjectures

Reverse engineering this process starting with a desired lower bound gives
the following:
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cwl(Qn) >





2n
(

5·2n−2−1
3

− 1
)

if n is odd

2n
(

5·2n−2−2
3

− 1
)

if n is even.

It would be nice to find this as the lower bound to cwl(Qn) for when
a 2

3
/ 1

3
split does not exist. If it is a lower bound, the CT conjecture

would be verified. This can be achieved if Guu’s method can be applied
with f(x) = 5

6
− k(x − 1

2
)2 and Type(S) ≥ 1

3
2n−1 (as opposed to her

f(x) = 3
4
− 64

7
(x− 1

2
)2 and Type(S) ≥ 2n−3).

6 Conclusion

When a 2
3
/ 1

3
split exists, the Greycode numbering optimizes ccw(Qn).

The Greycode also is likely the optimal numbering for cwl(Qn), though
there remain holes in the proof. If the Greycode does optimize cwl(Qn),
the cyclic cutwidth problem is “cut in half.” A stronger version of the
cyclic wirelength problem could solve the cyclic cutwidth problem.
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